Convex Minimization Problem Specification

Consider obtaining an ϵ-approximate minimum in the convex case. We allow a more general situation, with a constraint set G.

Definition 1 A problem instance is a pair (f, G), with

1. $f: C=[-1,1]^{n} \rightarrow \mathbb{R}$ is convex, with $\max f(C)-\min f(C) \leq 1$
2. $G \subset C$ is convex, with $G=\emptyset$, or $\operatorname{vol}(G) \geq \delta^{n}$.

Call \mathcal{F} the set of all such problem instances (f, G).
The algorithm produces $z \in\{*\} \cup C$. We define the error function

$$
\epsilon(z, f, G):= \begin{cases}0 & \text { if } z=* \text { and } G=\emptyset \tag{1}\\ +\infty & \text { if } G \neq \emptyset \text { and } z \notin G \\ f(z)-\min f(C) & \text { if } G \neq \emptyset \text { and } z \in G\end{cases}
$$

and define $\mathcal{N}_{\mathcal{F}}(\epsilon)$ as usual (the minimum number of steps required to guarantee an error less than ϵ for any problem instance in \mathcal{F}). The oracle provides

$$
\begin{cases}\text { a separating/supporting hyperplane } & \text { if } x \notin G \\ \text { a function subgradient pair } & \text { if } x \in G\end{cases}
$$

Theorem 1 (Separating/Supporting Hyperplane) If G is a closed convex subset of \mathbf{R}^{n} and $x \notin \operatorname{int} G$, then there is a nonzero $v \in \mathbb{R}^{n}$ with $G \subset\left\{y: v^{T}(y-x) \leq 0\right\}$.

Subdifferential

Definition 2 If $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, then for any $x \in D$, the subdifferential of f at x is

$$
\begin{equation*}
\partial f(x):=\left\{g \in \mathbf{R}^{n}: f(y) \geq f(x)+g^{T}(y-x) \quad \forall y \in D\right\} \tag{2}
\end{equation*}
$$

i.e., the set of all subgradients of f at x.

Theorem 2 If $f: D \rightarrow \mathbb{R}$ is convex, then for every $x \in D, \partial f(x)$ is a non-empty, convex compact subset of \mathbf{R}^{n}.

Proof: Clearly ∂f is closed and convex. Choose $x \in \operatorname{int} D$ so that

$$
(x, f(x)) \in \operatorname{epi} f:=\{(y, \nu): \nu \geq f(y)\} \subset \mathbf{R}^{n+1}
$$

It is easy to see that the epigraph is convex. Note that $(x, f(x)) \notin$ int epi f, because $(x, f(x)-$ $\epsilon) \notin$ epi f for all $\epsilon>0$. So there is a supporting hyperplane with normal $(g, \gamma) \in \mathbb{R}^{n+1}$ such that

$$
\begin{equation*}
g^{T} y+\gamma \nu \leq g^{T} x+\gamma f(x), \quad \forall(y, \nu) \in \operatorname{epi} f \tag{3}
\end{equation*}
$$

Use $(x, f(x)+1)$ to see $\gamma \leq 0$. If $\gamma=0$, then $g^{T} y \leq g^{T} x$ for all $y \in D$ and $g \neq 0$. But this contradicts $x \in \operatorname{int} D$. By scaling, assume $\gamma=-1$, then (3) with $\nu=f(y)$ gives $f(y) \geq$ $f(x)+g^{T}(y-x)$, and thus g is a subgradient (and hence $\partial f(x)$ is non-empty).

For boundedness, for each i, take $x+\epsilon e_{i} \in D$ for sufficiently small $\epsilon>0$. Then $f\left(x+\epsilon e_{i}\right) \geq$ $f(x)+g^{T}\left(\epsilon e_{i}\right)$ implies

$$
e_{i}^{T} g \leq \frac{f\left(x+\epsilon e_{i}\right)-f(x)}{\epsilon}
$$

and similarly, $y=x-\epsilon e_{i} \in D$ gives

$$
e_{i}^{T} g \geq-\frac{f\left(x-\epsilon e_{i}\right)-f(x)}{\epsilon}
$$

Thus, $\partial f(x)$ is bounded.
For problem instance (f, G), if we query the oracle at $x \in \mathbf{R}^{n}$:
If $x \notin G \cap \operatorname{int} C$ the oracle confirms this and returns a nonzero $v \in \mathbb{R}^{n}$ such that $v^{T} y \leq v^{T} x$ for all $y \in G$.
If $x \in G \cap \operatorname{int} C$ the oracle confirms this and returns $(f(x), g(x))$ with $g(x) \in \partial f(x)$.
We now want to get lower bounds on $\mathcal{N}_{\mathcal{F}}(\epsilon)$ (by constructing nasty examples) and upper bounds (by constructing algorithms). These will match up to a constant.

