OR 631: Mathematical Programming II. Spring 2014.
Homework 3 solutions.

1. This question and the next are concerned with central cuts. Suppose we have an ellipsoid $E:=E(B, y)$, and we add two cuts symmetrically placed with respect to the center y. Consider

$$
\bar{E}_{\alpha}:=\left\{x \in E: a^{T} y-\alpha \sqrt{a^{T} B a} \leq a^{T} x \leq a^{T} y+\alpha \sqrt{a^{T} B a}\right\}
$$

for some nonzero $a \in \Re^{n}$ and some $0 \leq \alpha \leq 1$.
a) Write the condition for x to lie in \bar{E}_{α} as two quadratics.
b) By combining these two quadratics suitably, find an ellipsoid $E\left(B_{+}, y_{+}\right)$that contains \bar{E}_{α}, depending on a scalar parameter σ.
c) Find the value of σ that minimizes the volume of the resulting ellipsoid as a function of α. Show that for $\alpha=n^{-1 / 2}$ this ellipsoid is just E, while for α smaller than this it gives an ellipsoid of smaller volume than E. (In fact, this is the minimum-volume ellipsoid among all those containing \bar{E}_{α}, not just those obtained this way.)
a) For simplicity, define \bar{a} as $a /\left(a^{T} B a\right)^{1 / 2}$, so that the two-sided constraint can be written as $-\alpha \leq a^{T}(x-y) \leq \alpha$. Then the two quadratic inequalities are

$$
\begin{aligned}
(x-y)^{T} B^{-1}(x-y) & \leq 1 \\
(x-y)^{T} \bar{a} \bar{a}^{T}(x-y) & \leq \alpha^{2}
\end{aligned}
$$

b) Multiply the first inequality by $1-\sigma$ and the second by σ for $0 \leq \sigma \leq 1$ and add, to get

$$
(x-y)^{T}\left((1-\sigma) B^{-1}+\sigma \bar{a} \bar{a}^{T}\right)(x-y) \leq 1-\sigma+\sigma \alpha^{2},
$$

or, using the Sherman-Morrison-Woodbury formula, $(x-y)^{T} B_{+}^{-1}(x-y) \leq 1$, where

$$
B_{+}:=\left(\frac{1-\sigma+\sigma \alpha^{2}}{1-\sigma}\right)\left(B-\sigma \bar{a} \bar{a}^{T}\right)
$$

(This assumes $\sigma<1$, since otherwise, the quadratic inequality defines a slab of infinite volume for $n>1$. For $n=1$, the problem is trivial and the optimal σ is 1 . We assume $n>1$ in what follows.) With $\sigma<1, B_{+}$is positive definite, and this defines the ellipsoid $E\left(B_{+}, y\right)$ (note that y is unchanged). Since its defining inequality is derived from those for $\bar{E}_{\alpha}, E\left(B_{+}, y\right)$ contains it.
c) The volume of this ellipsoid is the square root of the determinant of B_{+}times that of the unit ball, so we want to minimize the determinant of B_{+}, which is easily seen to be $f(\sigma)$ times that of B, with

$$
f(\sigma):=\frac{\left(1-\sigma+\sigma \alpha^{2}\right)^{n}}{(1-\sigma)^{n-1}}
$$

It is easy to check that the derivative of f, for all $0 \leq \sigma<1$, is a positive multiple of

$$
g(\sigma):=-n\left(1-\alpha^{2}\right)(1-\sigma)+(n-1)\left(1-\sigma+\sigma \alpha^{2}\right)
$$

