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Polynomial expected behavior of a pivoting algorithm:

• Class of problems;

• Variant algorithm;

• Probability distribution;

• Analysis.

–The general linear complementarity problem.
–The lexicographic Lemke (LL) algorithm:

This is Lemke’s algorithm (complementary pivot algorithm 2) with d =
( δn

···
δ

)
, 0 < δ � 1.

Consider this for two cases:

• M is a P -matrix; then recall the LCP has a unique complementary solution for all q.
Think of z0 = δ−n+j−0.5, 0 ≤ j ≤ n. As j goes from 0 to n, we get the complementary
solutions to all the LCP subproblems defined by the first j rows and j columns of M (also
giving a P -matrix) and the first j rows of q. We are (almost) not perturbing the first j
entries of q and making the others +∞, so wk = +∞, zk = 0, for k > j. This doesn’t
work for LP, since the corresponding LCP has a block of zeros in the top left. So it has
no complementary solution to such subproblems in general.

• For LP, consider the linear complementarity problem associated with the LP problems:

min cT x

(P ) Ax ≥ b

x ≥ 0,

max bT y

(D) AT y ≤ c

y ≥ 0.

Then, we have M =
(

0 −AT

A 0

)
and q =

(
c
−b

)
. (We assume A is m × p, with n = m + p,

so the LCP is of dimension n as usual.) As the algorithm progresses, we get solutions to

parametrized LPs with b replaced by b−
( δm

···
δ

)
z0, and c replaced by c +

( δn

···
δm+1

)
z0. So we

can view the algorithm (assuming z0 decreases steadily) as working on (D), imposing the
constraints one by one (with the perturbed bi � −1 for all i), and then restoring the true
values of the bi’s one by one.

1



Example:

max y1 + 3y2

(D) y1 + y2 ≤ 4

− y1 + 2y2 ≤ −1

y ≥ 0.

Optimal solution (3;1) for original LP z0 = δ−4.5, no constraints imposed

z0 = δ−3.5, first constraint imposed z0 = δ−2.5, both constraints imposed

z0 = δ−1.5, true b1 restored z0 = δ−0.5, true b2 restored
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This describes the algorithm, but not in a useful way. The column −d associated with z0

will be basic until the algorithm stops, and having
( −δn

···
−δ

)
, 0 < δ � 1, where δ is a parameter

sufficient close to 0, in the basis matrix is horrible.

Old view:
Iw + (−d)z0 + (−M)z = q. (1)

New view: If we have a solution with z0 > 0, we get

I(
w

z0

) + (−q)(
1

z0

) + (−M)(
z

z0

) = d (2)

and from now on, we let v = w
z0

, y0 = 1
z0

and y = z
z0

. So now the basis consists of some columns of
[I,−q,−M ] and d is the RHS. Suppose we have a non-degenerate a.c. but not complementary
basic solution to (1). The basic variable will be z0, wJ for some J ⊆ N := {1, 2, · · · , n},
zK , K ⊆ N with both wl and zl nonbasic, and J ∪ K ∪ {l} a disjoint partition of N . Then

vJ , y0 and yK will be the basic variables in an a.c. basic solution to (2). Recall d =
( δn

···
δ

)
, for

0 < δ � 1 and this does not lie in any hyperplane formed by n− 1 columns of [I,−q,−M ], so
we get a non-degenerate basic solution. In terms of v, y and (2), the LL algorithm operates as
follows:

Algorithm:

• Step 0: If q ≥ 0, we have a complementary solution: stop. Otherwise, let B = I be the
initial basis in (2). Introduce y0 with column −q into the basis: since q isn’t greater than
or equal to 0, its increase will be blocked, so some vl goes to 0. Set J = N \ {l}, K = ∅.

• Step 1: We have a feasible basis B, J , K and l, giving an a.c. but not complementary
solution to (2). Just one of vl and yl has just hit zero. Increase its complement. If its
increase is blocked by y0 hitting 0, then by rescaling we have a secondary ray of (1); go
to step 2. If its increase is blocked by vj or yk, make the pivot, update B, J , K, and l
and go to step 1. If its increase is unblocked, we have a ray of solutions:

(vJ ; y0; yK ; 0) + λ(v̄J ; ȳ0; ȳK ; 1),

where the last component corresponds to the variable we are increasing, vl or yl. If ȳ0=0,
then y0 (and hence z0) stays the same, and by scaling, we find a secondary ray of (1); go
to step 2. If ȳ0 > 0, then by rescaling, we get a complementary solution; go to step 3.

• Step 2(Failure): We have (by scaling) a secondary ray of (1). Stop!

• Step 3(Success): Suppose we were increasing yl, then ray termination implies

Iv̄ + (−q)ȳ0 −Mȳ −ml · 1 = 0,
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where v̄K = 0, ȳJ = 0. Then I( v̄
ȳ0

) − M( ȳ
ȳ0

+ 1
ȳ0

el) = q, which gives a complementary

solution to (1). Similarly if we were increasing vl.

Question: When is a particular partition J ∪K ∪ l = N feasible?
The basis matrix B has the J columns of I, the column −q and the K columns of −M :

B =

[
IJJ −qJ −MJK

0 −qL −MLK

]
.

with L := K ∪ {l}. For simplicity, let F := [q, M ], with columns indexed 0 through n, and let
H := {0} ∪K: then

B =

[
IJJ −FJH

0 −FLH

]
,

with inverse:

C := B−1 =

[
IJJ −FJHF−1

LH

0 −F−1
LH

]
.

For feasibility, we want B−1d = C
( δn

···
δ

)
≥ 0. So feasibility “depends on” the signs of the column

of
( −FJHF−1

LH

−F−1
LH

)
corresponding to the last index in L.
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