OR 631: Mathematical Programming II. Spring 2014.
Homework Set 4. Due: Tuesday April 29.

1. Suppose we wish to solve the problem

$$
\min f(x), \quad h_{i}(x) \leq 0, i=1, \ldots, m, \quad x \in B(0, R)
$$

and suppose that f is convex and has range at most 1 on $B(0, R)$, that each h_{i} is convex and is at most 1 on $B(0, R)$, and that the problem has an optimal solution x_{*}.

Consider the following algorithm, given $\epsilon>0$. Start with $x_{0}=0$. At iteration k, if $\left\|x_{k}\right\|>R$, choose $v_{k}=x_{k}$. If for some $i, h_{i}\left(x_{k}\right)>\epsilon$, choose any such i and set v_{k} to be a subgradient of h_{i} at x_{k}. If $h_{i}\left(x_{k}\right) \leq \epsilon$ for all i, set v_{k} to be a subgradient of f at x_{k}. If $v_{k}=0$, stop; otherwise set $x_{k+1}=x_{k}-\frac{\epsilon R}{\left\|v_{k}\right\|} v_{k}$.

Show that within ϵ^{-2} iterations, the method will give an x_{k} with $h_{i}\left(x_{k}\right) \leq \epsilon$ for all i and $f\left(x_{k}\right) \leq f\left(x_{*}\right)+\epsilon$.
2. Assume that f is a twice continuously differentiable convex function on \Re^{n} and that for every x, the eigenvalues of $\nabla^{2} f(x)$ are bounded between $\ell>0$ and $L<\infty$. Show that, for every $x, y \in \Re^{n}$,

$$
f(x)+\nabla f(x)^{T}(y-x)+\frac{\ell}{2}\|y-x\|^{2} \leq f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{L}{2}\|y-x\|^{2}
$$

3. a) Suppose that g is a convex function on \Re^{n}. Show that, for every $z \in \Re^{n}$ and $L>0$, the problem

$$
(P(z)) \quad \min g(x)+\frac{L}{2}\|x-z\|^{2}
$$

has an optimal solution.
b) Assume that, for any $z \in \Re^{n}$, you can solve $(P(z))$ efficiently. Show how you can solve the problem

$$
\min f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(x-x_{k}\right)+\frac{L}{2}\left\|x-x_{k}\right\|^{2}+g(x)
$$

efficiently. What is the solution if $g \equiv 0$?
c) Find the solution to $(P(z))$ explicitly if $g(x):=\|x\|_{1}$.

