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1. Introduction

At the last Mathematical Programming Symposium in Lausanne, we celebrated

the 50th anniversary of the simplex method. Here, we are at or close to several

other anniversaries relating to linear programming: the sixtieth of Kantorovich’s

1939 paper on “Mathematical Methods in the Organization and Planning of

Production” (and the fortieth of its appearance in the Western literature) [55];

the fiftieth of the historic 0th Mathematical Programming Symposium which

took place in Chicago in 1949 on Activity Analysis of Production and Alloca-

tion [64]; the forty-fifth of Frisch’s suggestion of the logarithmic barrier function

for linear programming [37]; the twenty-fifth of the awarding of the 1975 Nobel
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Prize in Economics to Kantorovich and to Koopmans (and most disappoint-

ingly not to Dantzig – see the article [8] by Balinski for some related history)

for their contributions to the theory of optimum allocation of resources; the

twentieth anniversaries of Khachiyan’s 1979 and 1980 papers [57,58] using the

ellipsoid method to prove polynomiality of the linear programming problem; and

the fifteenth of Karmarkar’s paper introducing the projective method to again

establish polynomiality and reinvigorating the study of interior-point methods

to such a remarkable extent.

Let me start by giving two quotes from the Nobel prizewinners (two of the

notable list of individuals with the initial K who have made significant contri-

butions to linear programming, including also Klee, Khachiyan, Karmarkar, and

Kalai, who will figure later in this paper) and one from Dantzig:

Kantorovich writes in the introduction of [55]: “I want to emphasize again

that the greater part of the problems of which I shall speak, relating to the

organization and planning of production, are connected specifically with the

Soviet system of economy and in the majority of cases do not arise in the economy

of a capitalist society.” (This was undoubtedly added to make the paper, with its

disguised decadent ideas of dual prices, more palatable to his communist censors

– and we shall see more instances where the science of linear programming came

up against the realities of the Cold War. In this regard, see the comments [24]

on the translated version by Charnes and Cooper and the following rebuttal by

Koopmans. See also the article by B. T. Polyak in this volume.)
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A prescient quote from Tjalling Koopmans in the introduction to [64] reads:

“It has been found so far that, for any computation method which seems useful

in relation to some set of data, another set of data can be constructed for which

that method is obviously unsatisfactory.” (This compares strikingly with the

quote from Bixby et al. [13] at the end of this section.)

In [30], Dantzig writes: “Luckily the particular geometry used in my thesis

was the one associated with the columns of the matrix instead of its rows. This

column geometry gave me the insight which led me to believe that the simplex

method would be an efficient solution technique. I earlier had rejected the method

when I viewed it in the row geometry because running around the outside edges

seemed so unpromising.”

Since much has been written about the early history (and pre-history) of

linear programming, for example in [29], Chapter 2, [30], and [83], pp. 209–

225, this paper will concentrate more on developments since the seventies. I

hope to intrigue the reader enough to investigate some of the byways and alleys

associated with linear programming as well as the more well-travelled highways.

We will look at simplex, ellipsoid, and interior-point methods, and also at least

mention some other approaches. Of course, I hope the reader will forgive my

personal bias in the topics selected. (Let me mention here Megiddo’s article [75],

which also surveys some recent developments from a different viewpoint.)

Following the development of the simplex method in 1947 [27], the ’50s had

been the decade of developing the theoretical underpinnings of linear program-

ming, of extending its applicability in industrial settings and to certain com-
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binatorial problems, and of the first general-purpose codes. The ’60s saw the

emergence of large-scale linear programming, of exploitation of special structure

(again pioneered by Dantzig and Dantzig-Wolfe in [28,31]), and of extensions

to quadratic programming and linear complementarity. If the ’50s and the ’60s

were the decades of unbridled enthusiasm, the ’70s were the decade of doubt, as

the theory of computational complexity was developed and Klee and Minty [60]

showed that the simplex method with a common pivot rule was of exponential

complexity. We will concentrate on the developments since that time; hope has

been restored by new polynomial-time algorithms, by bounds on the expected

number of pivot steps, and by amazing computational studies on problems with

numbers of variables ranging up to the millions.

Linear programming studies the optimization of a linear function over a fea-

sible set defined by linear inequalities, hence a polyhedron. The problem is in

some sense trivial, since it is only necessary to examine a finite number of ver-

tices (and possibly edges), but if one is interested in efficient computation, the

topic is wonderfully rich and has been the subject of numerous surprising new

insights.

A geometric view can be at times helpful (but also profoundly misleading,

as mentioned by Dantzig on several occasions). Let us consider two paradigms:

optimization of a linear function over a simplex or over an ellipsoid. In the

first case the feasible region is “spiky”; there are few vertices, and any one can

be reached from any other in one step: here the simplex method is a natural

choice. In the second case, an optimal solution can easily be found by calculus,
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but there are an infinite number of extreme points. Are the feasible regions of

large-scale instances arising in important problem domains more like “quartz

crystals” [51], with long edges from one side to the other, so that combinatorial

algorithms will be efficient, or more like “disco balls” [50], where simplex-like

methods seem doomed to be slow (as in Dantzig’s earlier intuition mentioned

above) but approximations by ellipsoids as in the ellipsoid method or interior-

point methods look promising? The remarkable success of algorithms from both

classes suggest that real problems have both features.

After a short section setting our notation, the subsequent sections consider

the simplex method, the ellipsoid method, interior-point methods, and other

approaches. In each section we start with an overview and historical comments,

and then provide some more technical material relating to understanding the

methods better or giving relations between them. I have of course omitted much

that is highly important (everything concerned with efficient computation and

exploitation of special structure, for example!), but I hope to have mentioned

some avenues that are new to readers. The paper concludes with some very brief

remarks on the future.

