Consider

$$
\begin{align*}
w & =d z_{0}+M z+q \tag{1}\\
I v & +(-q) y_{0}+(-M) y=d \tag{2}
\end{align*}
$$

If w_{J}, z_{0} and z_{K} is a basic solution to (1), then v_{J}, y_{0} and y_{K} is a basic solution to (2). Here $J \cup K \cup\{l\}$ is a partition of N and l is the missing index.

Remember that $L=K \cup\{l\}, H=\{0\} \cup K, F=[q, M]$ and

$$
\begin{aligned}
B & =\left[\begin{array}{cc}
I_{J J} & -F_{J H} \\
0 & -F_{L H}
\end{array}\right], \\
B^{-1} & =\left[\begin{array}{cc}
I_{J J} & -F_{J H} F_{L H}^{-1} \\
0 & -F_{L H}^{-1}
\end{array}\right] .
\end{aligned}
$$

Lemma 1 We have a feasible basic solution corresponding to the partition $J \cup K \cup\{l\}=N$ iff $F_{L H}$ is nonsingular, and $B^{-1}\left[\begin{array}{c}\delta^{n} \\ \vdots \\ \delta\end{array}\right] \geq 0$ for all sufficiently small positive δ.

Note if i is the last index in L, then

$$
B^{-1}\left[e_{n}, \ldots, e_{1}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & {[} \\
\vdots & \vdots & \vdots & \\
0 & 0 & 0 & \\
0 & 0 & 1 & \\
0 & 1 & 0 & \\
1 & 0 & 0 & \\
& & \\
& B^{-1} e_{i}
\end{array}\right.
$$

and we need this to be lexicographically positive (the first nonzero entry in each row is positive) for feasibility. Here the first few columns represent columns of the identity for $j \in J, j>i$.

Probability distribution We'll assume that (M, q) is generated from some distribution satisfying
a. [Nondegeneracy] With probability 1:
(i) If J and K are subsets of N of the same cardinality with $|J \backslash K| \leq 1$, then $M_{J K}$ is nonsingular;
(ii) Any a.c. solution to $w=M z+q$ (nonnegative or not) has at least n nonzero components.
b. (Sign invariance) For any "sign" matrix S (diagonal with diagonal entries $s_{i}:=s_{i i}$ with $\left.s_{i i} \in\{-1,1\}\right)$

$$
(S M S, S q) \sim(M, q),
$$

i.e., they have the same distribution.

Note: P-matrices and monotone matrices are invariant under these sign switches.
If $s_{i}=-1$, we could keep M and q the same and change $w_{i}, z_{i} \geq 0$ to $w_{i}, z_{i} \leq 0$.
A simple case: choose M, q satisfying $(a)(i)$ and $(i i)$, then choose each $(S M S, S q)$ w.p. 2^{-n}. If we can obtain a bound for this case, it will hold for all such distributions.

Lemma 2 If (M, q) satisfies $(a)(i)$ and (ii), then for any partition $J \cup K \cup\{l\}=N, F_{L H}$ is nonsingular.

Proof:

$F_{L H}=\left[q_{L}, M_{L K}\right]$. Suppose there is a nontrivial linear dependence among the columns of $F_{L H}$.
(1) If the dependence does not involve q, then there is a nontrivial linear dependence among the columns of $M_{L K}$, so among the columns of $\left[M_{L l}, M_{L K}\right]=M_{L L}$. This contradicts (a) (i).
(2) Suppose the linear dependence involves q_{L}. Then scale to get $q_{L}+M_{L K} z_{K}=0$. Then set

$$
\begin{aligned}
w_{J} & :=q_{J}+M_{J K} z_{K} \\
w_{L} & :=q_{L}+M_{L K} z_{K}=0 .
\end{aligned}
$$

Set $z_{J}=0$, and then we get $w=M z+q$, a.c., but with only $n-1$ nonzeroes. This contradicts (a) (ii).

Lemma 3 If (M, q) satisfies (a) (i) and (ii), then for any partition $J \cup K \cup\{l\}=N$, all entries of $B^{-1} e_{i}$ (i the last index in L) are nonzero.

Proof: Recall

$$
B=\left[\begin{array}{cl}
I_{J J} & -F_{J H} \\
0 & -F_{L H}
\end{array}\right] .
$$

Look at $e_{m}^{\top} B^{-1} e_{i}$ for all $m \in J \cup H=J \cup K \cup\{0\}$.
(1) $m=0$. Let

$$
e_{i}=\left[\begin{array}{cc}
I_{J J} & -F_{J H} \\
0 & -F_{L H}
\end{array}\right]\left(\begin{array}{c}
v_{J} \\
y_{0} \\
y_{K}
\end{array}\right) .
$$

