Convex Minimization Problem Specification

Consider obtaining an ϵ -approximate minimum in the convex case. We allow a more general situation, with a constraint set G.

Definition 1 A problem instance is a pair (f, G), with

- 1. $f: C = [-1, 1]^n \to \mathbb{R}$ is convex, with $\max f(C) \min f(C) \le 1$
- 2. $G \subset C$ is convex, with $G = \emptyset$, or vol $(G) \ge \delta^n$.

Call \mathcal{F} the set of all such problem instances (f, G).

The algorithm produces $z \in \{*\} \cup C$. We define the error function

$$\epsilon(z, f, G) := \begin{cases} 0 & \text{if } z = * \text{ and } G = \emptyset \\ +\infty & \text{if } G \neq \emptyset \text{ and } z \notin G \\ f(z) - \min f(C) & \text{if } G \neq \emptyset \text{ and } z \in G \end{cases}$$
(1)

and define $\mathcal{N}_{\mathcal{F}}(\epsilon)$ as usual (the minimum number of steps required to guarantee an error less than ϵ for any problem instance in \mathcal{F}). The oracle provides

a separating/supporting hyperplane if
$$x \notin G$$

a function subgradient pair if $x \in G$.

Theorem 1 (Separating/Supporting Hyperplane) If G is a closed convex subset of \mathbb{R}^n and $x \notin \operatorname{int} G$, then there is a nonzero $v \in \mathbb{R}^n$ with $G \subset \{y : v^T(y-x) \leq 0\}$.

Subdifferential

Definition 2 If $f: D \subset \mathbb{R}^n \to \mathbb{R}$ is convex, then for any $x \in D$, the subdifferential of f at x is

$$\partial f(x) := \{ g \in \mathbf{R}^n : f(y) \ge f(x) + g^T(y - x) \quad \forall y \in D \},$$
(2)

i.e., the set of all subgradients of f at x.

Theorem 2 If $f : D \to \mathbb{R}$ is convex, then for every $x \in D$, $\partial f(x)$ is a non-empty, convex compact subset of \mathbb{R}^n .

Proof: Clearly ∂f is closed and convex. Choose $x \in \text{int } D$ so that

$$(x, f(x)) \in \operatorname{epi} f := \{(y, \nu) : \nu \ge f(y)\} \subset \mathbf{R}^{n+1}$$

It is easy to see that the epigraph is convex. Note that $(x, f(x)) \notin$ intepi f, because $(x, f(x) - \epsilon) \notin$ epi f for all $\epsilon > 0$. So there is a supporting hyperplane with normal $(g, \gamma) \in \mathbb{R}^{n+1}$ such that

$$g^T y + \gamma \nu \le g^T x + \gamma f(x), \quad \forall (y, \nu) \in \operatorname{epi} f$$
 (3)

Use (x, f(x) + 1) to see $\gamma \leq 0$. If $\gamma = 0$, then $g^T y \leq g^T x$ for all $y \in D$ and $g \neq 0$. But this contradicts $x \in \text{int } D$. By scaling, assume $\gamma = -1$, then (3) with $\nu = f(y)$ gives $f(y) \geq f(x) + g^T(y - x)$, and thus g is a subgradient (and hence $\partial f(x)$ is non-empty).

For boundedness, for each *i*, take $x + \epsilon e_i \in D$ for sufficiently small $\epsilon > 0$. Then $f(x + \epsilon e_i) \ge f(x) + g^T(\epsilon e_i)$ implies

$$e_i^T g \leq \frac{f(x + \epsilon e_i) - f(x)}{\epsilon}$$

and similarly, $y = x - \epsilon e_i \in D$ gives

$$e_i^T g \ge -\frac{f(x-\epsilon e_i) - f(x)}{\epsilon}$$

Thus, $\partial f(x)$ is bounded. \Box

For problem instance (f, G), if we query the oracle at $x \in \mathbb{R}^n$:

If $x \notin G \cap \operatorname{int} C$	the oracle confirms this and returns a
	nonzero $v \in \mathbb{R}^n$ such that $v^T y \leq v^T x$ for
	all $y \in G$.
If $x \in G \cap \operatorname{int} C$	the oracle confirms this and returns
	$(f(x), g(x))$ with $g(x) \in \partial f(x)$.