Convex Minimization Lower Bounds

For lower bounds, recall $G \neq \emptyset$ or $\operatorname{vol} G \geq \delta^{n}$, where δ is known.

Theorem 3

$$
\mathcal{N}_{\mathcal{F}}(\epsilon) \geq n\left(\left\lceil\log _{2} \frac{2}{\delta}\right\rceil-1\right)
$$

Proof: We use (f, G) with $f=0$ and G a small cube with side lengths δ. Let $h=\left\lceil\log _{2}(2 / d)\right\rceil-$ 1 , meaning $2^{h}<2 / \delta$, and $\delta<\gamma:=2 \cdot 2^{-h}$. The algorithm's choices will determine a sequence $C=B_{0} \supset B_{1} \supset B_{2} \supset \cdots$ of boxes, constructed as follows.

If the algorithm queries $x \in \mathbb{R}^{n} \backslash C$, the oracle returns

$$
\begin{cases}e_{i} & \text { if } x^{(i)}>1 \\ -e_{i} & \text { if } x^{(i)}<-1\end{cases}
$$

Otherwise we have boxes B_{0}, \ldots, B_{m}, and $j=\operatorname{argmax}\left\{i: x \in B_{i}\right\}$. If $j<m$, return v_{j}. These two cases cover queries one should not ask the oracle (due to redundancy or not using information properly).

If $x \in B_{m}=:\{y: p \leq y \leq q\}$, we choose $k=m \bmod n+1$ (cycling through the components), and if $x^{(k)} \geq \frac{1}{2}\left(p^{(k)}+q^{(k)}\right)$, set

$$
v_{m}=e_{k} \quad B_{m+1}:=\left\{y \in B_{m}: y^{(k)} \leq \frac{1}{2}\left(p^{(k)}+q^{(k)}\right)\right\} .
$$

Otherwise, if $x^{(k)}<\frac{1}{2}\left(p^{(k)}+q^{(k)}\right)$, set

$$
v_{m}=-e_{k} \quad B_{m+1}:=\left\{y \in B_{m}: y^{(k)}>\frac{1}{2}\left(p^{(k)}+q^{(k)}\right)\right\} .
$$

Example 1 Let $n=2$.

Figure 1: These answers are all consistent with any $G \subset B_{m}$, where B_{m} is the last box of any iteration.

After $n h-1$ calls to the oracle, we have produced at must $n h-1$ boxes, so components $i=1 \ldots n-1$ have been bisected at most h times, while component n has been bisected at most $h-1$ times.

So the current box contains a double cube of sides $\gamma=2 \cdot 2^{-h}, n-1$ times, and $2 \cdot 2^{-h+1}=2 \gamma$, once.

Then the algorithm produces z, and now choose G to be a cube of side length δ in the interior of one half of the double cube not containing z.

So the algorithm has $z \notin G$, or $z=*$, while $G \neq \emptyset$, and therefore, $\epsilon(z, f, G=+\infty$.
Hence we need $\mathcal{N}_{\mathcal{F}}(\epsilon)>n h$.
Similar but more complicated arguments give

Theorem 4

$$
\mathcal{N}_{\mathcal{F}}(\epsilon) \geq c n \log \left(\frac{1}{\epsilon}\right)
$$

for some absolute constant c.
We will work towards an algorithm that requires

$$
2.2 n\left(\ln \frac{2}{d}+\ln \frac{1}{\epsilon}\right)
$$

calls to the oracle to guarantee $\epsilon(z, f, G) \leq \epsilon$.
Classical Paradigm: at each iteration, an algorithm builds an approximation using the problem's data (e.g. QP or LP) and solves the subproblem. This approach requires analysis.

New Paradigm: at each iteration, an algorithm gains information about the location of the minimizer. This approach requires geometry.

