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Diameters of Polyhedra
So far we have seen some bad news regarding bounds for diameters of polyhedra:

• The number of vertices can be super-exponential;

• The Hirsch conjecture fails.

In this lecture we will have some good news:

• The Hirsch conjecture holds for some polyhedra;

• There is a subexponential bound on ∆(d, n) (but not polynomial).

Lemma 1 Let P be a d-polyhedron with n facets. Choose 0 6= a ∈ IRd and a0 ∈ IR so that

P ⊆ {x ∈ IRd : aT x ≥ a0} and P ′ = {x ∈ P : aT x = a0}

is nonempty. Then P ′ is a d′-polyhedron with n′ facets, d′ < d, n′ < n, and all vectors of P ′

are vertices of P , with two adjacent in P ′ if and only if they are adjacent in P .
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Figure 1: Example of P and P ′ polyhedra for a 3-dim hyperrectangle.

Proof: Exercise.

Definition 1 A (0, 1)-polytope in IRd is the convex hull of a subset of the (0, 1)-vectors in IRd.

Theorem 1 (D. Naddef, 1989) If P is a (0, 1)-polytope in IRd with n facets, then δ(P ) ≤
min{d, n− d}.

Proof: (of Theorem 1) (i) We need δ(P ) ≤ d. We proceed by induction: true for d = 1.
Suppose it is true for dimension less than d, and consider a (0, 1)-polytope P of dimension d.
Let v and w be vertices of P . If vi = wi = 0 for some i, then choose a = ei and a0 = 0 in
the lemma, and note that v and w are vertices of the (0, 1)-polytope P ′ of lower dimension,
so dP (v, w) ≤ dP ′(v, w) ≤ d′ < d, so we are good. Similarly, if vi = wi = 1 for some i. So,
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assume v = 0 and w = e. Then any edge from v goes to a vertex u of P with some ui = 1. So,
dP (v, w) ≤ dP (v, u) + dP (u, w) ≤ 1 + (d− 1) = d.

(ii) We now show δ(P ) ≤ n− d by induction on d.
If v and w both lie on the same facet F , say defined by aT x = a0, of P , then a 6= 0 implies,
say, ad 6= 0, and then

F = {x ∈ P : aT x = a0} =
{
(x1; . . . ; xd) ∈ P : xd =

a0 − a1x1 − · · · − ad−1xd−1

ad

}
.

Look at P ′ = {x̃ := (x1; . . . ; xd) ∈ IRd−1 :
(
x1; . . . ; xd−1;

a0−a1x1−···−ad−1xd−1

ad

)
∈ F}, a (0, 1)-

polytope in IRd−1 with at most n−1 facets: then dP (v, w) ≤ dP ′(ṽ, w̃) ≤ (n−1)−(d−1) = n−d,
by the induction hypothesis.
If v and w do not lie on a common facet, there must be at least 2d facets (d for v, d for w) and
dP (v, w) ≤ d = 2d− d ≤ n− d. ut

There is an alternative proof for δ(P ) ≤ d that goes as follows.
Take any vertices v and w, and without loss of generality assume v = 0. Consider minimizing
eT x over P by the simplex method with some anti-cycling rule, starting at w. Since the
objective is integer on vertices, with initial value at most d and final value 0, this means at
most d nondegenerate steps. ut

Now we prove the following theorem. We will use the lemma above several times. Also, we
use the easily established fact that ∆(d, n) is monotonic in n for fixed d.

Theorem 2 (Basically Kalai-Kleitman) For 1 ≤ d ≤ n, ∆(d, n) ≤ dlog n = nlog d.

Here, the logarithms are to base 2. Note that the log of both dlog n and nlog d is (log d)(log n),
polynomial in log d, log n. So this bound is quasipolynomial. The proof uses the following
lemma.

Lemma 2 (Kalai-Kleitman) For 1 ≤ d ≤ bn
2
c, ∆(d, n) ≤ (d− 1, n− 1) + 2∆(d, bn

2
c) + 2.

Proof: (of Lemma 2) Choose a d-polyhedron P with n facets and two vertices v and
w so that dP (v, w) = ∆(d, n). Without loss of generality, we can assume P is simple, so
that all vertices lie on exactly d facets. If v and w both lie on a common facet P ′, then
dP (v, w) ≤ ∆(d− 1, n− 1). Suppose not. Let kv denote the largest k so that there is a set Fv

of at most bn
2
c facets with all paths from v of length at most k meeting only facets in Fv. This

makes sense since paths of length 0 meet only d facets, while paths of length δ(P ) meet all n
facets. Define kw and Fw similarly.