Let me close this section with an anecdote: One day in April, I experienced an

interesting time warp. I read a paper by Hoffman et al. from 1953 [49], discussing

computational experiments comparing three methods for linear programming

problems and computing optimal strategies for zero-sum games (the simplex

method, fictitious play, and the relaxation method); the authors concluded that

the simplex method was most effective, and could even solve large-scale problems
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with dimensions of the order of 50 by 100, using the SEAC (Standards Eastern

Automatic Computer)! (Also see Hoffman’s recollections of this [48].) I later

attended a seminar by Bob Bixby, also recounting computational experience in

solving linear programming problems, and giving results for a particular problem

of size 49,944 by 177,628. The contrast was quite striking. Incidentally, Bixby was

also comparing three methods (primal and dual simplex methods and a primal-

dual interior-point method), and his conclusion was that, for a suite of large

problems, the dual simplex method using the steepest-edge pivot rule was the

fastest (see [13]). Bixby and his co-authors indicate that the figures given can be

viewed as biased against the interior-point (barrier) code, but state: “What can

one say in general about the best way to solve large models? Which algorithm

is best? If this question had been asked in 1998, our response would have been

that barrier was clearly best for large models. If that question were asked now,

our response would be that there is no clear, best algorithm. Each of primal,

dual, and barrier is superior in a significant number of important instances.”

2. Preliminaries

We consider a primal-dual pair of linear programming problems:

(P) minimize cT x subject to Ax = b, x ≥ 0,

(D) maximize bT y subject to AT y ≤ c,

where c ∈ Rn, A ∈ Rm×n and b ∈ Rm are given data, and x ∈ Rn and y ∈ Rm

are the decision vectors. For simplicity of argument, we assume that the matrix
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A has full row rank m and that both problems have feasible solutions. Then

the feasible region of (P) is the intersection of a d := n − m dimensional affine

subspace with the nonnegative orthant in Rn, while the feasible region of (D)

is the intersection of n halfspaces in Rm. Both are polyhedra with vertices, by

virtue of our assumption on A. Some of our arguments are most easily expressed

in one formulation or the other, but it is easy to switch between them: the d-

dimensional affine subspace can be parametrized by d variables, and then the

feasible region of (P) is the intersection of n halfspaces in Rd; and the dual slack

vector s := c−AT y lies in an m-dimensional affine subspace and is also required

to be nonnegative.

Both of these viewpoints consider the geometry of the set of feasible solutions,

but another perspective, the column geometry of Dantzig [29], pp. 160 ff., is

also very valuable: indeed, without this perspective, the simplex method might

have been still-born (see [30]). Here we consider the convex cone C spanned by

the vectors (aj ; cj) in Rm+1, where aj is the jth column of A and cj the jth

component of c. If the objective function is not constant on the feasible region,

this cone will have dimension m + 1. We seek the “lowest” point (in terms of its

last component) that lies in the intersection of this cone and the “vertical” line

{(b; ζ) : ζ ∈ R}.

Different solution strategies for linear programming arise from different views

of these geometries. Since we are optimizing a linear function over a polyhedron

with vertices, an optimal solution (if it exists) will occur at a vertex; it is therefore

natural to consider only the vertices and the adjacency between them given by
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the edges of the polyhedron. This is the viewpoint of the simplex method, and

it relies on considering the combinatorial structure of the faces of polyhedra.

In terms of the column geometry, we consider the set of simplicial subcones of

dimension (m+1) of the cone C described above that intersect the vertical line,

with two cones adjacent if they share an m-face. This simplex interpretation is

described in [27], in [49], and in more detail in [29].

Other methods instead view the feasible region as a convex set, which can be

approximated by simpler convex sets with smooth boundaries over which linear

optimization is trivial. Then the focus is on obtaining “good” approximations

to the feasible polyhedron by suitable simpler sets.

3. The simplex method

For definiteness we consider the primal simplex method, which moves from vertex

to vertex of the primal feasible region until it reaches an optimal solution (or

gets an indication of unboundedness). Each vertex corresponds to a basic feasible

solution and hence to a choice of m basic variables from the n variables in total.

It is clear that, with hindsight, we can move from the initial vertex to the

final vertex in at most m basic exchanges, at each step replacing one of the

initial basic variables by one of the final basic variables. However, there is no

reason why the intermediate basic solutions should be feasible. Moreover, the

simplex method cannot use hindsight, and indeed uses only local information at

the current vertex. It is therefore worth emphasizing the
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Remarkable fact: the (primal) simplex method typically requires at most 2m

to 3m pivots to attain optimality.

This serendipitous property was recognized quite early (something similar is

mentioned by Hoffman et al. in [49] in 1953), and was stated in Dantzig [29],

page 160, as based on empirical experience with thousands of practical problems.

