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Last time, we proved the Karush-Kuhn-Tucker (KKT) theorem.

Theorem 1. If T is a local minimizer for
minimize f(z)
subject to  g(x) <0

and MFCQ holds at T, then 3w € R™ such that

Figure 1: KKT Conditions Geometrically

Remark 1. For linear constrains, MFCQ is not necessary.

Example 1. QP (Quadratic Programming): Consider the quadratic program
1

minimize ¢ 'z + —x' Hz
zeR™ 2
(QP) subject to Ax >b
x>0,

where A € R™", b R™, c€ R", and H = H'" € R"". Note that

o0 = (") erY N —mn



and
Z c;Ti + Z hjas + Z hijx;x;.
i<j

Therefore,

Vf(x)=c+ Hx € R",

Vg(z) = [-AT,—1] € R™V.
Let w = (7;3). The KKT conditions are:

c+HT—A'g—35=0
y>0, >0, b—Az <0, —2<0

y;(b— AZ); =0 Vi=1,...,m
§j<—fj)20 Vle,,n
Let t := AT — b. Then, (5,¢,T,7) solves:

() () () ()
(0)z0 G)ze (0),0),-0vx

This is an instance of the Linear Complementarity Problem (LCP):

w= Mz+q, w > 0, z >0, w-z =0,

o H —-AT NxN o & N
(1w = () ent

Note that we can interpret w - z as the Hadamard (componentwise) product:

with

w121

WNZN
of w and z. With w, z > 0, this is equivalent to w'z = 0. This is often written as:

0<wlz>0.

The LCP
w=DMz+q (1)
w>0, 2>0 (2)
w-z=0 (3)



is denoted by LCP(M,q) and is called feasible if there exists w, z satisfying (1) and (2), and
then we call (w, z) feasible for the LCP. We call (w, z) complementary if it also satisfies (3).
The properties of LCP(M, ¢) depend heavily on the properties of the matrix M.

Definition 1. M € R™"*Y is a P-matriz if all its principal minors are positive, i.c., det(M;;) >
ovJc{l,...,N}

Definition 2. M € RY*Y is monotone if z" Mz > 0 for all = € RY, i.e.,
symmetric positive semidefinite (PSD).

S(M +MT) is

H

Remark 2. M = (A

PSD:

—ATY . . . .
0 ) is not a P-matrix if m > 0 but is monotone as long as H is

() (3 7))z
= (1)),

where the first matrix on the right-hand-side is positive semidefinite and the second is skew
symmetric.

Also note that:

Remark 3. Note that LCP asks for us to write ¢ as a non-negative linear combination of a
complementary set of columns of [I, —M] (i.e., we cannot use both the jth column of I and the
jth column of —M for any j).

Example 2. (N =2). Let I = (61 62) and M = (m1 mg). Note that:
w=Mz+q <= q=Iw—-Mz

Refer to Figure 2 for the following examples. The complementary cones (sets of nonnegative
combinations of complementary sets of columns) are marked.

(a) M = ((1) 1‘)

M is a P-matrix, but it’s not monotone. Complementary cones form a partition of R
Unique complementary solution for all q.

(b) M = ((1) 8)

M is monotone and psd but not a P-matrix. The problem is not feasible for all ¢. It is
feasible if and only if g > 0. But it has a complementary solution for every ¢ for which
it is feasible (not necessarily unique).



(a) I\ M:G 411) ) I\ M:((l) 8)

—mi €1 —my €1

0 1
a =)

Vom,

Figure 2: Complementary vectors for different M matrices.

o= (1 2)

M is not a P-matrix and it’s also not monotone. The problem is feasible for all ¢ and it
has a complementary solution only if ¢; - g5 > 0.

Significance of matrix classes:

Theorem 2. If M is a P-matriz, then the LCP(M,q) has a unique complementary solution
for every q. (So the complementary cones partition R".)

Proof. We will omit the proof. See Cottle, Pang, and Stone (on reserve in Uris). O

Theorem 3. If M is monotone, then the LCP(M,q) has a complementary solution whenever
it has a feasible solution.

Proof. We will prove this later using an algorithm. 0O




Consider again the LCP arising from (QP) with

w8 ) - (5)

In this case, a local minimizer gives a complementary solution to the LCP. Conversely, suppose
that (3,¢,7,7) is a complementary solution to the LCP. Then,

S=Hz—-A"j+c
t=Ar -
t-y=0, 5-2=0
5. t, T, y>0.
Therefore, we can write:
0=357=7 Hz-7 A'j+c'z (4)
0=%7g= 7 AT — by (5)

Adding equations (4) and (5) we get,
T HTZ+¢'T—b'5=0, and so
c'T+ LT~ by — LTz
2 2
Theorem 4. If H is positive semidefinite, then T is a global minimizer for (QP).

Proof. Consider the following dual quadratic programming problem, denoted by (QD):

1
maximize b'y— —v' Hov
yeR™, veR™ 2

(QD) subject to Ay — Hv <c¢
y > 0.

Note that (g,7) is feasible in (QD) and T is feasible in (QP) with the same objective values.
Consider any feasible solution x to (QP) (with surplus variable t) and (y,v) to (QD) (with
slack variable s). Then,

1 1 1 1
clx+ §mTHx — (bTy — §UTHU) —(ATy—Hvo+s) o — (Ax —t) Ty + éxTHx + §UTHU

1 1
=s'ox+thy+ §xTHa: — 2 Hu+ EUTHU

1
=s'a+t'y+ §(x—v)TH($ —v) > 0.

Hence weak duality holds and so = is optimal. O



Digression If we remove the restriction that H is positive semidefinite, we can still show that
T-by+T HT =0

— — — — —
- Hz = - —|——b .
c T+ = i cC X Yy

Hence, 7 is a local minimizer for (QP) with objective value at most 0, if with some 7,(,5,%,T
it is a solution to

S H —AT 0 x c
v —%CT —%bT 0 ¢ 4]

0 < (s;t;v) L (7395¢) > 0.

So, if we could “solve” arbitrary LCPs, we could find globally optimal solutions to arbitrary
QPs, which is hard: consider

minimize c¢'z
zeR™
subject to Ax > b

z e€{0,1}",

which is clearly related to

1

minimize ¢’z + vz’ (e — 1),
x€R™ 2
subject to Ax > b

0<x<e,

where e = (1;...;1) € R" and v is sufficiently large.

Note: from now on, we shall use n for the dimension of the LCP instead of N, and so A
in LP and QP will be m x p, with n = m + p. So the primal problem will have p nonnegative
variables subject to m general inequality constraints.



