
OR 631: Mathematical Programming II. Spring 2014.
Homework 3 solutions.

1. This question and the next are concerned with central cuts. Suppose we have an
ellipsoid E := E(B, y), and we add two cuts symmetrically placed with respect to the center
y. Consider

Ēα := {x ∈ E : aT y − α
√

aT Ba ≤ aT x ≤ aT y + α
√

aT Ba}

for some nonzero a ∈ <n and some 0 ≤ α ≤ 1.
a) Write the condition for x to lie in Ēα as two quadratics.
b) By combining these two quadratics suitably, find an ellipsoid E(B+, y+) that contains

Ēα, depending on a scalar parameter σ.
c) Find the value of σ that minimizes the volume of the resulting ellipsoid as a function

of α. Show that for α = n−1/2 this ellipsoid is just E, while for α smaller than this it gives
an ellipsoid of smaller volume than E. (In fact, this is the minimum-volume ellipsoid among
all those containing Ēα, not just those obtained this way.)

a) For simplicity, define ā as a/(aT Ba)1/2, so that the two-sided constraint can be
written as −α ≤ aT (x− y) ≤ α. Then the two quadratic inequalities are

(x− y)T B−1(x− y) ≤ 1,

(x− y)T āāT (x− y) ≤ α2.

b) Multiply the first inequality by 1− σ and the second by σ for 0 ≤ σ ≤ 1 and add, to
get

(x− y)T ((1− σ)B−1 + σāāT )(x− y) ≤ 1− σ + σα2,

or, using the Sherman-Morrison-Woodbury formula, (x− y)T B−1
+ (x− y) ≤ 1, where

B+ :=

(
1− σ + σα2

1− σ

)(
B − σāāT

)
.

(This assumes σ < 1, since otherwise, the quadratic inequality defines a slab of infinite
volume for n > 1. For n = 1, the problem is trivial and the optimal σ is 1. We assume
n > 1 in what follows.) With σ < 1, B+ is positive definite, and this defines the ellipsoid
E(B+, y) (note that y is unchanged). Since its defining inequality is derived from those for
Ēα, E(B+, y) contains it.

c) The volume of this ellipsoid is the square root of the determinant of B+ times that
of the unit ball, so we want to minimize the determinant of B+, which is easily seen to be
f(σ) times that of B, with

f(σ) :=
(1− σ + σα2)n

(1− σ)n−1
.

It is easy to check that the derivative of f , for all 0 ≤ σ < 1, is a positive multiple of

g(σ) := −n(1− α2)(1− σ) + (n− 1)(1− σ + σα2).

Note that g has a unique root at σ∗ = (1−nα2)/(1−α), and is negative to the left and
positive to the right. Hence for 0 ≤ α ≤ n−1/2, f is minimized at σ∗, while if α > n−1/2,
σ∗ < 0 and f is increasing for σ between 0 and 1, and so is minimized by σ = 0 (and so the
minimum-volume ellipsoid of this form is the original ellipsoid E). For 0 ≤ α < n−1/2, f is
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decreasing from 0 to σ∗, so the resulting ellipsoid has volume strictly smaller than that of
E.

2. Consider a centrally symmetric polytope, a bounded polyhedron of the form P :=
{x ∈ <n : −b ≤ Ax ≤ b} for some A, b.

a) Show that there is a minimum-volume ellipsoid E = E(B, y) containing P .
b) Show that any such must have y = 0, i.e., it must be centrally symmetric also.
c) Show that, if E(B, 0) is a (the) minimum-volume ellipsoid containing P , then {n−1/2x :

x ∈ E(B, 0)} is contained in P .
(Hence such polytopes can be rounded to a factor

√
n, not n as in the general case. In

fact, this holds for any centrally symmetric convex body.)

a) If P is a convex body, i.e., has a nonempty interior, this follows from Proposition 1
of Lecture 17. If not, P lies in a lower-dimensional affine set. In fact, the affine hull of P is
a lower-dimensional affine set, and P has a nonempty interior relative to this; then P can
be enclosed in a minimum-volume ellipsoid in this lower-dimensional set, and hence in a
degenerate ellipsoid in <n with n-dimensional volume 0, hence clearly minimum! Henceforth
assume P is a convex body; otherwise, the following arguments can all be applied within
its lower-dimensional affine hull.