Numerical evidence can be found in Wolfe and Cutler [96] and Kuhn and Quandt

[66]. This experience was perhaps a factor in discouraging the development of

other algorithms from the late ’50s and ’60s, although some alternatives contin-

ued to be advanced. Of course, the dual simplex method of Lemke [69] was of

great importance, both for reoptimization following a change in the right-hand

sides and to solve problems from scratch (indeed the dual steepest-edge simplex

method studied and made practical by Forrest and Goldfarb [36] seems to be the

simplex method of choice today), but for our purposes here it can be viewed as

the primal simplex method applied to the dual problem. More recent evidence

for the claim comes from computational experiments carried out to demonstrate

the competitive behavior of the simplex method following the great excitement

and provocative computational results of interior-point methods. For example,

Bixby [11] gives results for an early version of CPLEX (1.0) on 90 Netlib [39]

problems. For 72, the number of total iterations was at most 3 times the row

size; for 16, the ratio was between 3 and 7; and for the remaining three, it was

10.7, 39.5 and 469.1. (The last three had “unbalanced” m and n: their m × n

sizes were 1000 x 8806, 24 x 1026, and 25 x 10,500 respectively; here m denotes

the number of general linear constraints, while the last two problems had both
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upper and lower bounds on all the variables, so that perhaps m should be taken

as 1050 and 10525, and then the ratios are under 1.2.) On a set of 8 larger

problems considered in [12], the ratios for CPLEX 2.2 (primal) were from .46 to

1.99 on three, from 4.52 to 9.02 on four, and 17.58 on the last. Note that these

problems (especially the largest) were chosen to present difficulties for linear

programming algorithms; their general favorable performance is then even more

surprising.

3.1. Diameter

One way to try to explain the success of the simplex method is to study the

diameter of a polyhedron, the largest number of edges in a shortest path joining

two of its vertices. Let ∆(d, n) denote the largest diameter of a d-dimensional

polyhedron with n facets; this represents the best-possible number of iterations

for the worst linear programming problem of these dimensions, initiated at the

worst vertex. W. M. Hirsch conjectured in 1957 that ∆(d, n) ≤ n− d (so that m

steps would be sufficient in the remarkable fact above), see Dantzig [29], pp. 160.

It is known that this bound fails for unbounded polyhedra (Klee and Walkup

[61]), and it also fails for bounded polyhedra (polytopes) if the path is required

to be monotonic with respect to the objective function [87]. The general case for

polytopes is still open.

The best bounds available are ∆(d, n) ≤ 2d−3n due to Larman [67], and

∆(d, n) ≤ n1+log d due to Kalai and Kleitman [54]. The Hirsch conjecture holds

for 0–1 polytopes (Naddef [77]) and for dual transportation polyhedra (Balinski
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[7]); and the diameters of certain combinatorial polytopes (e.g., the assignment

polytope and the asymmetric traveling salesman polytope) are just 2 (Balas and

Padberg [6], Padberg and Rao [79]).

Klee and Kleinschmidt [59] give an excellent survey on these matters, and

Kleinschmidt [62] provides an update and some algorithmic consequences.

3.2. Exponential and subexponential pivot rules

Klee and Minty [60] were the first to give an example of a class of linear pro-

gramming problems for which Dantzig’s classic most-negative-reduced-cost pivot

rule required an exponential number of pivots. Since then exponential examples

have been found for several other pivot rules, including the best-neighbor rule

which solves linear optimization over the simplex (and the original Klee-Minty

examples) in just one pivot, and the steepest-edge rule which is the basis for the

fast simplex codes of today.

It is therefore surprising that subexponential (but superpolynomial) pivot

rules have been found, by Kalai [52] and Matousek, Sharir, and Welzl [73]. These

are all (thus far) randomized, with a best bound on the expected number of

pivots of exp(K
√

d log n) for some constant K. One version is particularly easy

to describe (roughly):

• Given a vertex v, choose a facet F containing v at random.

• Apply the algorithm recursively to find the optimizing vertex w in F .

• Repeat the algorithm from w.

The analysis, and much more fascinating material, is in Kalai [53].
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3.3. Probabilistic Analysis

Instead of randomizing the pivot rule, we can ask for the expected behavior of a

deterministic rule on a random linear programming problem drawn from some

distribution. This was a topic under intense study in the late ’70s and early

’80s. Major contributions were made by Borgwardt [15,16], Smale [85], Adler

[1], Haimovich [47], Adler, Karp, and Shamir [2], Adler and Megiddo [3], and

Todd [88].

Borgwardt was the first to obtain a polynomial bound. His final estimate,

from [18], gives a bound 0(m3n1/(m−1)) for the expected total number of iter-

ations of a dimension-by-dimension simplex method for the dual problem (D).

Here, the data b, a1, ..., an, where aj denotes the jth column of A, are required

to come from a rotationally symmetric distribution, and c is the vector of ones.

Hence the origin is always feasible, and is used by the algorithm as a starting

point. The generated problems are always feasible and have optimal solutions

with high probability if n � m. Some results have also been obtained for a

related parametric method where the cj ’s are also random and can be negative

(Borgwardt [17]).

In contrast, Adler and Megiddo [3], Adler, Karp, and Shamir [2], and Todd

[88] deal with the so-called sign-invariant model, and obtain a bound of 0(min{d2, m2})

on the expected total number of iterations to show infeasibility, show unbound-

edness, or attain optimality for a lexicographic parametric method. One (severe)

disadvantage of this probabilistic model is that problems are either infeasible or

unbounded with probability approaching 1 as n tends to ∞; however, in the case
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that n = 2m it is possible to derive a bound of 0(m
5

2 ) expected total iterations

with the expectation conditioned on the problem’s having an optimal solution.

For a survey of these and related results, see the 0th chapter of Borgwardt’s

book [16] or the last section of [18]. There is also a discussion of these issues in

[90].

3.4. Big faces, little faces, long edges

To conclude this section we describe some results that try to give some intuition

as to why the simplex method works so well.

First, there may be a few “big” faces on which most of the action takes place.

