Polynomial expected behavior of a pivoting algorithm:

- Class of problems;
- Variant algorithm;
- Probability distribution;
- Analysis.

-The general linear complementarity problem.

-The lexicographic Lemke (LL) algorithm:
This is Lemke's algorithm (complementary pivot algorithm 2) with $d=\binom{\delta^{n}}{\frac{\delta}{\prime}}, 0<\delta \ll 1$.
Consider this for two cases:

- M is a P-matrix; then recall the LCP has a unique complementary solution for all q. Think of $z_{0}=\delta^{-n+j-0.5}, 0 \leq j \leq n$. As j goes from 0 to n, we get the complementary solutions to all the LCP subproblems defined by the first j rows and j columns of M (also giving a P-matrix) and the first j rows of q. We are (almost) not perturbing the first j entries of q and making the others $+\infty$, so $w_{k}=+\infty, z_{k}=0$, for $k>j$. This doesn't work for LP, since the corresponding LCP has a block of zeros in the top left. So it has no complementary solution to such subproblems in general.
- For LP, consider the linear complementarity problem associated with the LP problems:

$$
\begin{array}{cl}
\min & c^{T} x \\
& A x \geq b \tag{P}\\
& x \geq 0 \\
& \\
\max & b^{T} y \\
& A^{T} y \leq c \\
& y \geq 0
\end{array}
$$

Then, we have $M=\left(\begin{array}{cc}0 & -A^{T} \\ A & 0\end{array}\right)$ and $q=\binom{c}{-b}$. (We assume A is $m \times p$, with $n=m+p$, so the LCP is of dimension n as usual.) As the algorithm progresses, we get solutions to parametrized LPs with b replaced by $b-\binom{\delta^{m}}{\stackrel{\cdots}{\delta}} z_{0}$, and c replaced by $c+\binom{\delta_{n}^{n}}{\delta^{m+1}} z_{0}$. So we can view the algorithm (assuming z_{0} decreases steadily) as working on (D), imposing the constraints one by one (with the perturbed $b_{i} \ll-1$ for all i), and then restoring the true values of the b_{i} 's one by one.

Example:
(D)

$$
\begin{array}{ll}
\max & y_{1}+3 y_{2} \\
& y_{1}+y_{2} \leq 4 \\
& -y_{1}+2 y_{2} \leq-1 \\
& y \geq 0 .
\end{array}
$$

Optimal solution (3;1) for original LP

$z_{0}=\delta^{-3.5}$, first constraint imposed

$z_{0}=\delta^{-1.5}$, true b_{1} restored
$z_{0}=\delta^{-4.5}$, no constraints imposed

$z_{0}=\delta^{-2.5}$, both constraints imposed

$z_{0}=\delta^{-0.5}$, true b_{2} restored

This describes the algorithm, but not in a useful way. The column $-d$ associated with z_{0} will be basic until the algorithm stops, and having $\left(\begin{array}{c}-\delta^{n} \\ -\delta \\ -\delta\end{array}\right), 0<\delta \ll 1$, where δ is a parameter sufficient close to 0 , in the basis matrix is horrible.

Old view:

$$
\begin{equation*}
I w+(-d) z_{0}+(-M) z=q \tag{1}
\end{equation*}
$$

New view: If we have a solution with $z_{0}>0$, we get

$$
\begin{equation*}
I\left(\frac{w}{z_{0}}\right)+(-q)\left(\frac{1}{z_{0}}\right)+(-M)\left(\frac{z}{z_{0}}\right)=d \tag{2}
\end{equation*}
$$

