Diameters of Polyhedra

So far we have seen some bad news regarding bounds for diameters of polyhedra:

- The number of vertices can be super-exponential;
- The Hirsch conjecture fails.

In this lecture we will have some good news:

- The Hirsch conjecture holds for some polyhedra;
- There is a subexponential bound on $\Delta(d, n)$ (but not polynomial).

Lemma 1 Let P be a d-polyhedron with n facets. Choose $0 \neq a \in \mathbb{R}^{d}$ and $a_{0} \in \mathbf{R}$ so that

$$
P \subseteq\left\{x \in \mathbf{R}^{d}: a^{T} x \geq a_{0}\right\} \text { and } P^{\prime}=\left\{x \in P: a^{T} x=a_{0}\right\}
$$

is nonempty. Then P^{\prime} is a d^{\prime}-polyhedron with n^{\prime} facets, $d^{\prime}<d$, $n^{\prime}<n$, and all vectors of P^{\prime} are vertices of P, with two adjacent in P^{\prime} if and only if they are adjacent in P.

Figure 1: Example of P and P^{\prime} polyhedra for a 3-dim hyperrectangle.
Proof: Exercise.
Definition $1 A(0,1)$-polytope in \mathbb{R}^{d} is the convex hull of a subset of the (0,1$)$-vectors in \mathbb{R}^{d}.
Theorem 1 (D. Naddef, 1989) If P is a (0,1)-polytope in \mathbf{R}^{d} with n facets, then $\delta(P) \leq$ $\min \{d, n-d\}$.

Proof: (of Theorem 1) (i) We need $\delta(P) \leq d$. We proceed by induction: true for $d=1$. Suppose it is true for dimension less than d, and consider a $(0,1)$-polytope P of dimension d. Let v and w be vertices of P. If $v_{i}=w_{i}=0$ for some i, then choose $a=e_{i}$ and $a_{0}=0$ in the lemma, and note that v and w are vertices of the $(0,1)$-polytope P^{\prime} of lower dimension, so $d_{P}(v, w) \leq d_{P^{\prime}}(v, w) \leq d^{\prime}<d$, so we are good. Similarly, if $v_{i}=w_{i}=1$ for some i. So,
assume $v=0$ and $w=e$. Then any edge from v goes to a vertex u of P with some $u_{i}=1$. So, $d_{P}(v, w) \leq d_{P}(v, u)+d_{P}(u, w) \leq 1+(d-1)=d$.
(ii) We now show $\delta(P) \leq n-d$ by induction on d.

If v and w both lie on the same facet F, say defined by $a^{T} x=a_{0}$, of P, then $a \neq 0$ implies, say, $a_{d} \neq 0$, and then

$$
F=\left\{x \in P: a^{T} x=a_{0}\right\}=\left\{\left(x_{1} ; \ldots ; x_{d}\right) \in P: x_{d}=\frac{a_{0}-a_{1} x_{1}-\cdots-a_{d-1} x_{d-1}}{a_{d}}\right\} .
$$

Look at $P^{\prime}=\left\{\tilde{x}:=\left(x_{1} ; \ldots ; x_{d}\right) \in \mathbf{R}^{d-1}:\left(x_{1} ; \ldots ; x_{d-1} ; \frac{a_{0}-a_{1} x_{1}-\cdots-a_{d-1} x_{d-1}}{a_{d}}\right) \in F\right\}$, a $(0,1)$ polytope in \mathbf{R}^{d-1} with at most $n-1$ facets: then $d_{P}(v, w) \leq d_{P^{\prime}}(\tilde{v}, \tilde{w}) \leq(n-1)-(d-1)=n-d$, by the induction hypothesis.
If v and w do not lie on a common facet, there must be at least $2 d$ facets (d for v, d for w) and $d_{P}(v, w) \leq d=2 d-d \leq n-d$.

