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We look at problem instances of the form (f,G), where f is the objective to be minimized
and G is the feasible region. For now, let’s define f on C := [−1, 1]n and G = C, so that the
feasible region is the entire domain of f .

Assumption 1 Assume f is continuously differentiable and satisfies

max
x∈C

f(x)−min
x∈C

f(x) ≤ 1. (1)

We want to find z ∈ C such that

ε(z, f) := f(z)−min
x∈C

f(x) ≤ ε

for some ε ∈ (0, 1). For ease of notation, define min f(C) := minx∈C f(x) and max f(C) :=
maxx∈C f(x).

The “access” to f is via an oracle: given x ∈ C, the oracle returns y = (f(x),∇f(x)). Any
algorithm asks a series of questions x1, x2, . . . , xk of the oracle, and gets answers y1, y2, . . . , yk,
where each xj is a function of (x1, y1), (x2, y2), . . . , (xj−1, yj−1).

xk+1 can be a point in C and we then ask the oracle for information at xk+1; otherwise,
xk+1 = “STOP”, and then the algorithm also provides a solution z ∈ C that is a function of
(x1, y1), (x2, y2), . . . , (xk, yk). If xk+1 = “STOP”, we say the algorithm takes k+ 1 steps, for the
k + 1 points (x1, x2, . . . , xk, z).

Definition 1 Given a class of functions F , define NF (ε) = min{N : there is some N step
algorithm that always gives z with ε(z, f) ≤ ε for all f ∈ F}.

In today’s lecture, we will show that:

1. If we take for F all continuously differentiable functions on C satisfying (1) and (2):

||∇f(x)||2 ≤ 1 ∀x ∈ C (2)

then an algorithm might need an exponential number of steps. (We need a condition like
(2) to exclude a function with a very narrow hole of depth 1 dug at a point the algorithm
hasn’t looked at.)

2. If we add convexity to F , but ask for

ε̂(z, f) := min{||z − x∗||2 : x∗ minimizes f over C} ≤ ε,

then such an algorithm is impossible!
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Theorem 1 Take F as above satisfying (1) and (2); then NF (ε) ≥ 2−n(1
ε
)n.

Proof: Here is a sketch of the proof.
First, we produce a piecewise C1 function f for the case 1

ε
∈ Z. Suppose there were such an

algorithm requiring fewer than (1
ε
)n steps. Thus the steps are at most (1

ε
)n − 2 questions xk

and then z.
Then if the oracle always answers (f(x),∇f(x)) = (0, 0), the algorithm will generate fewer than
(1
ε
)n xk’s and z.

Divide C into (1
ε
)n small cubes, each of side 2

ε
. Then the oracle misses the interior of one

of these smaller cubes (shaded in blue), where we can make the function (zero otherwise) an
inverted pyramid with minimum −ε.
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Figure 1: An example when n = 2, ε = 4.

Then f(z) = 0 but min f(C) = −ε.
Now we need to fix three things:

1. We need error > ε.

2. We need to handle 1
ε
/∈ Z.

3. We need to make f a C1 function.

First, in general, if ε ≥ 1
2
, the bound is at most 1 and there is nothing to do. If ε < 1

2
, we find

k with 2−k > ε ≥ 2−k−1 and then divide the cube into 2kn smaller cubes of side 2 · 2−k. Note
that 2kn ≥ 2−n · 2(k+1)n ≥ 2−n(1

ε
)n. So we can construct f as before with an inverted pyramid

of depth 2−k > ε, and then “smooth” the “pyramid” region as follows:
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Figure 2: The “smoothing” of a one-dimensional function.

This can be extended into Rn similarly. ut

Note that the function we constructed is quasi-convex; also, we could smooth it to be Ck

not just C1. In fact, we get similar exponential behavior if we

• require f to be Ck for any k;

• or require f quasi-convex (which means all its level sets are convex);

• or allow stochastic algorithms.

Remark 1 General references are [1] and [2].

We will next show that if we ask for ε̂(z, f) ≤ ε, even with convexity, the task is impossible.
Here we need to assume the (plausible but true) fact that for n = 1, if F is the set of convex
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functions satisfying (1) and (2), then NF (ε) → ∞ as ε ↓ 0, i.e., for any N , there is some
ε = ε(N) > 0 such that NF (ε) > N .

Theorem 2 Let F be the set of convex C1 functions on C satisfying (1) and (2). Then no
algorithm can ensure ε̂(z, f) < 1 in any fixed finite number of steps for n ≥ 2.

Proof: Take n = 2 and for any C1 function f1 : [−1, 1] → R satisfying (1), (2), define
f2 : [−1, 1]2 → R by f2(x

(1), x(2)) = f1(x
(1)) (i.e., f2 is flat on the second dimension), where the

superscripts here are components.
Suppose there is an algorithm for locating an approximate minimizer with ε̂(z, f) < 1 that
takes N steps.
Use this algorithm to define another, N+1 step, algorithm to find an approximate minimum of
a function f1 by applying the first algorithm to the corresponding f2 to get x1, x2, . . . , xN−1, z
and then call the oracle again at z. Stop and output w(1), where
w = arg min{f2(x1), f2(x2), . . . , f2(xN−1), f2(z)}.
By the fact above, there is some ε = ε(N + 1) > 0 so that NF (ε) > N + 1.
So there is some f1 for which the algorithm does not give an ε-approximate minimum.
Hence, f2(xj), 1 ≤ j ≤ N − 1 and f2(z) are all greater than ε above min f2(C).

x^(1)

x^(2)

f_1

min

Figure 3: An example of f2 with minimizers along x(2).
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Figure 4: Corresponding possible counterexamples f̂2.

So, if z(2) ≥ 0 (the right-hand graph above), let

f̂2(x) = max{f2(x),min f2(C) +
ε

3
(x(2) + 1))} (3)

Since it never sees any point for which the functions differ, the algorithm generates exactly the
same iterates for f̂2 as for f2, so the same z, and the only minimizers of f̂2 have x(2) = −1, so
ε̂ ≥ 1. Similarly, using the left-hand graph, if z(2) ≤ 0.
Then we smooth f̂2 at the boundaries of the chopped off region to make f̂2 become C1. ut
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