and from now on, we let $v=\frac{w}{z_{0}}, y_{0}=\frac{1}{z_{0}}$ and $y=\frac{z}{z_{0}}$. So now the basis consists of some columns of $[I,-q,-M]$ and d is the RHS. Suppose we have a non-degenerate a.c. but not complementary basic solution to (1). The basic variable will be z_{0}, w_{J} for some $J \subseteq N:=\{1,2, \cdots, n\}$, $z_{K}, K \subseteq N$ with both w_{l} and z_{l} nonbasic, and $J \cup K \cup\{l\}$ a disjoint partition of N. Then v_{J}, y_{0} and y_{K} will be the basic variables in an a.c. basic solution to (2). Recall $d=\binom{\delta_{n}^{n}}{\frac{.}{\delta}}$, for $0<\delta \ll 1$ and this does not lie in any hyperplane formed by $n-1$ columns of $[I,-q,-M]$, so we get a non-degenerate basic solution. In terms of v, y and (2), the LL algorithm operates as follows:

Algorithm:

- Step 0: If $q \geq 0$, we have a complementary solution: stop. Otherwise, let $B=I$ be the initial basis in (2). Introduce y_{0} with column $-q$ into the basis: since q isn't greater than or equal to 0 , its increase will be blocked, so some v_{l} goes to 0 . Set $J=N \backslash\{l\}, K=\emptyset$.
- Step 1: We have a feasible basis B, J, K and l, giving an a.c. but not complementary solution to (2). Just one of v_{l} and y_{l} has just hit zero. Increase its complement. If its increase is blocked by y_{0} hitting 0 , then by rescaling we have a secondary ray of (1); go to step 2. If its increase is blocked by v_{j} or y_{k}, make the pivot, update B, J, K, and l and go to step 1 . If its increase is unblocked, we have a ray of solutions:

$$
\left(v_{J} ; y_{0} ; y_{K} ; 0\right)+\lambda\left(\bar{v}_{J} ; \bar{y}_{0} ; \bar{y}_{K} ; 1\right),
$$

where the last component corresponds to the variable we are increasing, v_{l} or y_{l}. If $\bar{y}_{0}=0$, then y_{0} (and hence z_{0}) stays the same, and by scaling, we find a secondary ray of (1); go to step 2 . If $\bar{y}_{0}>0$, then by rescaling, we get a complementary solution; go to step 3 .

- Step 2(Failure): We have (by scaling) a secondary ray of (1). Stop!
- Step 3(Success): Suppose we were increasing y_{l}, then ray termination implies

$$
I \bar{v}+(-q) \overline{y_{0}}-M \bar{y}-m_{l} \cdot 1=0
$$

where $\bar{v}_{K}=0, \bar{y}_{J}=0$. Then $I\left(\frac{\bar{v}}{\overline{y_{0}}}\right)-M\left(\frac{\bar{y}}{\overline{y_{0}}}+\frac{1}{\bar{y}_{0}} e_{l}\right)=q$, which gives a complementary solution to (1). Similarly if we were increasing v_{l}.

Question: When is a particular partition $J \cup K \cup l=N$ feasible?
The basis matrix B has the J columns of I, the column $-q$ and the K columns of $-M$:

$$
B=\left[\begin{array}{ccc}
I_{J J} & -q_{J} & -M_{J K} \\
0 & -q_{L} & -M_{L K}
\end{array}\right]
$$

with $L:=K \cup\{l\}$. For simplicity, let $F:=[q, M]$, with columns indexed 0 through n, and let $H:=\{0\} \cup K$: then

$$
B=\left[\begin{array}{cc}
I_{J J} & -F_{J H} \\
0 & -F_{L H}
\end{array}\right],
$$

with inverse:

$$
C:=B^{-1}=\left[\begin{array}{cc}
I_{J J} & -F_{J H} F_{L H}^{-1} \\
0 & -F_{L H}^{-1}
\end{array}\right] .
$$

For feasibility, we want $B^{-1} d=C\binom{\delta_{n}^{n}}{\underset{\delta}{i}} \geq 0$. So feasibility "depends on" the signs of the column of $\binom{-F_{J H} F_{L H}^{-1}}{-F_{L H}^{-1}}$ corresponding to the last index in L.

