
Mathematical Programming II Lecture 13
ORIE 6310 Spring 2014 March 11, 2011
Scribe: Stephen Pallone

Convex Minimization Problem Specification

Consider obtaining an �-approximate minimum in the convex case. We allow a more general
situation, with a constraint set G.

Definition 1 A problem instance is a pair (f,G), with

1. f : C = [−1, 1]n → IR is convex, with max f(C)−min f(C) ≤ 1

2. G ⊂ C is convex, with G = ∅, or vol (G) ≥ �n.

Call ℱ the set of all such problem instances (f,G).

The algorithm produces z ∈ {∗} ∪ C. We define the error function

�(z, f,G) :=

⎧⎨⎩
0 if z = ∗ and G = ∅
+∞ if G ∕= ∅ and z /∈ G
f(z)−min f(C) if G ∕= ∅ and z ∈ G

(1)

and define Nℱ(�) as usual (the minimum number of steps required to guarantee an error less
than � for any problem instance in ℱ). The oracle provides{

a separating/supporting hyperplane if x /∈ G
a function subgradient pair if x ∈ G.

Theorem 1 (Separating/Supporting Hyperplane) If G is a closed convex subset of IRn

and x /∈ intG, then there is a nonzero v ∈ IRn with G ⊂ {y : vT (y − x) ≤ 0}.

Subdifferential

Definition 2 If f : D ⊂ IRn → IR is convex, then for any x ∈ D, the subdifferential of f at x
is

∂f(x) := {g ∈ IRn : f(y) ≥ f(x) + gT (y − x) ∀y ∈ D}, (2)

i.e., the set of all subgradients of f at x.

Theorem 2 If f : D → IR is convex, then for every x ∈ D, ∂f(x) is a non-empty, convex
compact subset of IRn.

1

Proof: Clearly ∂f is closed and convex. Choose x ∈ intD so that

(x, f(x)) ∈ epi f := {(y, �) : � ≥ f(y)} ⊂ IRn+1.

It is easy to see that the epigraph is convex. Note that (x, f(x)) /∈ int epi f , because (x, f(x)−
�) /∈ epi f for all � > 0. So there is a supporting hyperplane with normal (g,) ∈ IRn+1 such
that

gTy + � ≤ gTx+ f(x), ∀(y, �) ∈ epi f (3)

Use (x, f(x) + 1) to see ≤ 0. If = 0, then gTy ≤ gTx for all y ∈ D and g ∕= 0. But
this contradicts x ∈ intD. By scaling, assume = −1, then (3) with � = f(y) gives f(y) ≥
f(x) + gT (y − x), and thus g is a subgradient (and hence ∂f(x) is non-empty).

For boundedness, for each i, take x+� ei ∈ D for sufficiently small � > 0. Then f(x+� ei) ≥
f(x) + gT (� ei) implies

eTi g ≤
f(x+ � ei)− f(x)

�
,

and similarly, y = x− � ei ∈ D gives

eTi g ≥ −
f(x− � ei)− f(x)

�
.

Thus, ∂f(x) is bounded. ⊓⊔
For problem instance (f,G), if we query the oracle at x ∈ IRn:

If x /∈ G ∩ intC the oracle confirms this and returns a
nonzero v ∈ IRn such that vTy ≤ vTx for
all y ∈ G.

If x ∈ G ∩ intC the oracle confirms this and returns
(f(x), g(x)) with g(x) ∈ ∂f(x).

We now want to get lower bounds on Nℱ(�) (by constructing nasty examples) and upper
bounds (by constructing algorithms). These will match up to a constant.

Convex Minimization Lower Bounds

For lower bounds, recall G ∕= ∅ or volG ≥ �n, where � is known.

Theorem 3

Nℱ(�) ≥ n

(⌈
log2

2

�

⌉
− 1

)
.

Proof: We use (f,G) with f = 0 and G a small cube with side lengths �. Let ℎ = ⌈log2(2/d)⌉−
1, meaning 2ℎ < 2/�, and � < := 2 ⋅ 2−ℎ. The algorithm’s choices will determine a sequence
C = B0 ⊃ B1 ⊃ B2 ⊃ ⋅ ⋅ ⋅ of boxes, constructed as follows.

2

If the algorithm queries x ∈ IRn ∖ C, the oracle returns{
ei if x(i) > 1

−ei if x(i) < −1.

Otherwise we have boxes B0, . . . , Bm, and j = argmax{i : x ∈ Bi}. If j < m, return vj.
These two cases cover queries one should not ask the oracle (due to redundancy or not using
information properly).

If x ∈ Bm =: {y : p ≤ y ≤ q}, we choose k = m mod n + 1 (cycling through the
components), and if x(k) ≥ 1

2
(p(k) + q(k)), set

vm = ek Bm+1 :=

{
y ∈ Bm : y(k) ≤ 1

2
(p(k) + q(k))

}
.

Otherwise, if x(k) < 1
2
(p(k) + q(k)), set

vm = −ek Bm+1 :=

{
y ∈ Bm : y(k) >

1

2
(p(k) + q(k))

}
.

Example 1 Let n = 2.

Figure 1: These answers are all consistent with any G ⊂ Bm, where Bm is the last box of any
iteration.

After nℎ − 1 calls to the oracle, we have produced at must nℎ − 1 boxes, so components
i = 1 . . . n − 1 have been bisected at most ℎ times, while component n has been bisected at
most ℎ− 1 times.

So the current box contains a double cube of sides = 2⋅2−ℎ, n−1 times, and 2⋅2−ℎ+1 = 2,
once.

Then the algorithm produces z, and now choose G to be a cube of side length � in the
interior of one half of the double cube not containing z.

So the algorithm has z /∈ G, or z = ∗, while G ∕= ∅, and therefore, �(z, f,G = +∞.
Hence we need Nℱ(�) > nℎ. ⊓⊔

Similar but more complicated arguments give

3

Theorem 4

Nℱ(�) ≥ cn log

(
1

�

)
,

for some absolute constant c.

We will work towards an algorithm that requires

2.2n

(
ln

2

d
+ ln

1

�

)
calls to the oracle to guarantee �(z, f,G) ≤ �.

Classical Paradigm: at each iteration, an algorithm builds an approximation using the
problem’s data (e.g. QP or LP) and solves the subproblem. This approach requires analysis.

New Paradigm: at each iteration, an algorithm gains information about the location of
the minimizer. This approach requires geometry.

4