Kuhn [65] did some experiments in 1953 in which he “shot” ten random bullets

from the centroid of the asymmetric travelling salesman polytope on 5 cities,

finding which facet each penetrated. Each shot led to a 21 x 25 LP problem which

was (just) within the capability of the SEAC, and each went through a trivial

(nonnegativity) facet. In 1991, he repeated the experiment on a larger scale. Of

over 150,000 shots, 80% went through these trivial facets, which numbered 20

out of the 390 facets in all.

Of course, polytopes with a relatively small number of vertices can have a

large number of facets. The symmetric travelling salesman polytope on 7 cities

has 360 vertices and 3,437 facets: for 8 cities, the figures are 2,520 vertices

and 194,187 facets (Christof et al. [25]). How many of these are “significant”?

Goemans [41] showed that several classes of facets for the graphical travelling

salesman problem had a very small effect on the optimal value when their in-
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equalities were added to an LP relaxation. We can infer that perhaps many of

these facets are “small.”

By polarity, these results have implications for the vertices of polytopes with

a relatively small number of facets (i.e., the feasible region of LP problems).

There may be many vertices: the d-cube has 2d facets and 2d vertices, and a

polytope with n = 2d can have as many as Ω(d
d

2 ) vertices. But many of these

vertices may be optimal for a very small set of objective functions, and may be

relevant for a very small set of simplex algorithms.

Lastly, let us briefly consider long edges. It has been known for a long time

that in dimension d ≥ 4 there are neighborly polytopes (every pair of vertices is

joined by an edge) with arbitrarily many vertices [46,100]. Clearly such polytopes

are not simple (each vertex has degree much larger than the dimension) unless

they are simplices, but at least there is some basis representation of the initial

vertex such that a single pivot reaches the optimal vertex. As mentioned above,

there are classes of polyhedra arising in practice whose diameters are two. To

complement these results I ran a very simple experiment to suggest that many

polyhedra had “long edges” going from one side of the polyhedron to the other.

For d = 3, 4, ..., 11, and n = 2d and 2d+1, I generated 100 polytopes as the

convex hull of n d-vectors. For the first type, each component of each vector

was independently drawn from the standard normal distribution. For the second

type, the resulting vectors were each scaled independently to have length the

reciprocal of a number drawn uniformly at random from [0,1]. For the first type

of polytope, at least half of the vectors were in fact vertices. I took the two
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maximally distant vertices and checked whether they were joined by an edge:

this was true in between 3% and 49% of the cases, depending on the dimension

d. For the second type, only a few of the vectors were vertices (only an average

of 46 to 48 for the problems of dimension 10), but from 67% to 100% of the

polytopes (and from 99% to 100% for those with d ≥ 7) had their maximally-

distant vertices joined by an edge.

4. The ellipsoid method

The ellipsoid method was originally developed by Yudin and Nemirovski [99]

and Shor [84] for convex nonlinear programming, but it become famous when

Khachiyan [57,58] used it to obtain a polynomial-time algorithm for linear pro-

gramming. This was a major theoretical advance, but the popular press mis-

interpreted it in a rather ludicrous way (with headlines like “Soviet Answer to

‘Travelling Salesmen’ ”; see Lawler’s article [68]); later headlines retreated from

their earlier excesses by invoking cold-war suspicions (as in the New York Times’s

“A Russian’s Solution in Math Questioned,” 21 March 1980, p. A13).

For a problem with n inequalities and integral data with total bit size L,

the method generates an approximate solution from which an exact solution can

easily be obtained in 0(n2L) iterations, requiring 0(n4L) arithmetic operations

on numbers with 0(L) digits. (These bounds appear in Khachiyan [58]; his earlier

extended abstract [57] gave a bound of 0(n5L) arithmetic operations on numbers

with 0(nL) digits.) This gives a polynomial bound, and thus Khachiyan was the

first to show that linear programming was in the class P of polynomial-time
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solvable problems. Nevertheless, the performance in practice was typically very

close to its worst-case bound, so that despite a number of refinements the method

is not competitive for linear programming; for example, see the discussion in

Bland et al. [14].

The basic idea of the ellipsoid method is well-known. At each iteration an

ellipsoid is given which contains all optimal solutions. By considering the center

of the ellipsoid, a hyperplane is constructed so that all optimal solutions lie on

one side of the hyperplane (and the center either lies strictly on the other side

(a deep cut) or on the hyperplane itself (a central cut)). Then a new ellipsoid

is found which contains all points in the old ellipsoid and on the correct side of

the hyperplane.

We will give some formulae below (as well as a new interpretation of the

process). But first, let us mention that from this geometric view it appears that

the method is quite insensitive to the number of inequalities, and seems likely to

work well when the feasible region of the linear programming problem is close

to a “disco ball” (as opposed to a “quartz crystal”) — in this way it seems

to complement the simplex method. Also, as long as a suitable hyperplane can

be found, there is no need for the problem to be of linear programming type.

Hence it can be used for convex programming, and is also highly useful for

theoretically analyzing combinatorial optimization problems via the polyhedral

combinatorics paradigm. This leads to the famous “separation = optimization”

meta-theorem: if you can separate efficiently, you can optimize efficiently (over a

suitable collection of convex bodies). We will not pursue this, as it falls outside
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the scope of this article, but instead refer the reader to the excellent monograph

by Grötschel, Lovász, and Schrijver [45].

