Consider

$$w = dz_0 + Mz + q \tag{1}$$

$$Iv + (-q)y_0 + (-M)y = d.$$
(2)

If w_J, z_0 and z_K is a basic solution to (1), then v_J, y_0 and y_K is a basic solution to (2). Here $J \cup K \cup \{l\}$ is a partition of N and l is the missing index.

Remember that $L = K \cup \{l\}, H = \{0\} \cup K, F = [q, M]$ and

$$B = \begin{bmatrix} I_{JJ} & -F_{JH} \\ 0 & -F_{LH} \end{bmatrix},$$

$$B^{-1} = \begin{bmatrix} I_{JJ} & -F_{JH}F_{LH}^{-1} \\ 0 & -F_{LH}^{-1} \end{bmatrix}.$$

Lemma 1 We have a feasible basic solution corresponding to the partition $J \cup K \cup \{l\} = N$ iff F_{LH} is nonsingular, and $B^{-1}\begin{bmatrix} \delta^n \\ \vdots \\ \delta \end{bmatrix} \ge 0$ for all sufficiently small positive δ .

Note if i is the last index in L, then

$$B^{-1}[e_n, \dots, e_1] = \begin{bmatrix} 0 & 0 & 0 & \\ \vdots & \vdots & \vdots & \\ 0 & 0 & 0 & \\ 0 & 0 & 1 & \\ 0 & 1 & 0 & \\ 1 & 0 & 0 & \end{bmatrix},$$
$$\overset{\uparrow}{B^{-1}e_i}$$

and we need this to be lexicographically positive (the first nonzero entry in each row is positive) for feasibility. Here the first few columns represent columns of the identity for $j \in J$, j > i.

Probability distribution We'll assume that (M, q) is generated from some distribution satisfying

a. [Nondegeneracy] With probability 1:

- (i) If J and K are subsets of N of the same cardinality with $|J \setminus K| \leq 1$, then M_{JK} is nonsingular;
- (ii) Any a.c. solution to w = Mz + q (nonnegative or not) has at least n nonzero components.
- b. (Sign invariance) For any "sign" matrix S (diagonal with diagonal entries $s_i := s_{ii}$ with $s_{ii} \in \{-1, 1\}$)

$$(SMS, Sq) \sim (M, q),$$

i.e., they have the same distribution.

Note: *P*-matrices and monotone matrices are invariant under these sign switches.

If $s_i = -1$, we could keep M and q the same and change $w_i, z_i \ge 0$ to $w_i, z_i \le 0$.

A simple case: choose M, q satisfying (a) (i) and (ii), then choose each (SMS, Sq) w.p. 2^{-n} . If we can obtain a bound for this case, it will hold for all such distributions.

Lemma 2 If (M,q) satisfies (a) (i) and (ii), then for any partition $J \cup K \cup \{l\} = N$, F_{LH} is nonsingular.

Proof:

 $F_{LH} = [q_L, M_{LK}]$. Suppose there is a nontrivial linear dependence among the columns of F_{LH} .

(1) If the dependence does not involve q, then there is a nontrivial linear dependence among the columns of M_{LK} , so among the columns of $[M_{Ll}, M_{LK}] = M_{LL}$. This contradicts (a) (i).

(2) Suppose the linear dependence involves q_L . Then scale to get $q_L + M_{LK} z_K = 0$. Then set

$$w_J := q_J + M_{JK} z_K$$
$$w_L := q_L + M_{LK} z_K = 0.$$

Set $z_J = 0$, and then we get w = Mz + q, a.c., but with only n - 1 nonzeroes. This contradicts (a) (ii).

Lemma 3 If (M,q) satisfies (a) (i) and (ii), then for any partition $J \cup K \cup \{l\} = N$, all entries of $B^{-1}e_i$ (i the last index in L) are nonzero.

Proof: Recall

$$B = \left[\begin{array}{cc} I_{JJ} & -F_{JH} \\ 0 & -F_{LH} \end{array} \right].$$

Look at $e_m^{\top} B^{-1} e_i$ for all $m \in J \cup H = J \cup K \cup \{0\}$.

(1) m = 0. Let

$$e_i = \left[\begin{array}{cc} I_{JJ} & -F_{JH} \\ 0 & -F_{LH} \end{array} \right] \left(\begin{array}{c} v_J \\ y_0 \\ y_K \end{array} \right).$$

If $e_0^{\top} B^{-1} e_i$ is zero, then $y_0 = 0$. So

$$0 = v_J - M_{JK}y_K$$

$$0 = -M_{L\setminus\{i\}K}y_K$$

$$1 = -M_{iK}y_K \Rightarrow y_K \neq 0;$$

then $M_{L\setminus\{i\}K}$ is singular and this contradicts (a) (i).

