
Mathematical Programming II Lecture 3
ORIE 6310 Spring 2014 January 30, 2014
Scribe: Charles Jeon

In this lecture, we will consider a topic in Game Theory: bimatrix games and their relation
to LCPs. We start with a definition.

Definition 1 (Bimatrix Games) A bimatrix game is given by two m × n matrices A and B.
Player I chooses i ∈ {1, . . . ,m} and Player II chooses j ∈ {1, . . . , n}. The players then get
payoffs aij and bij respectively.

We consider noncooperative theory: so we assume that the players do not (or cannot) cooperate
in choosing their strategies.

Definition 2 (Nash Equilibrium) A pair (̄i, j̄) is a (pure strategy) Nash equilibrium if
aij̄ ≤ aīj̄ for all i and bīj ≤ bīj̄ for all j, i.e., there are no incentives for a unilateral switch.

To get an idea of Nash equilibrium, here are some examples.

Example 1 The Prisoner’s Dilemma: Consider two players who are accused of a crime and
are detained and questioned separately by the police. They have two options, either staying quiet,
which we will denote as Q, or confessing, which we will denote as C. The resulting payoffs to
the two players are given below, and correspond to the (negative of the) years to be served in
prison in each scenario.

Q C
Q (−2,−2) (−10,−1)
C (−1,−10) (−5,−5)

Here, the strategy pair (2, 2), giving rise to the payoff (−5,−5), is the unique Nash equilibrium,
which corresponds to both players confessing. Starting from the Nash equilibrium, if Player
I makes a switch, he/she will have to serve 10 years rather than 5 years. This is the same
for Player II. Note that both players are better off if they both stay quiet, but this requires
cooperation (and enforcement of the agreement).

Example 2 The Honeymoon Problem: Suppose Alice and Bob are on their Honeymoon and
Alice wants to see the ballet (B) but Bob wants to see a baseball game (G). The payoffs of their
actions are shown below.

B G
B (1, 5) (0, 0)
G (0, 0) (5, 1)

In this case, both (1, 1) and (2, 2) are Nash equilibria. This is the same even if we have payoffs
(1, 1) and (5, 5) instead of (1, 5) and (5, 1). Note that NE are not unique, and one might
dominate another!
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Example 3 Dime Matching: Suppose Alice and Bob are going to play a dime matching game.
Each player chooses heads (H) or tails (T). The payoff of the actions are shown below. This is
a zero-sum game.

H T
H (5,−5) (−5, 5)
T (−5, 5) (5,−5)

In this case, there is no pure-strategy NE. At any strategy pair, one player has an incentive to
change his/her decision.

In general, we want to consider mixed strategies. Let X :=
{
x : eT

mx = 1, x ≥ 0
}

and

Y :=
{
y : eT

ny = 1, y ≥ 0
}
, where ek := (1; . . . ; 1) ∈ IRk.

If Player I chooses x (plays pure strategy i with probability xi) and Player II chooses y (plays
pure strategy j with probability yj), then I gets expected payoff xT Ay and II gets expected
payoff xT By. We assume that players want to maximize these. Let us define the NE for this
case when the players are using mixed strategies.

Definition 3 (Mixed Strategy Nash Equilibrium) (x̄, ȳ) ∈ X × Y is a (mixed strategy) Nash
equilibrium if xT Aȳ ≤ x̄T Aȳ and x̄T By ≤ x̄T Bȳ for all x ∈ X and y ∈ Y respectively.

This has bilinearity, an infinite number of constraints and no complementarity conditions. But
note that the condition xT Aȳ ≤ x̄T Aȳ for all x ∈ X holds if and only if Aȳ ≤

(
x̄T Aȳ

)
em which

takes care of the infinite number of constraints. This is also equivalent to

Aȳ ≤ αem, α = x̄T Aȳ, or

Aȳ ≤ αem, for some α ∈ IR with equality in the ith position if xi > 0.

Similarly, x̄T By ≤ x̄T Bȳ for all y ∈ Y holds if and only if BT x̄ ≤ βen for some β ∈ IR with
equality in the jth position if ȳj > 0. Note that the components of x̄ and ȳ depend on the
other player’s payoffs.

We would like α, β > 0 so we can scale x̄ and ȳ to get em and en on the RHS. To do so, we
need to perturb the bimatrix game.

Proposition 1 For any γ ∈ IR, δ ∈ IR, (x̄, ȳ) is a NE for (A, B) if and only if it is a NE for(
A + γemeT

n , B + δemeT
n

)
.

Proof: Exercise.
With this proposition, we can assume without loss of generality that A, B > 0 entry-wise.
Then, α and β must be positive, so we can scale by α and β to get[

s
t

]
=

[
0 −A

−BT 0

] [
u
v

]
+

[
em

en

]

and 0 ≤ [s; t] ⊥ [u; v] ≥ 0 so we have an LCP!
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Theorem 1 (Relation of NE and LCP) Assume A, B > 0. Then if (x̄, ȳ) is a NE of (A, B),(
ū = x̄/x̄T Bȳ, v̄ = ȳ/x̄T Aȳ

)
with suitable (s̄, t̄) is a complementary solution to the LCP above.