Note that g has a unique root at $\sigma^{*}=\left(1-n \alpha^{2}\right) /(1-\alpha)$, and is negative to the left and positive to the right. Hence for $0 \leq \alpha \leq n^{-1 / 2}, f$ is minimized at σ^{*}, while if $\alpha>n^{-1 / 2}$, $\sigma^{*}<0$ and f is increasing for σ between 0 and 1 , and so is minimized by $\sigma=0$ (and so the minimum-volume ellipsoid of this form is the original ellipsoid E). For $0 \leq \alpha<n^{-1 / 2}, f$ is
decreasing from 0 to σ^{*}, so the resulting ellipsoid has volume strictly smaller than that of E.
2. Consider a centrally symmetric polytope, a bounded polyhedron of the form $P:=$ $\left\{x \in \Re^{n}:-b \leq A x \leq b\right\}$ for some A, b.
a) Show that there is a minimum-volume ellipsoid $E=E(B, y)$ containing P.
b) Show that any such must have $y=0$, i.e., it must be centrally symmetric also.
c) Show that, if $E(B, 0)$ is a (the) minimum-volume ellipsoid containing P, then $\left\{n^{-1 / 2} x\right.$: $x \in E(B, 0)\}$ is contained in P.
(Hence such polytopes can be rounded to a factor \sqrt{n}, not n as in the general case. In fact, this holds for any centrally symmetric convex body.)
a) If P is a convex body, i.e., has a nonempty interior, this follows from Proposition 1 of Lecture 17. If not, P lies in a lower-dimensional affine set. In fact, the affine hull of P is a lower-dimensional affine set, and P has a nonempty interior relative to this; then P can be enclosed in a minimum-volume ellipsoid in this lower-dimensional set, and hence in a degenerate ellipsoid in \Re^{n} with n-dimensional volume 0 , hence clearly minimum! Henceforth assume P is a convex body; otherwise, the following arguments can all be applied within its lower-dimensional affine hull.
b) Suppose $E(B, y)$ is a minimum-volume ellipsoid containing P, with $y \neq 0$. Then $E(B,-y)$ contains $-P=P$. So for any $x \in P,(x-y)^{T} B^{-1}(x-y) \leq 1$ and $(x+y)^{T} B^{-1}(x+$ $y) \leq 1$. Averaging, we find $x^{T} B^{-1} x \leq 1-y^{T} B^{-1} y$. Thus P is contained in $E(\lambda B, 0)$ with $\lambda:=1-y^{T} B^{-1} y<1$, an ellipsoid of strictly smaller volume. This is a contradiction.
c) Suppose not, so that there is an x in $E(B, 0)$ with $n^{-1 / 2} x \notin P$. Thus it can be separated from P, so there is an inequality $a^{T} z \leq \beta$ valid for P with $a^{T} x>n^{1 / 2} \beta$. Since $a^{T} x \leq \sqrt{a^{T} B a}, \beta=\alpha \sqrt{a^{T} B a}$ for some $\alpha<n^{-1 / 2}$. But if $a^{T} z \leq \alpha \sqrt{a^{T} B a}$ for all $z \in P$, then $a^{T} z \geq-\alpha \sqrt{a^{T} B a}$ for all $z \in P$ also, since P is centrally symmetric. So $P \subseteq \bar{E}_{\alpha}$, implying that P can be enclosed in an ellipsoid of smaller volume by Q1, a contradiction.
3. Suppose that $P:=\left\{x \in \Re^{n}: A^{T} x \leq e\right\}$ is bounded (where e is the vector of ones as usual). Assume that the function $B \rightarrow-\ln \operatorname{det} B$ is convex as a function of the entries of the symmetric matrix B.
a) Show how the problem of finding the maximum volume ellipsoid with center y contained in P can be written as an optimization problem with a finite number of constraints. (Argue that the positive semidefiniteness constraint can be eliminated.)
b) Exhibit a feasible solution to this problem.
c) Show that if the center y is restricted to be 0 , your optimization problem can be converted to one with linear constraints on B.
d) Now return to the general case, where y is a variable. Try to rewrite the optimization problem with convex constraints (you may want to consider the symmetric square root).
a) We use the ellipsoid $E(B, y)$, whose volume is proportional to $\sqrt{\operatorname{det} B}$. We want every point in the ellipsoid to satisfy each constraint $a_{j}^{T} x \leq 1$, where a_{j} is the j th column of A. This holds as long as $a_{j}^{T} y+\sqrt{a_{j}^{T} B a_{j}} \leq 1$. So we can write the problem as

$$
\begin{aligned}
& \quad \min _{B, y} \quad-\ln \operatorname{det} B \\
& \quad a_{j}^{T} y+\sqrt{a_{j}^{T} B a_{j}} \leq 1, \quad \text { for all } j, \\
& B \text { positive definite. }
\end{aligned}
$$

We can eliminate the last constraint as follows: Define the function $\operatorname{lndet}(M)$ on symmetric $n \times n$ matrices as $\ln \operatorname{det}(M)$ if M is positive definite, $-\infty$ otherwise. Then replace the objective function above by $-\operatorname{lndet}(B)$; this objective function implicitly requires B to be positive definite. Moreover, we do not have to worry about this non-real-valued function, since if $\left\{B_{k}\right\}$ is a sequence of positive definite matrices converging to a non-positive definite matrix B, then $\ln \operatorname{det}\left(B_{k}\right)$ converges to $-\infty$. It can be shown that $-\operatorname{lndet}$ is a convex function on symmetric matrices.
b) By Cauchy-Schwarz, any x with $\|x\| \leq 1 /\left\|a_{j}\right\|$ for all j lies in P, so we can take the ball of radius $\epsilon:=1 / \max \left\{\left\|a_{j}\right\|\right\}$ as E, i.e., $B=\epsilon^{2} I, y=0$ is feasible in the optimization problem above, as is easily checked.
c) If $y=0$, the constraints become $\sqrt{a_{j}^{T} B a_{j}} \leq 1$ for all j, which is equivalent to $a_{j}^{T} B a_{j} \leq 1$, which is linear in B.
d) If y is a variable, the problem above is not convex in B (think of the 1-dimensional case: B is a number, and \sqrt{B} is not convex). If we square as above, we get $a_{j}^{T} B a_{j} \leq$ $\left(1-a_{j}^{T} y\right)^{2}$, which is convex in B but now not in y. But if we use instead the symmetric square root D of B as our variable, the objective becomes $-\operatorname{lndet}\left(D^{2}\right)=-2 \operatorname{lndet}(D)$, and the constraints $a_{j}^{T} y+\sqrt{a_{j}^{T} D^{2} a_{j}}=a_{j}^{T} y+\left\|D a_{j}\right\| \leq 1$ for all j, and this is convex since $D a_{j}$ is linear in D and the norm is convex!
(A paper by Khachiyan and Todd suggests instead solving a sequence of problems with linear constraints on B and y instead of this one with nonlinear constraints.)