b) Suppose E(B, y) is a minimum-volume ellipsoid containing P , with y 6= 0. Then
E(B,−y) contains −P = P . So for any x ∈ P , (x−y)T B−1(x−y) ≤ 1 and (x+y)T B−1(x+
y) ≤ 1. Averaging, we find xT B−1x ≤ 1− yT B−1y. Thus P is contained in E(λB, 0) with
λ := 1− yT B−1y < 1, an ellipsoid of strictly smaller volume. This is a contradiction.

c) Suppose not, so that there is an x in E(B, 0) with n−1/2x /∈ P . Thus it can be
separated from P , so there is an inequality aT z ≤ β valid for P with aT x > n1/2β. Since
aT x ≤

√
aT Ba, β = α

√
aT Ba for some α < n−1/2. But if aT z ≤ α

√
aT Ba for all z ∈ P ,

then aT z ≥ −α
√

aT Ba for all z ∈ P also, since P is centrally symmetric. So P ⊆ Ēα,
implying that P can be enclosed in an ellipsoid of smaller volume by Q1, a contradiction.

3. Suppose that P := {x ∈ <n : AT x ≤ e} is bounded (where e is the vector of ones as
usual). Assume that the function B → − ln det B is convex as a function of the entries of
the symmetric matrix B.

a) Show how the problem of finding the maximum volume ellipsoid with center y con-
tained in P can be written as an optimization problem with a finite number of constraints.
(Argue that the positive semidefiniteness constraint can be eliminated.)

b) Exhibit a feasible solution to this problem.
c) Show that if the center y is restricted to be 0, your optimization problem can be

converted to one with linear constraints on B.
d) Now return to the general case, where y is a variable. Try to rewrite the optimization

problem with convex constraints (you may want to consider the symmetric square root).

a) We use the ellipsoid E(B, y), whose volume is proportional to
√

det B. We want
every point in the ellipsoid to satisfy each constraint aT

j x ≤ 1, where aj is the jth column

of A. This holds as long as aT
j y +

√
aT

j Baj ≤ 1. So we can write the problem as

min
B,y

− ln det B

aT
j y +

√
aT

j Baj ≤ 1, for all j,

B positive definite.
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We can eliminate the last constraint as follows: Define the function lndet(M) on symmetric
n × n matrices as ln det(M) if M is positive definite, −∞ otherwise. Then replace the
objective function above by −lndet(B); this objective function implicitly requires B to be
positive definite. Moreover, we do not have to worry about this non-real-valued function,
since if {Bk} is a sequence of positive definite matrices converging to a non-positive definite
matrix B, then ln det(Bk) converges to −∞. It can be shown that −lndet is a convex
function on symmetric matrices.

b) By Cauchy-Schwarz, any x with ‖x‖ ≤ 1/‖aj‖ for all j lies in P , so we can take the
ball of radius ε := 1/ max{‖aj‖} as E, i.e., B = ε2I, y = 0 is feasible in the optimization
problem above, as is easily checked.

c) If y = 0, the constraints become
√

aT
j Baj ≤ 1 for all j, which is equivalent to

aT
j Baj ≤ 1, which is linear in B.

d) If y is a variable, the problem above is not convex in B (think of the 1-dimensional
case: B is a number, and

√
B is not convex). If we square as above, we get aT

j Baj ≤
(1 − aT

j y)2, which is convex in B but now not in y. But if we use instead the symmetric
square root D of B as our variable, the objective becomes −lndet(D2) = −2lndet(D), and
the constraints aT

j y +
√

aT
j D2aj = aT

j y + ‖Daj‖ ≤ 1 for all j, and this is convex since Daj

is linear in D and the norm is convex!
(A paper by Khachiyan and Todd suggests instead solving a sequence of problems with

linear constraints on B and y instead of this one with nonlinear constraints.)
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