Conversely, if (s̄, t̄, ū, v̄) is a complementary solution to the LCP above, and (ū, v̄) 6= (0, 0),

then
(
x̄ = ū/eT

mū, ȳ = v̄/eT
n v̄
)

is a NE for (A, B).

Proof: We have already shown the first part.
For the converse, note that if ū 6= 0, some ūi > 0 so some s̄i = 0, so v̄ 6= 0. Similarly, v̄ 6= 0

implies ū 6= 0. So x̄ and ȳ are well defined in X × Y . But, Av̄ ≤ em, with equality in the ith
position if ūi > 0, implies that Aȳ ≤ αem, with α = 1/eT

n v̄, with equality in the ith position if
xi > 0.

Similarly, BT x̄ ≤ βen for β = 1/eT
mū with equality in the jth position if ȳj > 0. Hence,

(x̄, ȳ) is a NE for (A, B).

Note that M =

[
0 −A

−BT 0

]
is neither a P -matrix nor (in general) monotone. It is

monotone if B = −A, which corresponds to a zero-sum game. Note that the set of feasible
solutions to this LCP is bounded.

For other applications of LCP, see the paper of Ferris and Pang on the course homepage.
Note that the complementary variables in equilibrium problems are the prices of goods and
their corresponding excess supplies. Also, see the slides by Mihai Anitescu on the homepage.
Here, complementary variables in mechanics problems model non-intersection of bodies (the
distance between them is nonnegative) and the corresponding normal force.

And for an encore:

OR 6310: Mathematical Programming II. Spring 2014.

Homework Set 1. Due: Thursday February 20.

1. (KKT solutions and minimizers)
a) Find all KKT solutions (x̄’s which with suitable multipliers satisfy the KKT conditions)

for min{x1−x2
1 +x2

2 : −1 ≤ x1 ≤ 1}, and characterize which are global minimizers, which local
but not global minimizers, and which are not even local minimizers.

b) By making a small change to the problem in (a), find a quadratic programming problem
where the best KKT solution is not the global minimizer. [This shows that, even if you could
“solve” arbitrary LCPs, you can’t guarantee finding global minimizers for QPs.]
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2. (Symmetric quadratic programming duality)
a) Consider the unconstrained quadratic minimization problem

(P ) : min
v

f(v) := dT v +
1

2
vT Hv,

where H = HT ∈ <n×n is positive semidefinite. Suppose ∇f(v̄) = d + Hv̄ = 0. Show directly
that v̄ is a global minimizer for (P ), and hence that any two solutions v̄ have the same value
of f . Show also that, if d + Hv = 0 has no solution, then (P ) is unbounded below.

b) Now consider the constrained quadratic programming problem

(QP ) : min
x,u

cT x +
1

2
xT Hx +

1

2
uT Gu, Ax + Gu ≥ b, x ≥ 0.

Here A, H, b, c are as in class and G = GT ∈ <m×m. Note that if G = 0, this is the problem con-
sidered in class. Show that (QP ) is equivalent to the min-max problem minx,u maxy≥0,s≥0 L(x, u, y, s),
where L(x, u, y, s) is the Lagrangian function

L(x, u, y, s) := cT x +
1

2
xT Hx +

1

2
uT Gu + (b− Ax−Gu)T y + (−x)T s.

Henceforth assume that H and G are positive semidefinite. Next show that the max-min
problem maxy≥0,s≥0 minx,u L(x, u, y, s) is equivalent to the dual problem below (note that this
coincides with the dual problem (QD) stated in class if G = 0):

(QD) : max
y,v

bT y − 1

2
yT Gy − 1

2
vT Hv, AT y −Hv ≤ c, y ≥ 0.

c) Hence show weak duality directly for this pair of problems.
d) By writing (QD) in the form of (QP ), show that the “dual of the dual is the primal.”

3. Our formulation of finding Nash equilibria in a bimatrix game as an LCP does not distin-
guish one Nash equilibrium from another. Find an LCP so that any nontrivial complementary
solution gives a Nash equilibrium where I’s expected payoff is at least α and II’s expected payoff
is at least β. Is it easy to find such Nash equilibria by the same algorithm as discussed in class?

4. We made sure that A and B had all positive entries, and then set up a bounded linear
system of equations and inequalities to find Nash equilibria of the bimatrix game (A, B).

a) Suppose instead we start by ensuring that all entries of A and B are negative, and then
consider the LCP defined by

M =

(
0 −A

−BT 0

)
, q =

(
−em

−en

)
.

Is the corresponding polyhedron bounded? Prove a theorem relating Nash equilibria of the
bimatrix game to complementary solutions of this LCP.

b) Try to modify the algorithm we discussed, using k-a.c. basic feasible solutions, to attack
the LCP in (a). Show how to initialize it (a couple of special pivots may be required). Do not
worry about secondary rays.
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