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w = dz0 + Mz + q (1)

0 ≤ w ⊥ z ≥ 0, z0 ≥ 0 (2)

We showed last time:

Theorem 1 Lemke’s Algorithm for a monotone LCP will either produce a complementary
solution or show that the LCP is infeasible.

In particular, if the LCP comes from (QP) and (QD) with H positive semidefinite, M =[
H −AT

A 0

]
, q =

[
c
−b

]
, and then any secondary ray has z̄ =

[
x̄
ȳ

]
6= 0, with either x̄

showing (QD) infeasible or ȳ showing (QP) infeasible. (See the end of the last notes.)

Definition 1 M is copositive plus if zT Mz ≥ 0 for z ≥ 0, with equality only if (M +MT )z =
0.

In fact, our proof of the theorem showed the conclusion holds if M is just copositive plus
(Lemke). Also, if M is strictly monotone (zT Mz > 0 if z 6= 0), there cannot be any sec-
ondary ray, so the algorithm gives a complementary solution. Finally, it can be shown that the
algorithm always gives a complementary solution if M is a P −matrix.

How are complementary pivot algorithms 1 and 2 related?
In fact, Lemke’s algorithm can be reduced to the Lemke-Howson algorithm. We add the

constraint:
w0 = −z0 − eT z + ω ≥ 0

to the system to get the LCP:[
w0

w

]
=

[
−1 −eT

d M

] [
z0

z

]
+

[
ω
q

]
(3)

0 ≤
[

w0

w

]
⊥

[
z0

z

]
≥ 0, z0 ≥ 0 (4)

Choose ω so that z0 +eT z < ω for all basic feasible solutions (BFS) to the system (1). Then
the constraint we added just intersects rays going to infinity, and thus makes the unbounded
polyhedron bounded. We have a complementary solution to this :

((w0; w) = (0; dω + q), (z0; z) = (ω; 0))

Now start complementary pivot algorithm 1 for this augmented LCP starting from this
complementary solution.
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E.g., search G0, so start by increasing w0, meaning come down the primary ray and then
pivot as in complementary pivot algorithm 2. Continue until finding a complementary solution
to the original LCP, a desirable complementary solution (w0 > 0, z0 = 0) to the augmented
LCP, or a secondary ray, which leads to an undesirable complementary solution (w0 = 0,
z0 > 0) to the augmented LCP.

Computational complexity of complementary pivot algorithms
Consider the following LCP:

M := Mn :=


1 0
2 1
2 2 .
. . . .
2 2 2 . 1

 ∈ <
n×n, q := q(n) :=


−2n

−2n −2n−1

. . .

. . . .
−2n −2n−1 −2n−2 . −2

 ∈ <
n.

Note: M + MT = 2eeT , so zT (M + MT )z = 2(eT z)2 ≥ 0. Thus, M is monotone and also a
P −matrix.

We’ll use d := d(n) := e := e(n) :=


1
.
.
1

 ∈ <n.

Besides, Mn =

[
1 0

2e(n−1) Mn−1

]
, q(n) = −2ne(n) +

[
0

q(n−1)

]
.

Therefore, w = dz0 + Mz + q becomes
w1

.

.
wn

 = (z0 − 2n)e(n) +


z1

2z1

.
2z1

 +

[
0

Mn−1

] 
z2

.

.
zn

 +

[
0

q(n−1)

]
. (5)

Theorem 2 Lemke’s algorithm applied to this LCP takes 2n−1 pivots starting with z0, w1, ..., wn−1

basic and ending with z1, w2, ..., wn basic with z0 decreasing from 2n+1 − 2 to 0 in steps of 2.

Proof: By induction (check that it’s true for n = 1).
Assume it is true for dimension at most n − 1. Consider Mn and q(n). Start with z0 =

max(− qi

1
) = 2n + 2n−1 + ... + 2 = 2n+1 − 2 and wn = 0.

Rewrite (5) as

w1 = z′0 + z1 (6)
w2

.

.
wn

 = e(n−1)z′0 + 2e(n−1)z1 + Mn−1


z2

.

.
zn

 + q(n−1) (7)

with z′0 := z0 − 2n.
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While z′0 remains positive, so does w1, so z1 stays nonbasic, and by the inductive hypothesis
the algorithm will perform exactly like Lemke’s algorithm on the (n−1)-dimensional problem
taking 2n−1 − 1 pivots to reach the solution with z′0 = 0, so z0 = 2n and then w1 hits 0. When
w1 hits zero, the next step is to increase z1 and subsequent solutions will have z1 basic and w1

nonbasic. So we rewrite the system above, interchanging w1 and z1: (5) is also equivalent to :

z1 = z′′0 + w1 (8)
w2

.

.
wn

 = e(n−1)z′′0 + 2e(n−1)w1 + Mn−1


z2

.

.
zn

 + q(n−1) (9)

with z′′0 := 2n − z0.
Again by the induction hypothesis there is a path of a.c. solutions to the system with z′′0

decreasing from 2n − 2 to 0, i.e., z0 increasing from 2 to 2n in steps of 2.
Reverse this path and add it to the first:

Table 1: Basic variables change

Step 1 z0 > 0, w1, w2, ..., wn−1 z0 = 2n+1 − 2, z′0 = 2n − 2
. . .
. . w1

2n−1 z0 , 0, z2, ..., wn z0 = 2n, z′0 = 0, z′′0 = 0, (w1 = 0)
. . z1

. . .
2n − 1 z0 , z1, w2, ..., wn−1 z0 = 2, z′′0 = 2n − 2

2n compl soln z1, w2, ..., wn−1, wn z0 = 0, z′′0 = 2n

A little way out on the primary ray
of the problem above

Note that we have added an extra BFS at the end, corresponding to z′′0 = 2n, so a little way
out on the primary ray of this (n− 1)-dimensional problem, but also corresponding to z0 = 0,
so a complementary solution to the original LCP. We also have the correct set of basic variables
(we used the inductive hypothesis to make sure the BFS in the middle coincided).

The number of BFS in total is 2n−1 (the first set) plus 2n−1 − 1 (the second set, but
subtracting one because of the overlap in the middle), plus another one for the last one. Number
of BFS: 2n−1 + 2n−1 − 1 + 1 = 2n. z0 is decreased by 2 in each step.

This concludes the inductive step and thus the proof of the theorem.
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