4.1. Update formulae

Now we briefly discuss the mechanics of an iteration, in order to describe the

new interpretation. For simplicity, we assume that we are just trying to find a

feasible point for (D), i.e., a point in Y := {y : AT y ≤ c}. We write the individual

constraints as aT
j y ≤ cj , j = 1, 2, ..., n, and assume that Y ⊆ E0, where

E0 := {y : ‖y‖2 ≤ R}. (1)

Any ellipsoid in <m can be written in the form

E = E(ȳ, B) = {y : (y − ȳ)T B−1(y − ȳ) ≤ 1}, (2)

where ȳ is its center and B is a symmetric positive definite matrix of order m.

Indeed, E0 = E(y0, B0), with y0 = 0 and B0 = R2I . Given Ek = E(yk, Bk),

Ek+1 = E(yk+1, Bk+1) can be constructed as follows:

Find j so that aT
j yk > cj (if none, STOP: yk ∈ Y ). Set

yk+1 := yk − τBkaj

(aT
j Bkaj)

1

2

, (3)

Bk+1 = δ

(

Bk − σ
Bkaja

T
j Bk

aT
j Bkaj

)

, (4)

where τ = 1/(m + 1), δ = m2/(m2 − 1), and σ = 2/(m + 1). This gives Ek+1

as the ellipsoid of minimum volume that contains the semi-ellipsoid {y ∈ Ek :
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aT
j y ≤ aT

j yk}; if the minimum-volume ellipsoid containing {y ∈ Ek : aT
j y ≤ cj}

is desired, the formulae are similar with different choices for τ, δ, and σ (deep

cuts). It can be shown that vol (Ek+1)/vol(Ek) ≤ exp(−1/[2m + 2]), and this

systematic volume reduction leads to the complexity bound: see, e.g., Bland et

al. [14].

4.2. An alternate representation

There is another way to represent the ellipsoid that leads to a surprising parallel

with interior-point methods (see also [89]). Since we assume that Y ⊆ E0, we

can find lower bounds on aT
j y for y ∈ Y for each j. So suppose Y = {y : ` ≤

AT y ≤ c}. Now let D be a nonnegative diagonal matrix. Then since AT y− ` ≥ 0

and AT y − c ≤ 0 for all y ∈ Y,

Y ⊆ Ē(D, `) := {y : (AT y − `)T D(AT y − c) ≤ 0}, (5)

and the set on the right-hand side is an ellipsoid as long as ADAT is positive

definite. The advantage of this representation is that it gives a short certificate

that E = Ē(D, `) contains Y . (The disadvantage is that it can only be used with

linear programming and not with convex or combinatorial optimization where

the constraints are not pre-specified.) From this viewpoint, the ellipsoid method

generates a sequence Ek = Ē(Dk, `k) of ellipsoids containing Y . The center of

Ek is yk, the solution of

ADkAT y = ADk(`k + c)/2, (6)
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or equivalently of the weighted least-squares problem

D
1

2

k AT y ≈ D
1

2

k (`k + c)/2. (7)

At the kth iteration, the index j of a violated constraint is found, the jth

component of the vector `k is possibly updated, and the jth diagonal entry of the

matrix Dk is increased. Since only one entry of Dk is changed, yk can be updated

cheaply (the update is exactly that given in (3)), as can Bk = (ADkAT )−1.

Details can be found in Burrell and Todd [22]. That paper also shows how `k

is updated (each component is guaranteed to be a suitable lower bound by an

application of the Farkas lemma).

Besides showing that the quadratic inequality defining each ellipsoid can be

viewed as a weighted sum of quadratic constraints that ensure that each aT
j y lies

in an appropriate range, this representation gives a clue to the slow convergence

of the ellipsoid method. Suppose the lower-bound vector ` remains unchanged.

Then the volume of Ē(D, `) is a function of just the diagonal entries of D,

and the ellipsoid method can be thought of as a coordinate descent method to

minimize this nonlinear function. It is known that coordinate descent methods

can be very slow, and the ellipsoid method is no exception, although dramatic

volume reductions are possible at some iterations. (See also Liao and Todd [71].)

5. Interior-point methods

The idea of moving through the interior of the feasible region goes back at

least to Frisch in 1955 [37], who proposed using a logarithmic barrier function.



20 Michael J. Todd

Barrier and penalty methods for nonlinear programming were studied in depth

in the 1960s, leading to the classic text of Fiacco and McCormick [35], but came

into disfavor as their numerical drawbacks became more recognized. The modern

reincarnation of these methods is due to Karmarkar [56] in 1984, who established

the polynomial-time boundedness of the projective method and also obtained

some very competitive times (comparing with Fortran implementations of the

simplex method) on a widely-used set of test problems. It turns out that the

interior-point method implemented by Karmarkar (the affine-scaling method),

besides being discovered simultaneously by a number of researchers in the mid

1980s, had in fact been proposed in 1967 and analyzed in 1974 by I. I. Dikin, a

student of Kantorovich [33,34].

Karmarkar’s results and claims led to a furor of activity, though the popular

press was much more accurate this time (viz. the front-page New York Times ar-

ticle “Breakthrough in Problem Solving” of Monday, November 19, 1984, written

by James Gleick of chaos fame). The complexity bound was only slightly better

than that of the ellipsoid method (0(n3.5L) arithmetic operations on a problem

with n inequalities and integer data of total bit length L, although in practice

the behavior is much better). However, the new ideas employed were very in-

triguing: at each iteration a projective transformation was used to bring the

current iterate into the center of the feasible region, and a nonlinear potential

function, invariant under such transformations, was used to measure progress.

This potential function is close to Frisch’s logarithmic barrier, and Gill, Murray,

Saunders and Wright [40] showed that Karmarkar’s search direction in fact is
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equivalent to that arising from a barrier function method with a suitable choice

of barrier parameter (sometimes negative!) at each iteration.

