# Mathematical Programming II 

Lecture 12
ORIE 6310 Spring 2014
March 6, 2014
Scribe: Nanjing Jian
We look at problem instances of the form $(f, G)$, where $f$ is the objective to be minimized and $G$ is the feasible region. For now, let's define $f$ on $C:=[-1,1]^{n}$ and $G=C$, so that the feasible region is the entire domain of $f$.

Assumption 1 Assume $f$ is continuously differentiable and satisfies

$$
\begin{equation*}
\max _{x \in C} f(x)-\min _{x \in C} f(x) \leq 1 \tag{1}
\end{equation*}
$$

We want to find $z \in C$ such that

$$
\epsilon(z, f):=f(z)-\min _{x \in C} f(x) \leq \epsilon
$$

for some $\epsilon \in(0,1)$. For ease of notation, define $\min f(C):=\min _{x \in C} f(x)$ and $\max f(C):=$ $\max _{x \in C} f(x)$.

The "access" to $f$ is via an oracle: given $x \in C$, the oracle returns $y=(f(x), \nabla f(x))$. Any algorithm asks a series of questions $x_{1}, x_{2}, \ldots, x_{k}$ of the oracle, and gets answers $y_{1}, y_{2}, \ldots, y_{k}$, where each $x_{j}$ is a function of $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{j-1}, y_{j-1}\right)$.
$x_{k+1}$ can be a point in $C$ and we then ask the oracle for information at $x_{k+1}$; otherwise, $x_{k+1}=$ "STOP", and then the algorithm also provides a solution $z \in C$ that is a function of $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)$. If $x_{k+1}=$ "STOP", we say the algorithm takes $k+1$ steps, for the $k+1$ points $\left(x_{1}, x_{2}, \ldots, x_{k}, z\right)$.

Definition 1 Given a class of functions $\mathscr{F}$, define $\mathcal{N}_{\mathscr{F}}(\epsilon)=\min \{N$ : there is some $N$ step algorithm that always gives $z$ with $\epsilon(z, f) \leq \epsilon$ for all $f \in \mathscr{F}\}$.

In today's lecture, we will show that:

1. If we take for $\mathscr{F}$ all continuously differentiable functions on $C$ satisfying (1) and (2):

$$
\begin{equation*}
\|\nabla f(x)\|_{2} \leq 1 \quad \forall x \in C \tag{2}
\end{equation*}
$$

then an algorithm might need an exponential number of steps. (We need a condition like (2) to exclude a function with a very narrow hole of depth 1 dug at a point the algorithm hasn't looked at.)
2. If we add convexity to $\mathscr{F}$, but ask for

$$
\hat{\epsilon}(z, f):=\min \left\{\left\|z-x^{*}\right\|_{2}: x^{*} \text { minimizes } f \text { over } C\right\} \leq \epsilon
$$

then such an algorithm is impossible!

Theorem 1 Take $\mathscr{F}$ as above satisfying (1) and (2); then $\mathcal{N}_{\mathscr{F}}(\epsilon) \geq 2^{-n}\left(\frac{1}{\epsilon}\right)^{n}$.
Proof: Here is a sketch of the proof.
First, we produce a piecewise $C^{1}$ function $f$ for the case $\frac{1}{\epsilon} \in \mathbb{Z}$. Suppose there were such an algorithm requiring fewer than $\left(\frac{1}{\epsilon}\right)^{n}$ steps. Thus the steps are at most $\left(\frac{1}{\epsilon}\right)^{n}-2$ questions $x_{k}$ and then $z$.
Then if the oracle always answers $(f(x), \nabla f(x))=(0,0)$, the algorithm will generate fewer than $\left(\frac{1}{\epsilon}\right)^{n} x_{k}$ 's and $z$.
Divide $C$ into $\left(\frac{1}{\epsilon}\right)^{n}$ small cubes, each of side $\frac{2}{\epsilon}$. Then the oracle misses the interior of one of these smaller cubes (shaded in blue), where we can make the function (zero otherwise) an inverted pyramid with minimum $-\epsilon$.


Figure 1: An example when $n=2, \epsilon=4$.

Then $f(z)=0$ but $\min f(C)=-\epsilon$.
Now we need to fix three things:

1. We need error $>\epsilon$.
2. We need to handle $\frac{1}{\epsilon} \notin \mathbb{Z}$.
3. We need to make $f$ a $C^{1}$ function.

