Mathematical Programming II
ORIE 6310 Spring 2014
Scribe: Cory Girard

Lecture 14

Suppose we are given $(f, G) \in \mathcal{F}$, where f is convex on $C:=[-1,1]^{n}, G$ is a convex subset of C with either $G=\emptyset$ or $\operatorname{vol}(G) \geq \delta^{n}$, and $\max f(C)-\min f(C) \leq 1$.

Definition $1 A$ pair (H, z) is a localizer for (f, G) if either $z=(*)$ and $G \subseteq H$ or $z \in G$ and $f(x) \leq f(z), x \in G \Longrightarrow x \in H$. So $\{x \in G: f(x) \leq f(z)\} \subseteq H$.

For simplicity, define $f(*):=\infty$.
Proposition 1 If (H, z) is a localizer for (f, G) with $\theta:=\left(\frac{\operatorname{vol}(H)}{\operatorname{vol}(C)}\right)^{1 / n}$, and $\theta<\frac{\delta}{2}$, then
a) if $z=(*)$, then $G=\emptyset$;
b) if $z \in G$, then $\epsilon(z, f, G) \leq \frac{2 \theta}{\delta}$.

Proof: $\operatorname{vol}(H)=\theta^{n} \operatorname{vol}(C)=(2 \theta)^{n}<\delta^{n}$, where $\operatorname{vol}(G) \geq \delta^{n}$ if $G \neq \emptyset$, so a) follows.
Now suppose $z \in G$. Let z_{*} be any minimizer of f over G, and consider $G(\epsilon):=\left\{(1-\epsilon) z_{*}+\right.$ $\epsilon x: x \in G\}$ for any $\epsilon>\frac{2 \theta}{\delta}$. $\operatorname{vol}(G(\epsilon))=\epsilon^{n} \operatorname{vol}(G) \geq(\epsilon \delta)^{n}$ while $\operatorname{vol}(H)=(2 \theta)^{n}<\operatorname{vol}(G(\epsilon))$. So there is some $x \in G(\epsilon) \backslash H$. So $f(x) \geq f(z)$. Hence, for some $\hat{x} \in G$, we have

$$
\begin{aligned}
f(z) & \leq f(x) \\
& =f\left((1-\epsilon) z_{*}+\epsilon \hat{x}\right) \\
& \leq(1-\epsilon) f\left(z_{*}\right)+\epsilon f(\hat{x}) \\
& =\min f(G)+\epsilon\left(f(\hat{x})-f\left(z_{*}\right)\right) \\
& \leq \min f(g)+\epsilon .
\end{aligned}
$$

Since $\epsilon>\frac{2 \theta}{\delta}$ was arbitrary, $f(z) \leq \min f(G)+\frac{2 \theta}{\delta}$.
The Method of Centers of Gravity (MCG) (D.J.Newman, A. Yu. Levin, 1965)
Start with the localizer $(H, z)=(C,(*))$. At iteration k, let x_{k} be the center of gravity of H_{k}, where $\left(H_{k}, z_{k}\right)$ is the current localizer:

$$
x_{k}=\frac{\int_{H_{k}} x d \lambda}{\int_{H_{k}} d \lambda} .
$$

Call the oracle at x_{k}. If $x_{k} \notin G \cap \operatorname{int}(C)$, and the oracle gives a separating hyperplane $G \subseteq$ $\left\{x \in C: v_{k}^{T} x \leq v_{k}^{T} x_{k}\right\}$, then set $z_{k+1}=z_{k}$ and $a_{k}:=v_{k}$. If $x_{k} \in G \cap \operatorname{int}(C)$ and the origin gives $f\left(x_{k}\right)$ and $g\left(x_{k}\right) \in \partial f\left(x_{k}\right)$, then set $z_{k+1}=\operatorname{argmin}\left\{f\left(x_{k}\right), f\left(z_{k}\right)\right\}$ and $a_{k}:=g\left(x_{k}\right)$.

In either case, $H_{k+1}:=\left\{x \in H_{k}: a_{k}^{T} x \leq a_{k}^{T} x_{k}\right\}$. Stop if $\left(\frac{\operatorname{vol}\left(H_{k+1}\right)}{\operatorname{vol}(C)}\right)^{1 / n} \leq \frac{\epsilon \delta}{2}$, or $\left(\frac{\operatorname{vol}\left(H_{k+1}\right)}{\operatorname{vol}(C)}\right)^{1 / n}<$ $\frac{\delta}{2}$ and $z_{k+1}=(*)$.

Proposition 2 In $M C G$, each $\left(H_{k}, z_{k}\right)$ is a localizer.