The idea of making a projective transformation is to bring the current it-

erate to a point far from the constraints so that a steepest descent step (on

the transformed objective function or the potential function) will give good de-

crease. However, projective transformations are not used much in interior-point

methods nowadays. The key concept of making a transformation or changing

the metric so the current iterate is in some sense far from the boundary re-

mains highly valuable. I will discuss briefly dual and primal-dual path-following

methods, and then make some remarks about potential-reduction algorithms.

For more details, I recommend Gonzaga [44] and Wright [97] for path-following

methods and Anstreicher [5] and Todd [91] for potential-reduction algorithms.

5.1. Dual path-following

Suppose we have a current strictly feasible solution ȳ to the dual problem

max{bT y : AT y ≤ c}; strictly feasible means that the dual slack vector s̄ :=

c − AT ȳ is positive in each component (written s̄ > 0). The largest ellipsoid

around s̄ that is contained in the nonnegative orthant is Es := {s ∈ <n :

(s − s̄)T S̄−2(s − s̄) ≤ 1}, where S̄ is the diagonal matrix with the components

of s̄ on its diagonal. Thus the set of feasible dual solutions whose slack vectors

lie in Es is

E := {y ∈ <m : (y − ȳ)T AS̄−2AT (y − ȳ) ≤ 1},
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and E ⊆ Y := {y ∈ <m : AT y ≤ c}. Note that here we have a point ȳ that lies

in Y , and E is inscribed in Y rather than circumscribing it, but that otherwise

the ellipsoid E is remarkably similar to Ē(D, `) in (5).

In addition to the fact that E ⊆ Y , the matrix AS̄−2AT appearing therein

defines a highly useful local metric at ȳ. Note that this matrix appears as the

Hessian of the logarithmic barrier function

f(y) := −
∑

j

ln(c − AT y)j (8)

evaluated at ȳ. This is a special case of a very general theory of self-concordant

barrier functions developed by Nesterov and Nemirovski: see their monograph

[78]. The knowledge of such a barrier function and its derivatives for a convex set

is a sufficient condition for devising theoretically efficient algorithms for optimiz-

ing a linear function over the set. For any such barrier, the ball of radius 1 at any

point defined by the local norm given by the Hessian of the barrier function is

always contained in the set. At the analytic center, the point that minimizes the

barrier (assuming it exists), a corresponding ball of radius a constant times the

so-called complexity value of the barrier (n for the function f above) contains

the convex set. Hence the metric defined by the local norm gives a very useful

approximation to the local geometry of the set. For our interests, this gives a

differential geometry view of a polyhedron as compared to the combinatorial

geometry viewpoint of the simplex method.

Let us now return to our strictly feasible point ȳ and the metric defined by

the matrix AS̄−2AT . With respect to this metric, the steepest ascent direction
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for the objective function is

dAFF := (AS̄−2AT )−1b (9)

(the affine-scaling direction), while the steepest descent direction for the loga-

rithmic barrier function is

dCEN := −(AS̄−2AT )−1As̄−1 (10)

(the centering direction), where s̄−1 denotes the vector whose components are

the reciprocals of those of s̄. Dual interior-point methods generally choose as

search direction a linear combination of these two directions.

Strictly feasible points ȳ where these two directions are diametrically opposed

(so that µAs̄−1 = b for some positive µ) lie on the so-called dual central path.

Such points maximize the dual penalized function bT y − µf(y) over strictly

feasible y. Note that then x̄ := µs̄−1 is a strictly feasible point for (P ), and it is

not hard to see that x̄ minimizes the primal penalized function cT x−µ
∑

j ln xj

over strictly feasible x; x̄ is then a point on the primal central path. Together x̄,

ȳ, and s̄ solve

AT y + s = c, s > 0,

Ax = b, x > 0,

x ◦ s = µe,

(11)

where x ◦ s is the vector of component-wise products of x and s and e is the

n-vector of ones.

Note that points satisfying (11) are strictly feasible, with duality gap

cT x − bT y = xT s = nµ.
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So as µ tends to zero from above, points on the central paths converge to optimal

solutions (this requires additional work to show that limits exist). It thus makes

sense to approximately follow the central path(s) as µ decreases.

We say that ȳ is close to the dual central path if for some µ > 0, the Newton

step for the penalized function, µ−1dAFF + dCEN , is below some tolerance δ in

the local norm, i.e.,

[(b − µAs̄−1)T [AS̄−2AT ]−1(b − µAs̄−1)]
1

2 ≤ δµ.

We then try to find such a point for a smaller value of µ, say σµ for 0 < σ < 1,

by taking a Newton step. It turns out that we can choose σ as 1 − O(1/
√

n)

and guarantee that we stay close to the central path. Iterating this procedure

gives an O(
√

n ln(1/ε))-iteration algorithm to obtain an ε-optimal solution. Such

methods were first developed by Renegar [80].

Note that every iteration requires the solution of a linear system with coeffi-

cient matrix AS̄−2AT . This compares nicely with the ellipsoid method (see (6))

except that now every diagonal entry of S̄−2 changes, whereas only one entry of

Dk changed before. To compensate, far fewer iterations are typically necessary

in practical interior-point methods.

5.2. Primal-dual path-following

We have gone into some detail concerning dual path-following methods, in order

to highlight their motivation from a special local metric defined on the interior

of the dual feasible region with very attractive properties. We shall be much

more brief here.
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Of course, we can define primal path-following methods by following the

arguments of the previous subsection: these require the solution of a linear system

with coefficient matrix AX̄2AT at each iteration, where X̄ is the diagonal matrix

containing the components of the current iterate x̄.