First, in general, if $\epsilon \geq \frac{1}{2}$, the bound is at most 1 and there is nothing to do. If $\epsilon<\frac{1}{2}$, we find $k$ with $2^{-k}>\epsilon \geq 2^{-k-1}$ and then divide the cube into $2^{k n}$ smaller cubes of side $2 \cdot 2^{-k}$. Note that $2^{k n} \geq 2^{-n} \cdot 2^{(k+1) n} \geq 2^{-n}\left(\frac{1}{\epsilon}\right)^{n}$. So we can construct $f$ as before with an inverted pyramid of depth $2^{-k}>\epsilon$, and then "smooth" the "pyramid" region as follows:


Figure 2: The "smoothing" of a one-dimensional function.

This can be extended into $\mathbb{R}^{n}$ similarly.
Note that the function we constructed is quasi-convex; also, we could smooth it to be $C^{k}$ not just $C^{1}$. In fact, we get similar exponential behavior if we

- require $f$ to be $C^{k}$ for any $k$;
- or require $f$ quasi-convex (which means all its level sets are convex);
- or allow stochastic algorithms.

Remark 1 General references are [1] and [2].
We will next show that if we ask for $\hat{\epsilon}(z, f) \leq \epsilon$, even with convexity, the task is impossible. Here we need to assume the (plausible but true) fact that for $n=1$, if $\mathscr{F}$ is the set of convex
functions satisfying (1) and (2), then $\mathcal{N}_{\mathscr{F}}(\epsilon) \rightarrow \infty$ as $\epsilon \downarrow 0$, i.e., for any $N$, there is some $\epsilon=\epsilon(N)>0$ such that $\mathcal{N}_{\mathscr{F}}(\epsilon)>N$.

Theorem 2 Let $\mathscr{F}$ be the set of convex $C^{1}$ functions on $C$ satisfying (1) and (2). Then no algorithm can ensure $\hat{\epsilon}(z, f)<1$ in any fixed finite number of steps for $n \geq 2$.

Proof: Take $n=2$ and for any $C^{1}$ function $f_{1}:[-1,1] \rightarrow \mathbb{R}$ satisfying (1), (2), define $f_{2}:[-1,1]^{2} \rightarrow \mathbb{R}$ by $f_{2}\left(x^{(1)}, x^{(2)}\right)=f_{1}\left(x^{(1)}\right)$ (i.e., $f_{2}$ is flat on the second dimension), where the superscripts here are components.
Suppose there is an algorithm for locating an approximate minimizer with $\hat{\epsilon}(z, f)<1$ that takes $N$ steps.
Use this algorithm to define another, $N+1$ step, algorithm to find an approximate minimum of a function $f_{1}$ by applying the first algorithm to the corresponding $f_{2}$ to get $x_{1}, x_{2}, \ldots, x_{N-1}, z$ and then call the oracle again at $z$. Stop and output $w^{(1)}$, where
$w=\arg \min \left\{f_{2}\left(x_{1}\right), f_{2}\left(x_{2}\right), \ldots, f_{2}\left(x_{N-1}\right), f_{2}(z)\right\}$.
By the fact above, there is some $\epsilon=\epsilon(N+1)>0$ so that $\mathcal{N}_{\mathscr{F}}(\epsilon)>N+1$.
So there is some $f_{1}$ for which the algorithm does not give an $\epsilon$-approximate minimum. Hence, $f_{2}\left(x_{j}\right), 1 \leq j \leq N-1$ and $f_{2}(z)$ are all greater than $\epsilon$ above min $f_{2}(C)$.


Figure 3: An example of $f_{2}$ with minimizers along $x^{(2)}$.


Figure 4: Corresponding possible counterexamples $\hat{f}_{2}$.

So, if $z^{(2)} \geq 0$ (the right-hand graph above), let

$$
\begin{equation*}
\left.\hat{f}_{2}(x)=\max \left\{f_{2}(x), \min f_{2}(C)+\frac{\epsilon}{3}\left(x^{(2)}+1\right)\right)\right\} \tag{3}
\end{equation*}
$$

Since it never sees any point for which the functions differ, the algorithm generates exactly the same iterates for $\hat{f}_{2}$ as for $f_{2}$, so the same $z$, and the only minimizers of $\hat{f}_{2}$ have $x^{(2)}=-1$, so $\hat{\epsilon} \geq 1$. Similarly, using the left-hand graph, if $z^{(2)} \leq 0$.
Then we smooth $\hat{f}_{2}$ at the boundaries of the chopped off region to make $\hat{f}_{2}$ become $C^{1}$.

## References

[1] A.S. Nemirovski and D.B. Yudin. Problem complexity and method efficiency in optimization. Wiley-Interscience series in discrete mathematics. Wiley, 1983.
[2] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Applied Optimization. Springer, 2004.