Proof: By induction on k; trivial for $k=0$.
Assume true for k. If $x_{k} \notin G \cap \operatorname{int}(C)$, then $z_{k+1}=z_{k}$ and $a_{k}=v_{k}$ with $G \subseteq\{x \in C$: $\left.v_{k}^{T} x \leq v_{k}^{T} x_{k}\right\}$. So $G \backslash H_{k+1}=G \backslash H_{k}$. So if $x \in G \backslash H_{k+1}, x \in G \backslash H_{k}$, so $f(x) \geq f\left(z_{k}\right)=f\left(z_{k+1}\right)$. If $x_{k} \in G \cap \operatorname{int}(C)$, then we get $f\left(x_{k}\right)$ and $g\left(x_{k}\right)=a_{k}$. Then take any $x \in G \backslash H_{k+1}$; either $x \in G \backslash H_{k}$ so $f(x) \geq f\left(z_{k}\right) \geq f\left(z_{k+1}\right)$, or $x \in H_{k}$ and $g\left(x_{k}\right)^{T} x \geq g\left(x_{k}\right)^{T} x_{k}$, so $f(x) \geq$ $f\left(x_{k}\right)+g\left(x_{k}\right)^{T}\left(x-x_{k}\right) \geq f\left(x_{k}\right) \geq f\left(z_{k+1}\right)$.

Proposition 3 (Grünbaum, Mityagin) If $D \subseteq \mathbf{R}^{\mathbf{n}}$ is a convex compact set with center of gravity x, then for any $0 \neq a \in \mathbf{R}^{\mathbf{n}}$,

$$
\operatorname{vol}\left(\left\{y \in D: a^{T} y \leq a^{T} x\right\}\right) \leq\left(1-\frac{n}{n+1}\right)^{n} \operatorname{vol}(D) \leq \frac{e-1}{e} \operatorname{vol}(D)
$$

Theorem 1 (Yudin and Nemirovski) If the method of centers of gravity performs $2.2 n \ln \frac{2}{\delta}$ iterations and still has $z_{k}=(*), G=\emptyset$. If it produces $z_{k} \in G$, then within $2.2 n\left(\ln \frac{2}{\delta}+\ln \frac{1}{\epsilon}\right)$ steps it produces z_{k} with $\epsilon\left(z_{k}, f, G\right) \leq \epsilon$.

Proof: After k steps, we have localizer $\left(H_{k}, z_{k}\right)$ with $\left(\frac{\operatorname{vol}\left(H_{k}\right)}{\operatorname{vol}(C)}\right)^{1 / n} \leq\left(\frac{e-1}{e}\right)^{k / n}$. Note $\frac{1}{\ln \frac{e-1}{e}}<$ 2.2. Then $\left(\frac{\operatorname{vol}\left(H_{k}\right)}{\operatorname{vol}(C)}\right)^{1 / n}<\frac{2}{\delta}$ within $\frac{n \ln \frac{2}{\delta}}{\frac{e-1}{e}}<2.2 n \ln 2 / \delta$ steps. Similarly, within $\left.2.2 n\left(\ln \frac{2}{\delta}+\ln \frac{1}{\epsilon}\right)\right)$ steps, $\left(\frac{\operatorname{vol}\left(H_{k}\right)}{\operatorname{vol}(C)}\right)^{1 / n}<\delta \epsilon$, so we have an ϵ-optimal z_{k}.

In general, computing the center of gravity is "hard," so how can we circumvent it?
a) Use only nice sets H_{k} for which the center of gravity is easy to compute (e.g., the ellipsoid method).
b) Use a different notion of center, which is "easy to compute."
(a) leads to the ellipsoid method of Yudin and Nemirovski (1976) and Shor (1977). This is a simple modification of MCG: at every iteration, we have a localizer $\left(E_{k}, z_{k}\right)$, with E_{k} an ellipsoid. We call the oracle at x_{k}, the center of the ellipsoid, and update z_{k} as above, but then set E_{k+1} to be the minimum volume ellipsoid containing

$$
E_{k}^{1 / 2}:=\left\{x \in E_{k}: a_{k}^{T} x \leq a_{k}^{T} x_{k}\right\}
$$

Questions: 1) How do we represent E_{k} ?
2) How fast do the volumes of E_{k} 's shrink?

1) $E_{k}=E\left(B_{k}, x_{k}\right):=\left\{x \in \mathbf{R}^{\mathbf{n}}:\left(x-x_{k}\right)^{T} B_{k}^{-1}\left(x-x_{k}\right) \leq 1\right\}$ with some symmetric, positive definite B_{k}.
2) $\frac{\operatorname{vol}\left(E_{k+1}\right)}{\operatorname{vol}\left(E_{k}\right)}<\exp \left\{-\frac{1}{2(n+1)}\right\}$.