Primal-dual methods are usually motivated by considering the system of

nonlinear equalities (11). Given a strictly feasible triple (x̄, ȳ, s̄) that is close to

the central path (i.e., the Euclidean norm of µ−1x ◦ s − e is small), we move in

the direction of the Newton step for (11) with µ replaced by σµ. These methods

are admirably discussed and analyzed in Gonzaga [44] and Wright [97].

There is a another way we can view these methods. If we wanted to simulta-

neously increase the dual penalized function and decrease the primal penalized

function, we could solve two linear systems with coefficient matrices AS̄−2AT

and AX̄2AT . These can be viewed as Newton steps or alternatively as steepest

descent steps with respect to the local norms. To avoid the work of solving two

linear systems, we can use steepest descent with respect to the local norm at a

point intermediate between x̄ and s̄−1, their geometric mean x̄
1

2 s̄−
1

2 (interpreted

component-wise). This leads to requiring the solution of just a single linear sys-

tem to obtain the steepest descent directions for both penalized functions, and

the resulting search directions are exactly those found by the primal-dual New-

ton approach of the previous paragraph.
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5.3. Potential-reduction methods

Karmarkar used the primal function

φP (x) := n ln(cT x − z∗) −
∑

j

ln xj ,

where z∗ is the known optimal value of (P ), to monitor progress of his projective

algorithm [56], and showed that this function could be decreased by a constant

at each iteration. Later research removed the assumption that the optimal value

is known, but it seems better to use instead the primal-dual potential function

ΦPD(x, y) := (n + ρ) ln(cT x − bT y) −
∑

j

ln xj −
∑

j

ln(c − AT y)j ,

defined for strictly feasible pairs, where ρ is a nonnegative parameter. The latter

function was introduced independently by Tanabe [86] and by Todd and Ye [92];

[92] (in a restricted setting) and then Ye [98] and Kojima, Mizuno, and Yoshise

[63] proved that, as long as ρ ≥ √
n, it can be reduced by a constant at each

iteration.

In both primal and primal-dual guises, this constant reduction suffices to

obtain polynomial-time bounds on the number of iterations required to obtain

ε-optimal solutions, of O(n ln( 1
ε )) and O(ρ ln( 1

ε )) respectively. Hence the primal-

dual method can attain the same bound as path-following methods by choosing

ρ = θ(
√

n). More significantly, these bounds can be achieved without any restric-

tions on the iterates remaining close to the central path: as long as a sufficient

reduction in the potential function is maintained, the iteration bound stays valid.

The symmetric primal-dual search directions used by Kojima et al., while

motivated by scaled steepest descent for the potential function, turn out to
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coincide with those arising from the path-following approach with σ = n/(n+ρ).

Thus choosing ρ = θ(
√

n) corresponds to choosing σ = 1 − θ(1/
√

n).

Modern implementation of interior-point methods are usually called path-

following variants, although there is rarely an attempt to maintain the iterates

in any neighborhood of the central path. The parameter σ is typically chosen

adaptively, often very close to zero. Apart from the adaptive choice of σ, these

methods could just as easily be viewed as potential-reduction methods which do

not check that the potential function is actually reduced.

As a final remark on potential-reduction methods, note that, for the more

general area of semidefinite programming, Benson et al. [9,10] have shown that

dual potential-reduction methods can exploit the structure of certain classes of

problems more effectively than path-following methods.

5.4. Exponential gaps

To conclude this section, I want to point out an interesting parallel between

worst-case and typical behaviors of the simplex method and interior-point meth-

ods. As I have indicated, the best bound we have on the number of steps of the

(deterministic) simplex method grows exponentially with the dimension, while

its usual behavior is linear. Moreover, there are examples showing that the gap

is real: for many simplex pivot rules, there are examples where the number of

pivots required is exponential.

For interior-point methods, the best bounds are polynomial in the dimension,

growing with n or
√

n. Due to the cost of each iteration, such growth would be
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disastrous in practical cases, and thus it is fortunate that the observed growth is

much slower — perhaps logarithmic in the dimension (see Lustig et al. [72]). This

is again an exponential gap! The question arises as to whether it is “real,” or

just an artefact of our inability to prove a better bound. The answer is that the

gap is indeed real: for many practical interior-point methods, there are examples

showing that the number of iterations grows at least as fast as Ω(n
1

3 ); see Todd

and Ye [93].

6. Other methods

Here we collect some miscellaneous methods that have been proposed for linear

programming, and provide some references. Despite some encouraging results

quoted in some of these papers (often on small random instances), none is re-

garded as competitive with simplex or interior-point methods (but we should

note the excellent results of De Leone and Mangasarian [32] using an SOR (suc-

cessive over-relaxation) method on very large sparse random problems in 1987).

6.1. Gradient-like methods

These try to follow projected gradient directions from one feasible point to an-

other. Since this seems like such a natural strategy, and apparently so obviously

superior to edge-following methods, such methods have been proposed numerous

times in slightly varying guises. Indeed, Brown and Koopmans discussed such

a method [20] in the same volume that contained Dantzig’s initial publication

[27]. Later references include Zoutendijk’s method of feasible directions ([101],
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Chapter 9), Rosen’s projected gradient method [82], the constrained gradient

method of J. K. Thurber and Lemke [70], and Chang and Murty’s steepest de-

scent gravitational method [23].