There is an alternative proof for $\delta(P) \leq d$ that goes as follows.
Take any vertices v and w, and without loss of generality assume $v=0$. Consider minimizing $e^{T} x$ over P by the simplex method with some anti-cycling rule, starting at w. Since the objective is integer on vertices, with initial value at most d and final value 0 , this means at most d nondegenerate steps.

Now we prove the following theorem. We will use the lemma above several times. Also, we use the easily established fact that $\Delta(d, n)$ is monotonic in n for fixed d.

Theorem 2 (Basically Kalai-Kleitman) For $1 \leq d \leq n, \Delta(d, n) \leq d^{\log n}=n^{\log d}$.
Here, the logarithms are to base 2. Note that the \log of both $d^{\log n}$ and $n^{\log d}$ is $(\log d)(\log n)$, polynomial in $\log d, \log n$. So this bound is quasipolynomial. The proof uses the following lemma.

Lemma 2 (Kalai-Kleitman) For $1 \leq d \leq\left\lfloor\frac{n}{2}\right\rfloor, \Delta(d, n) \leq(d-1, n-1)+2 \Delta\left(d,\left\lfloor\frac{n}{2}\right\rfloor\right)+2$.
Proof: (of Lemma 2) Choose a d-polyhedron P with n facets and two vertices v and w so that $d_{P}(v, w)=\Delta(d, n)$. Without loss of generality, we can assume P is simple, so that all vertices lie on exactly d facets. If v and w both lie on a common facet P^{\prime}, then $d_{P}(v, w) \leq \Delta(d-1, n-1)$. Suppose not. Let k_{v} denote the largest k so that there is a set \mathcal{F}_{v} of at most $\left\lfloor\frac{n}{2}\right\rfloor$ facets with all paths from v of length at most k meeting only facets in \mathcal{F}_{v}. This makes sense since paths of length 0 meet only d facets, while paths of length $\delta(P)$ meet all n facets. Define k_{w} and \mathcal{F}_{w} similarly.

Claim $1 k_{v} \leq \Delta\left(d,\left\lfloor\frac{n}{2}\right\rfloor\right)$.
Proof: (of Claim 1) Let P_{v} denote the d-polyhedron defined by the $m\left(=\left|\mathcal{F}_{v}\right| \leq\left\lfloor\frac{n}{2}\right\rfloor\right)$ inequalities defining the facets in \mathcal{F}_{v}. Choose a shortest path in P from v of length k_{v} to a vertex of P, say t.

Claim 2 This is also the shortest path in P_{v} from v to t.
Indeed, any shorter path cannot be a path in P, so it would have to meet a facet of P not in \mathcal{F}_{v}. But this is a contradiction.

So $k_{v}=d_{P}(v, t)=d_{P_{v}}(v, t) \leq \Delta(d, m) \leq \Delta\left(d,\left\lfloor\frac{n}{2}\right\rfloor\right)$, establishing Claim 1. Similarly, $k_{w} \leq \Delta\left(d,\left\lfloor\frac{n}{2}\right\rfloor\right)$.

By definition, if we allow ourselves to go at most $k_{v}+1$ steps from v, we can reach a set \mathcal{G}_{v} of facets with $\left|\mathcal{G}_{v}\right|>\left\lfloor\frac{n}{2}\right\rfloor$. Similarly, if we allow ourselves to go at most $k_{w}+1$ steps from w, we can reach a set \mathcal{G}_{w} of facets with $\left|\mathcal{G}_{w}\right|>\left\lfloor\frac{n}{2}\right\rfloor$. So, there is a facet, say G, in both \mathcal{G}_{v} and \mathcal{G}_{w}, and a vertex t in G with $d_{P}(v, t) \leq k_{v}+1$ and a vertex u in G with $d_{P}(w, u) \leq k_{w}+1$. Then,

$$
\begin{aligned}
d_{P}(v, w) & \leq d_{P}(v, t)+d_{P}(t, u)+d_{P}(w, u) \\
& \leq d_{P}(v, t)+d_{G}(t, u)+d_{P}(w, u) \\
& \leq k_{v}+1+\Delta(d-1, n-1)+k_{w}+1 \\
& \leq \Delta(d-1, n-1)+2 \Delta\left(d,\left\lfloor\frac{n}{2}\right\rfloor\right)+2
\end{aligned}
$$

Proof: (of Theorem 2) By induction on $d+n$.

