Suppose we are given $(f, G) \in \mathcal{F}$, where f is convex on $C := [-1, 1]^n$, G is a convex subset of C with either $G = \emptyset$ or $\operatorname{vol}(G) \ge \delta^n$, and $\max f(C) - \min f(C) \le 1$.

Definition 1 A pair (H, z) is a **localizer** for (f, G) if either z = (*) and $G \subseteq H$ or $z \in G$ and $f(x) \leq f(z), x \in G \Longrightarrow x \in H$. So $\{x \in G : f(x) \leq f(z)\} \subseteq H$.

For simplicity, define $f(*) := \infty$.

Proposition 1 If (H, z) is a localizer for (f, G) with $\theta := \left(\frac{\operatorname{vol}(H)}{\operatorname{vol}(C)}\right)^{1/n}$, and $\theta < \frac{\delta}{2}$, then a) if z = (*), then $G = \emptyset$; b) if $z \in G$, then $\epsilon(z, f, G) \le \frac{2\theta}{\delta}$.

Proof: $\operatorname{vol}(H) = \theta^n \operatorname{vol}(C) = (2\theta)^n < \delta^n$, where $\operatorname{vol}(G) \ge \delta^n$ if $G \neq \emptyset$, so a) follows.

Now suppose $z \in G$. Let z_* be any minimizer of f over G, and consider $G(\epsilon) := \{(1-\epsilon)z_* + \epsilon x : x \in G\}$ for any $\epsilon > \frac{2\theta}{\delta}$. $\operatorname{vol}(G(\epsilon)) = \epsilon^n \operatorname{vol}(G) \ge (\epsilon\delta)^n$ while $\operatorname{vol}(H) = (2\theta)^n < \operatorname{vol}(G(\epsilon))$. So there is some $x \in G(\epsilon) \setminus H$. So $f(x) \ge f(z)$. Hence, for some $\hat{x} \in G$, we have

$$f(z) \leq f(x)$$

= $f((1-\epsilon)z_* + \epsilon \hat{x})$
 $\leq (1-\epsilon)f(z_*) + \epsilon f(\hat{x})$
= $\min f(G) + \epsilon(f(\hat{x}) - f(z_*))$
 $\leq \min f(g) + \epsilon.$

Since $\epsilon > \frac{2\theta}{\delta}$ was arbitrary, $f(z) \le \min f(G) + \frac{2\theta}{\delta}$. \Box

The Method of Centers of Gravity (MCG) (D.J.Newman, A. Yu. Levin, 1965) Start with the localizer (H, z) = (C, (*)). At iteration k, let x_k be the center of gravity of H_k , where (H_k, z_k) is the current localizer:

$$x_k = \frac{\int_{H_k} x d\lambda}{\int_{H_k} d\lambda}.$$

Call the oracle at x_k . If $x_k \notin G \cap \operatorname{int}(C)$, and the oracle gives a separating hyperplane $G \subseteq \{x \in C : v_k^T x \leq v_k^T x_k\}$, then set $z_{k+1} = z_k$ and $a_k := v_k$. If $x_k \in G \cap \operatorname{int}(C)$ and the origin gives $f(x_k)$ and $g(x_k) \in \partial f(x_k)$, then set $z_{k+1} = \operatorname{argmin}\{f(x_k), f(z_k)\}$ and $a_k := g(x_k)$.

In either case, $H_{k+1} := \{x \in H_k : a_k^T x \le a_k^T x_k\}$. Stop if $\left(\frac{\operatorname{vol}(H_{k+1})}{\operatorname{vol}(C)}\right)^{1/n} \le \frac{\epsilon \delta}{2}$, or $\left(\frac{\operatorname{vol}(H_{k+1})}{\operatorname{vol}(C)}\right)^{1/n} < \frac{\delta}{2}$ and $z_{k+1} = (*)$.

Proposition 2 In MCG, each (H_k, z_k) is a localizer.

Proof: By induction on k: trivial for k = 0.