Claim 1 kv ≤ ∆(d, bn
2
c).

Proof: (of Claim 1) Let Pv denote the d-polyhedron defined by the m (= |Fv| ≤ bn
2
c)

inequalities defining the facets in Fv. Choose a shortest path in P from v of length kv to a
vertex of P , say t.
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Claim 2 This is also the shortest path in Pv from v to t.

Indeed, any shorter path cannot be a path in P , so it would have to meet a facet of P not
in Fv. But this is a contradiction.

So kv = dP (v, t) = dPv(v, t) ≤ ∆(d,m) ≤ ∆(d, bn
2
c), establishing Claim 1. Similarly,

kw ≤ ∆(d, bn
2
c).

By definition, if we allow ourselves to go at most kv + 1 steps from v, we can reach a set Gv

of facets with |Gv| > bn
2
c. Similarly, if we allow ourselves to go at most kw + 1 steps from w,

we can reach a set Gw of facets with |Gw| > bn
2
c. So, there is a facet, say G, in both Gv and Gw,

and a vertex t in G with dP (v, t) ≤ kv + 1 and a vertex u in G with dP (w, u) ≤ kw + 1. Then,

dP (v, w) ≤ dP (v, t) + dP (t, u) + dP (w, u)

≤ dP (v, t) + dG(t, u) + dP (w, u)

≤ kv + 1 + ∆(d− 1, n− 1) + kw + 1

≤ ∆(d− 1, n− 1) + 2∆(d, bn
2
c) + 2.

ut
Proof: (of Theorem 2) By induction on d + n.

• d = 1 : LHS = RHS = 1.

• d = 2 : LHS = n− 2 < n = RHS.

• d = 3 : If n < 6, then any two vertices are on a common facet, so ∆(3, n) ≤ ∆(2, n−1) ≤
n− 3 < nlog 3. If n ≥ 6, by the lemma,

∆(3, n) ≤ ∆(2, n− 1) + 2∆(3, bn
2
c) + 2

= (n− 3) + 2(3logbn
2
c) + 2

≤ n− 1 + 2(3log n−1)

= n− 1 +
2

3
· 3log n,

so we want n − 1 ≤ 1
3
· nlog 3. You can check that this is true for n = 6. The derivative

of its left-hand side is 1, and the derivative of its right-hand side is log 3
3

· nlog 3−1 > 1 for
n ≥ 6, and thus it is true for all n > 6.

• d ≥ 4 : If n < 2d, any two vertices lie on a common facet, so their distance is at most
∆(d− 1, n− 1).

• d ≥ 4 and n ≥ 2d: If n = 8 (so d = 4), two vertices not sharing a facet can be joined by

1︸︷︷︸
a

+ ∆(3, 7)︸ ︷︷ ︸
b

≤ 1 + 3log 7 ≤ 4log 7 ≤ 4log 8

steps, where the term a represents any bounded edge from one vertex and the term b
represents the steps from the resulting vertex to the other vertex in some facet.
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• d ≥ 4 and n ≥ 2d: The only remaining case is n ≥ 9, so n − 1 ≥ 8, and log(n − 1) ≥ 3.
By Lemma 2,

∆(d, n) ≤ ∆(d− 1, n− 1) + 2∆(d, bn
2
c) + 2

≤ (d− 1)log(n−1) + 2dlog n−1 + 2

=

(
d− 1

d

)log(n−1)

dlog(n−1) +
2

d
· dlog n + 2

≤
(

d− 1

d

)3

dlog n +
2

d
· dlog n + 2

= dlog n − 3

d
· dlog n +

3

d2
· dlog n − 1

d3
· dlog n +

2

d
· dlog n + 2

=
(
1− 1

d
+

3

d2
− 1

d3

)
dlog n + 2

≤
(
1− 1

d
+

3

4d
− 1

d3

)
dlog n + 2

= dlog n − 1

4d
· dlog n − 1

d3
· dlog n + 2

≤ dlog n,

since each of the subtracted terms is at least 1. ut
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