6.2. Fictitious play

An iterative method to find optimal strategies and the value of 2-person zero-

sum games was devised by Brown [19] and shown to be convergent by Robinson

[81]. This method is iterative, and at each stage selects a strategy for each player

that is a best response to the empirical mixed strategy exhibited by the previous

choices of his or her opponent. Convergence is slow, but the method is very simple

to implement. Since linear programming problems can be reduced to the solution

of (symmetric) games, this provides a method for general LP problems also.

The idea behind the method can also be based on differential equations,

and Brown and von Neumann prove the existence of the value and of optimal

strategies based on a system of differential equations in [21]. The proof is semi-

constructive, in that no particular technique for solving the resulting initial

value problem is mentioned. Apparently the paper is based on results obtained

independently by the two authors. This similarity in the approaches is perhaps

the reason that Dantzig states in [30] that Hoffman et al. [49] compared a scheme

of von Neumann to the simplex method and relaxation methods, whereas their

comparison is of Brown’s fictitious play method.

A much-cited note of von Neumann, in which he proposed another method for

linear programming soon after Dantzig visited him in 1947, eventually appeared



30 Michael J. Todd

in his collected works [95]. Again, a system of differential equations is proposed,

but the details of a specific algorithm are not given. The approaches of Brown

and of von Neumann are very similar, but while Brown adjusts the weight on just

one strategy (and changes the others proportionately), von Neumann adjusts the

weights on many of the strategies based on a residual vector.

Finally, a more refined analysis of a related method appears in von Neumann

[94]. Again the emphasis is on solving a zero-sum game, but here an explicit

bound on the computational complexity (the first in mathematical program-

ming?) is given: to approximate the value of an m× n matrix game to within a

multiple ε of the range of payoffs requires at most m+n
ε2 iterations, each requiring

about 4mn flops. If only the 1
ε2 factor could be replaced by ln( 1

ε ), this would

yield a polynomial algorithm!

6.3. Relaxation methods

The classical relaxation method of Agmon [4] and Motzkin and Schoenberg [76],

closely related to iterative methods for linear equations, was of great interest in

the 1950s, partly because each iteration requires minimal computation, merely

some matrix-vector multiplications. To find a point in Y := {y : AT y ≤ c}, at

every iteration the current point is projected onto the hyperplane defined by

a violated constraint (actually, a stepsize λ ∈ (0, 2] is usually included, where

λ = 1 (respectively, 2) corresponds to projection onto (respectively, reflection in)

the hyperplane). This method is closely related to the classical Gauss-Seidel and

Jacobi iterative methods for “solving” the system AT Av = c of linear equations.
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(Here, at each iteration, one component of v is changed to satisfy the corre-

sponding equation, again usually with a relaxation parameter to speed conver-

gence.) However, it did not perform well in the computational experiments of

Hoffman et al. [49] due to its very slow convergence. The appearance of the el-

lipsoid method (which can be viewed as a variable-metric form of the relaxation

method) prompted some further study: see Goffin [42,43].

Much more successful were variants of the successive over-relaxation (SOR)

technique applied to either a linear complementarity form of the problem or

to an augmented Lagrangian dual problem. Indeed, De Leone and Mangasar-

ian [32] report very encouraging results for this method applied to random

sparse linear programming problems of dimensions from 25, 000× 100, 000 up to

125, 000× 500, 000. Once again, each iteration requires only some matrix-vector

multiplications with the original sparse coefficient matrix. However, choosing the

augmented Lagrangian penalty parameter presents some problems.

6.4. Methods based on ideas of computational geometry

Here we collect a number of methods motivated by two concerns: the desire

for a strongly polynomial linear programming algorithm (both the ellipsoid and

interior-point methods have iteration bounds depending on the bit length of

the data, not just its dimension), and the interest in solving low-dimensional

problems with a large number of constraints.

Megiddo was the first to obtain a method that is linear in n for fixed di-

mension d [74]. However, the dependence on d was doubly exponential. Clark-
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son [26] devised a randomized algorithm needing only O(d2n + d4√n ln n +

[O(d)]d/2+O(1) ln n) arithmetic operations. One key idea of Clarkson was to take

a sample of the constraints, solve the resulting smaller problem (by another algo-

rithm), and find the set of constraints violated by its solution. These constraints

are then either forced into the next sample, or given increased probability, and

the process is continued.

Gärtner and Welzl [38] describe an O(d2n + exp(K
√

d ln d))-operation algo-

rithm that combines two methods of Clarkson with the subexponential pivoting

methods of Kalai [52] and Matousek et al. [73]. This paper also gives a nice

historical review of this class of methods.

7. The future

What will we see in the next fifty, or even five, years? Linear programming has

a history of reinventing itself. At present there is a rough computational parity

between simplex and interior-point methods: variants of the simplex method

are usually better for small problems, hold a significant edge in post-optimal

analysis, and are more effective for some large-scale problems, while interior-

point methods hold sway for other large problems. Will our complacency in the

status quo be shattered by another computationally effective class of methods?

I wouldn’t bet on it in the next five years, but over the next ten, I’d take even

odds.

On the theoretical side we still have the big questions: does the bounded

Hirsch conjecture hold? Is there a polynomial pivot rule for the simplex method?
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For interior-point methods, can we give a theoretical explanation for the differ-

ence between worst-case bounds and observed practical performance? Can we

devise an algorithm whose iteration complexity is better than O(
√

n ln(1/ε)) to

attain ε-optimality? Can we find a theoretically or practically efficient way to

reoptimize?

Let us hope that the next fifty years brings as much excitement as the last!
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