(2) m = j: Suppose $e_i^{\top} B^{-1} e_i = 0$. Then

$$e_i = \left[\begin{array}{cc} I_{JJ} & -F_{JH} \\ 0 & -F_{LH} \end{array} \right] \left(\begin{array}{c} v_J \\ y_0 \\ y_K \end{array} \right)$$

with $v_j = 0$. Scale so that $y_0 = 1$ (by the case above we know y_0 is nonzero) to get w_J , 1, and z_K . Then

$$w_J - q_J - M_{JK} z_K = 0$$

$$-q_{L\setminus\{i\}} - M_{L\setminus\{i\}K} z_K = 0.$$

Set $w_i := q_i + M_{iK} z_K$, $w_{L \setminus \{i\}} := 0$ and note that $w_j = 0$. Also set $z_J := 0$ and $z_l := 0$. Then we have an a.c. solution with only n - 1 nonzeroes. This contradicts (a) (ii).

Similarly we can show $e_k^{\top} B^{-1} e_i \neq 0$ for $k \in K$.

Let us look at the effects of sign switches on B and B^{-1} . Suppose M and q change to SMS and Sq. Then F becomes $\tilde{F} = SF \begin{bmatrix} 1 & 0 \\ 0 & S \end{bmatrix}$ and so $\tilde{F}_{JK} = S_{JJ}F_{JH}S_{HH},$ $\tilde{F}_{LH} = S_{LL}F_{LK}S_{HH}$

where S_{HH} is the appropriate submatrix of $\begin{bmatrix} 1 & 0 \\ 0 & S \end{bmatrix}$, or $\begin{bmatrix} 1 & 0 \\ 0 & S_{KK} \end{bmatrix}$. So we have

$$\widetilde{F}_{LH}^{-1} = S_{HH}F_{LH}^{-1}S_{LL},$$

$$\widetilde{F}_{JH}\widetilde{F}_{LH}^{-1} = S_{JJ}F_{JH}F_{LH}^{-1}S_{LL}.$$

Lemma 4 Consider the basis corresponding to the partition $J \cup K \cup \{l\}$, and let *i* denote the last index in $L := K \cup \{l\}$. Then if l = i, the basis is feasible with probability 2^{-i} , while if $l \neq i$, the basis is feasible with probability at most 2^{-i+1} .

Proof:

The *j*th entry $(j \in J)$ of $\widetilde{B}^{-1}e_i$ is $s_j (e_j^{\top}B^{-1}e_i) s_i$, positive with probability 1/2, switching signs with s_j .

The 0th entry of $\widetilde{B}^{-1}e_i$ is $(e_0^{\top}B^{-1}e_i)s_i$, positive with probability 1/2, switching signs with s_i .

The kth entry $(k \in K, k \neq i)$ is $e_k^{\top} \widetilde{B}^{-1} e_i = s_k (e_k^{\top} B^{-1} e_i) s_i$, positive with probability 1/2, switching signs with s_k .

If l = i, this accounts for all the components; we need the components in $\{1, \ldots, i\}$ to be positive, and this happens with probability 2^{-i} (all the s's named above are independent).

If $l \neq i$, then we have analyzed all but the *i*th component, which is $e_i^{\top} \widetilde{B}^{-1} e_i = s_i \left(e_i^{\top} B^{-1} e_i \right) s_i$, which doesn't change sign with S. If it's negative, the basis is infeasible; if it is positive, the basis is feasible w.p. 2^{-i+1} , since the probability is 1/2 for all components in $\{1, \ldots, i-1\}$, and these events are all independent. \Box

Theorem 1 If (M,q) is generated from a distribution as above, the lexicographic Lemke algorithm will take an expected number of steps at most $\frac{n(n+1)}{4}$.

Proof:

The number of steps is bounded by the number of a.c. feasible solutions, i.e., the number of partitions J, K, l giving feasibility.

The index *i* runs from 1 to *n*. If l = i, then *K* is some subset of $\{1, \ldots, i-1\}$; there are 2^{i-1} such choices and then *J* is fixed. For any such partition, the probability of feasibility is 2^{-i} by the lemma. If l < i, then there are i - 1 choices for *l*, and then 2^{i-2} choices for *K* (any subset of $\{1, \ldots, i-1\} \setminus \{l\}$, plus $\{i\}$). Then *J* is determined, and by the lemma the probability of feasibility is 2^{-i+1} .

So the expected number of feasible a.c. solutions is at most

$$\sum_{i=1}^{n} \left(2^{i-1} \frac{1}{2^i} + (i-1)2^{i-2} \frac{1}{2^{i-1}} \right) = \sum_{i=1}^{n} \left(\frac{1}{2} + \frac{i-1}{2} \right) = \frac{n(n+1)}{4}$$