If $e_{0}^{\top} B^{-1} e_{i}$ is zero, then $y_{0}=0$. So

$$
\begin{aligned}
& 0=v_{J}-M_{J K} y_{K} \\
& 0=-M_{L \backslash\{i\} K} y_{K} \\
& 1=-M_{i K} y_{K} \Rightarrow y_{K} \neq 0 ;
\end{aligned}
$$

then $M_{L \backslash\{i\} K}$ is singular and this contradicts $(a)(i)$.
(2) $m=j$: Suppose $e_{j}^{\top} B^{-1} e_{i}=0$. Then

$$
e_{i}=\left[\begin{array}{cl}
I_{J J} & -F_{J H} \\
0 & -F_{L H}
\end{array}\right]\left(\begin{array}{c}
v_{J} \\
y_{0} \\
y_{K}
\end{array}\right)
$$

with $v_{j}=0$. Scale so that $y_{0}=1$ (by the case above we know y_{0} is nonzero) to get w_{J}, 1 , and z_{K}. Then

$$
\begin{aligned}
w_{J}-q_{J}-M_{J K} z_{K} & =0 \\
-q_{L \backslash\{i\}}-M_{L \backslash\{i\} K} z_{K} & =0 .
\end{aligned}
$$

Set $w_{i}:=q_{i}+M_{i K} z_{K}, w_{L \backslash\{i\}}:=0$ and note that $w_{j}=0$. Also set $z_{J}:=0$ and $z_{l}:=0$. Then we have an a.c. solution with only $n-1$ nonzeroes. This contradicts (a) (ii).

Similarly we can show $e_{k}^{\top} B^{-1} e_{i} \neq 0$ for $k \in K$.

Let us look at the effects of sign switches on B and B^{-1}. Suppose M and q change to $S M S$ and $S q$. Then F becomes $\widetilde{F}=S F\left[\begin{array}{ll}1 & 0 \\ 0 & S\end{array}\right]$ and so

$$
\begin{aligned}
& \widetilde{F}_{J K}=S_{J J} F_{J H} S_{H H}, \\
& \widetilde{F}_{L H}=S_{L L} F_{L K} S_{H H}
\end{aligned}
$$

where $S_{H H}$ is the appropriate submatrix of $\left[\begin{array}{ll}1 & 0 \\ 0 & S\end{array}\right]$, or $\left[\begin{array}{cc}1 & 0 \\ 0 & S_{K K}\end{array}\right]$. So we have

$$
\begin{aligned}
\widetilde{F}_{L H}^{-1} & =S_{H H} F_{L H}^{-1} S_{L L}, \\
\widetilde{F}_{J H} \widetilde{F}_{L H}^{-1} & =S_{J J} F_{J H} F_{L H}^{-1} S_{L L} .
\end{aligned}
$$

Lemma 4 Consider the basis corresponding to the partition $J \cup K \cup\{l\}$, and let i denote the last index in $L:=K \cup\{l\}$. Then if $l=i$, the basis is feasible with probability 2^{-i}, while if $l \neq i$, the basis is feasible with probability at most 2^{-i+1}.

Proof:

The j th entry $(j \in J)$ of $\widetilde{B}^{-1} e_{i}$ is $s_{j}\left(e_{j}^{\top} B^{-1} e_{i}\right) s_{i}$, positive with probability $1 / 2$, switching signs with s_{j}.

The 0 th entry of $\widetilde{B}^{-1} e_{i}$ is $\left(e_{0}^{\top} B^{-1} e_{i}\right) s_{i}$, positive with probability $1 / 2$, switching signs with s_{i}.

The k th entry $(k \in K, k \neq i)$ is $e_{k}^{\top} \widetilde{B}^{-1} e_{i}=s_{k}\left(e_{k}^{\top} B^{-1} e_{i}\right) s_{i}$, positive with probability $1 / 2$, switching signs with s_{k}.

If $l=i$, this accounts for all the components; we need the components in $\{1, \ldots, i\}$ to be positive, and this happens with probability 2^{-i} (all the s^{\prime} s named above are independent).

If $l \neq i$, then we have analyzed all but the i th component, which is $e_{i}^{\top} \widetilde{B}^{-1} e_{i}=s_{i}\left(e_{i}^{\top} B^{-1} e_{i}\right) s_{i}$, which doesn't change sign with S. If it's negative, the basis is infeasible; if it is positive, the basis is feasible w.p. 2^{-i+1}, since the probability is $1 / 2$ for all components in $\{1, \ldots, i-1\}$, and these events are all independent.

Theorem 1 If (M, q) is generated from a distribution as above, the lexicographic Lemke algorithm will take an expected number of steps at most $\frac{n(n+1)}{4}$.

Proof:

The number of steps is bounded by the number of a.c. feasible solutions, i.e., the number of partitions J, K, l giving feasibility.

The index i runs from 1 to n. If $l=i$, then K is some subset of $\{1, \ldots, i-1\}$; there are 2^{i-1} such choices and then J is fixed. For any such partition, the probability of feasibility is 2^{-i} by the lemma. If $l<i$, then there are $i-1$ choices for l, and then 2^{i-2} choices for K (any subset of $\{1, \ldots, i-1\} \backslash\{l\}$, plus $\{i\})$. Then J is determined, and by the lemma the probability of feasibility is at most 2^{-i+1}.

So the expected number of feasible a.c. solutions is at most

$$
\sum_{i=1}^{n}\left(2^{i-1} \frac{1}{2^{i}}+(i-1) 2^{i-2} \frac{1}{2^{i-1}}\right)=\sum_{i=1}^{n}\left(\frac{1}{2}+\frac{i-1}{2}\right)=\frac{n(n+1)}{4}
$$