- $d=1: \quad L H S=R H S=1$.
- $d=2: \quad L H S=n-2<n=R H S$.
- $d=3$: If $n<6$, then any two vertices are on a common facet, so $\Delta(3, n) \leq \Delta(2, n-1) \leq$ $n-3<n^{\log 3}$. If $n \geq 6$, by the lemma,

$$
\begin{aligned}
\Delta(3, n) & \leq \Delta(2, n-1)+2 \Delta\left(3,\left\lfloor\frac{n}{2}\right\rfloor\right)+2 \\
& =(n-3)+2\left(3^{\log \left\lfloor\frac{n}{2}\right\rfloor}\right)+2 \\
& \leq n-1+2\left(3^{\log n-1}\right) \\
& =n-1+\frac{2}{3} \cdot 3^{\log n}
\end{aligned}
$$

so we want $n-1 \leq \frac{1}{3} \cdot n^{\log 3}$. You can check that this is true for $n=6$. The derivative of its left-hand side is 1 , and the derivative of its right-hand side is $\frac{\log 3}{3} \cdot n^{\log 3-1}>1$ for $n \geq 6$, and thus it is true for all $n>6$.

- $d \geq 4$: If $n<2 d$, any two vertices lie on a common facet, so their distance is at most $\Delta(d-1, n-1)$.
- $d \geq 4$ and $n \geq 2 d$: If $n=8$ (so $d=4$), two vertices not sharing a facet can be joined by

$$
\underbrace{1}_{a}+\underbrace{\Delta(3,7)}_{b} \leq 1+3^{\log 7} \leq 4^{\log 7} \leq 4^{\log 8}
$$

steps, where the term a represents any bounded edge from one vertex and the term b represents the steps from the resulting vertex to the other vertex in some facet.

- $d \geq 4$ and $n \geq 2 d$: The only remaining case is $n \geq 9$, so $n-1 \geq 8$, and $\log (n-1) \geq 3$. By Lemma 2,

$$
\begin{aligned}
\Delta(d, n) & \leq \Delta(d-1, n-1)+2 \Delta\left(d,\left\lfloor\frac{n}{2}\right\rfloor\right)+2 \\
& \leq(d-1)^{\log (n-1)}+2 d^{\log n-1}+2 \\
& =\left(\frac{d-1}{d}\right)^{\log (n-1)} d^{\log (n-1)}+\frac{2}{d} \cdot d^{\log n}+2 \\
& \leq\left(\frac{d-1}{d}\right)^{3} d^{\log n}+\frac{2}{d} \cdot d^{\log n}+2 \\
& =d^{\log n}-\frac{3}{d} \cdot d^{\log n}+\frac{3}{d^{2}} \cdot d^{\log n}-\frac{1}{d^{3}} \cdot d^{\log n}+\frac{2}{d} \cdot d^{\log n}+2 \\
& =\left(1-\frac{1}{d}+\frac{3}{d^{2}}-\frac{1}{d^{3}}\right) d^{\log n}+2 \\
& \leq\left(1-\frac{1}{d}+\frac{3}{4 d}-\frac{1}{d^{3}}\right) d^{\log n}+2 \\
& =d^{\log n}-\frac{1}{4 d} \cdot d^{\log n}-\frac{1}{d^{3}} \cdot d^{\log n}+2 \\
& \leq d^{\log n},
\end{aligned}
$$

since each of the subtracted terms is at least 1 .