Assume true for k. If $x_k \notin G \cap \operatorname{int}(C)$, then $z_{k+1} = z_k$ and $a_k = v_k$ with $G \subseteq \{x \in C : x \in C : x \in C\}$ $v_k^T x \leq v_k^T x_k$. So $G \setminus H_{k+1} = G \setminus H_k$. So if $x \in G \setminus H_{k+1}, x \in G \setminus H_k$, so $f(x) \geq f(z_k) = f(z_{k+1})$. If $x_k \in G \cap \operatorname{int}(C)$, then we get $f(x_k)$ and $g(x_k) = a_k$. Then take any $x \in G \setminus H_{k+1}$; either $x \in G \setminus H_k$ so $f(x) \geq f(z_k) \geq f(z_{k+1})$, or $x \in H_k$ and $g(x_k)^T x \geq g(x_k)^T x_k$, so $f(x) \geq g(x_k)^T x_k$ $f(x_k) + g(x_k)^T(x - x_k) \ge f(x_k) \ge f(z_{k+1}).$

Proposition 3 (Grünbaum, Mityagin) If $D \subseteq \mathbf{R}^n$ is a convex compact set with center of qravity x, then for any $0 \neq a \in \mathbf{R}^{n}$,

$$\operatorname{vol}(\{y \in D : a^T y \le a^T x\}) \le \left(1 - \frac{n}{n+1}\right)^n \operatorname{vol}(D) \le \frac{e-1}{e} \operatorname{vol}(D).$$

Theorem 1 (Yudin and Nemirovski) If the method of centers of gravity performs $2.2n \ln \frac{2}{\delta}$ iterations and still has $z_k = (*), G = \emptyset$. If it produces $z_k \in G$, then within 2.2n $\left(\ln \frac{2}{\delta} + \ln \frac{1}{\delta}\right)$ steps it produces z_k with $\epsilon(z_k, f, G) \leq \epsilon$.

Proof: After k steps, we have localizer (H_k, z_k) with $\left(\frac{\operatorname{vol}(H_k)}{\operatorname{vol}(C)}\right)^{1/n} \leq \left(\frac{e-1}{e}\right)^{k/n}$. Note $\frac{1}{\ln \frac{e-1}{2}} < \frac{1}{\ln \frac{e-1}{2}}$ 2.2. Then $\left(\frac{\operatorname{vol}(H_k)}{\operatorname{vol}(C)}\right)^{1/n} < \frac{2}{\delta}$ within $\frac{n\ln\frac{2}{\delta}}{\frac{e-1}{e}} < 2.2n\ln 2/\delta$ steps. Similarly, within $2.2n\left(\ln\frac{2}{\delta} + \ln\frac{1}{\epsilon}\right)$ steps, $\left(\frac{\operatorname{vol}(H_k)}{\operatorname{vol}(C)}\right)^{1/n} < \delta\epsilon$, so we have an ϵ -optimal z_k . \Box

In general, computing the center of gravity is "hard," so how can we circumvent it?

a) Use only nice sets H_k for which the center of gravity is easy to compute (e.g., the ellipsoid method).

b) Use a different notion of center, which is "easy to compute."

(a) leads to the *ellipsoid method* of Yudin and Nemirovski (1976) and Shor (1977). This is a simple modification of MCG: at every iteration, we have a localizer (E_k, z_k) , with E_k an ellipsoid. We call the oracle at x_k , the center of the ellipsoid, and update z_k as above, but then set E_{k+1} to be the minimum volume ellipsoid containing

$$E_k^{1/2} := \{ x \in E_k : a_k^T x \le a_k^T x_k \}.$$

Questions: 1) How do we represent E_k ?

2) How fast do the volumes of E_k 's shrink?

1) $E_k = E(B_k, x_k) := \{x \in \mathbf{R}^n : (x - x_k)^T B_k^{-1} (x - x_k) \le 1\}$ with some symmetric, positive definite B_k . 2) $\frac{\operatorname{vol}(E_{k+1})}{\operatorname{vol}(E_k)} < \exp\{-\frac{1}{2(n+1)}\}.$