We now want to get *lower* bounds on $\mathcal{N}_{\mathcal{F}}(\epsilon)$ (by constructing nasty examples) and *upper* bounds (by constructing algorithms). These will *match* up to a constant.

Convex Minimization Lower Bounds

For lower bounds, recall $G \neq \emptyset$ or vol $G \geq \delta^n$, where δ is known.

Theorem 3

$$\mathcal{N}_{\mathcal{F}}(\epsilon) \ge n\left(\left\lceil \log_2 \frac{2}{\delta} \right\rceil - 1\right).$$

Proof: We use (f, G) with f = 0 and G a small cube with side lengths δ . Let $h = \lceil \log_2(2/d) \rceil - 1$, meaning $2^h < 2/\delta$, and $\delta < \gamma := 2 \cdot 2^{-h}$. The algorithm's choices will determine a sequence $C = B_0 \supset B_1 \supset B_2 \supset \cdots$ of boxes, constructed as follows.

If the algorithm queries $x \in \mathbb{R}^n \setminus C$, the oracle returns

$$\begin{cases} e_i & \text{if } x^{(i)} > 1 \\ -e_i & \text{if } x^{(i)} < -1 \end{cases}$$

Otherwise we have boxes B_0, \ldots, B_m , and $j = \operatorname{argmax}\{i : x \in B_i\}$. If j < m, return v_j . These two cases cover queries one should not ask the oracle (due to redundancy or not using information properly).

If $x \in B_m =: \{y : p \leq y \leq q\}$, we choose $k = m \mod n + 1$ (cycling through the components), and if $x^{(k)} \geq \frac{1}{2}(p^{(k)} + q^{(k)})$, set

$$v_m = e_k$$
 $B_{m+1} := \left\{ y \in B_m : y^{(k)} \le \frac{1}{2} (p^{(k)} + q^{(k)}) \right\}.$

Otherwise, if $x^{(k)} < \frac{1}{2}(p^{(k)} + q^{(k)})$, set

$$v_m = -e_k$$
 $B_{m+1} := \left\{ y \in B_m : y^{(k)} > \frac{1}{2} (p^{(k)} + q^{(k)}) \right\}.$

Example 1 Let n = 2.

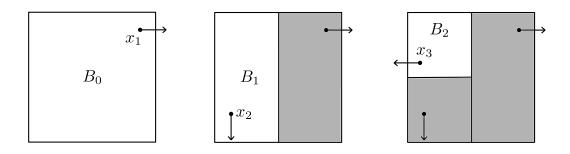


Figure 1: These answers are all consistent with any $G \subset B_m$, where B_m is the last box of any iteration.

After nh - 1 calls to the oracle, we have produced at must nh - 1 boxes, so components $i = 1 \dots n - 1$ have been bisected at most h times, while component n has been bisected at most h - 1 times.

So the current box contains a double cube of sides $\gamma = 2 \cdot 2^{-h}$, n-1 times, and $2 \cdot 2^{-h+1} = 2\gamma$, once.

Then the algorithm produces z, and now choose G to be a cube of side length δ in the interior of one half of the double cube not containing z.

So the algorithm has $z \notin G$, or z = *, while $G \neq \emptyset$, and therefore, $\epsilon(z, f, G = +\infty)$. Hence we need $\mathcal{N}_{\mathcal{F}}(\epsilon) > nh$. \Box

Similar but more complicated arguments give

Theorem 4

$$\mathcal{N}_{\mathcal{F}}(\epsilon) \ge cn \log\left(\frac{1}{\epsilon}\right),$$

for some absolute constant c.

We will work towards an algorithm that requires

$$2.2\,n\left(\ln\frac{2}{d} + \ln\frac{1}{\epsilon}\right)$$

calls to the oracle to guarantee $\epsilon(z, f, G) \leq \epsilon$.

Classical Paradigm: at each iteration, an algorithm builds an approximation using the problem's data (e.g. QP or LP) and solves the subproblem. This approach requires analysis.

New Paradigm: at each iteration, an algorithm gains information about the location of the minimizer. This approach requires geometry.