OR 631: Mathematical Programming II. Spring 2014.
Homework 3 solutions.

1. This question and the next are concerned with central cuts. Suppose we have an
ellipsoid F := F(B,y), and we add two cuts symmetrically placed with respect to the center
y. Consider

Ey:={r€E: a’y—avaTBa < a’z < o’y + aV a” Ba}

for some nonzero a € R and some 0 < o < 1.

a) Write the condition for z to lie in E, as two quadratics.

b) By combining these two quadratics suitably, find an ellipsoid F(By,y+) that contains
E,, depending on a scalar parameter o.

c¢) Find the value of o that minimizes the volume of the resulting ellipsoid as a function
of . Show that for o = n~1/2 this ellipsoid is just E, while for a smaller than this it gives
an ellipsoid of smaller volume than E. (In fact, this is the minimum-volume ellipsoid among

all those containing E,, not just those obtained this way.)
a) For simplicity, define @ as a/(a” Ba)'/?, so that the two-sided constraint can be

written as —a < a” (z —y) < a. Then the two quadratic inequalities are
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b) Multiply the first inequality by 1 — o and the second by o for 0 < ¢ <1 and add, to
get
(@—y)"(1—0)B ™ +0aa’)(z —y) < 1— 0+ 0a,

or, using the Sherman-Morrison-Woodbury formula, (z — y)TBJ:l(:U —y) <1, where

By = (HW> (B-oaa").
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(This assumes o < 1, since otherwise, the quadratic inequality defines a slab of infinite
volume for n > 1. For n = 1, the problem is trivial and the optimal o is 1. We assume
n > 1 in what follows.) With o < 1, B is positive definite, and this defines the ellipsoid
E(B4,y) (note that y is unchanged). Since its defining inequality is derived from those for
E., E(B4,y) contains it.

¢) The volume of this ellipsoid is the square root of the determinant of B times that
of the unit ball, so we want to minimize the determinant of B, which is easily seen to be
f(o) times that of B, with ,

n
flo) = Lo toa )"
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It is easy to check that the derivative of f, for all 0 < ¢ < 1, is a positive multiple of
g(0) = —n(1-a®)(1-0)+ (n—1)(1 -0+ 0ca?).

Note that g has a unique root at o* = (1 —na?)/(1 — ), and is negative to the left and
positive to the right. Hence for 0 < a < n=1/2, f is minimized at o*, while if o > n=1/2,
o* < 0 and f is increasing for o between 0 and 1, and so is minimized by o = 0 (and so the
minimum-volume ellipsoid of this form is the original ellipsoid E). For 0 < a < n~Y2, f is



decreasing from 0 to ¢*, so the resulting ellipsoid has volume strictly smaller than that of
E.

2. Consider a centrally symmetric polytope, a bounded polyhedron of the form P :=
{z e R": —b < Az < b} for some A, b.

a) Show that there is a minimum-volume ellipsoid E = E(B,y) containing P.

b) Show that any such must have y = 0, i.e., it must be centrally symmetric also.

¢) Show that, if E(B, 0) is a (the) minimum-volume ellipsoid containing P, then {n~1/2z :
x € E(B,0)} is contained in P.

(Hence such polytopes can be rounded to a factor y/n, not n as in the general case. In
fact, this holds for any centrally symmetric convex body.)

a) If P is a convex body, i.e., has a nonempty interior, this follows from Proposition 1
of Lecture 17. If not, P lies in a lower-dimensional affine set. In fact, the affine hull of P is
a lower-dimensional affine set, and P has a nonempty interior relative to this; then P can
be enclosed in a minimum-volume ellipsoid in this lower-dimensional set, and hence in a
degenerate ellipsoid in ®" with n-dimensional volume 0, hence clearly minimum! Henceforth
assume P is a convex body; otherwise, the following arguments can all be applied within
its lower-dimensional affine hull.

b) Suppose FE(B,y) is a minimum-volume ellipsoid containing P, with y # 0. Then
E(B,—y) contains —P = P. Soforany z € P, (z—y)"B ' (z—y) <1and (z+y)" B! (z+
y) < 1. Averaging, we find 27 B~'x <1 — y"B~'y. Thus P is contained in E(\B,0) with
X:=1—y"' By < 1, an ellipsoid of strictly smaller volume. This is a contradiction.

¢) Suppose not, so that there is an = in E(B,0) with n='/2z ¢ P. Thus it can be
separated from P, so there is an inequality a”z < /3 valid for P with T2 > n'/243. Since
o’z < VaTBa, 8 = avaTBa for some a < n~Y2. But if a’z < av/aTBa for all z € P,
then a’z > —avaTBa for all z € P also, since P is centrally symmetric. So P C E,,
implying that P can be enclosed in an ellipsoid of smaller volume by Q1, a contradiction.

3. Suppose that P := {z € R" : ATz < e} is bounded (where e is the vector of ones as
usual). Assume that the function B — —Indet B is convex as a function of the entries of
the symmetric matrix B.

a) Show how the problem of finding the maximum volume ellipsoid with center y con-
tained in P can be written as an optimization problem with a finite number of constraints.
(Argue that the positive semidefiniteness constraint can be eliminated.)

b) Exhibit a feasible solution to this problem.

c¢) Show that if the center y is restricted to be 0, your optimization problem can be
converted to one with linear constraints on B.

d) Now return to the general case, where y is a variable. Try to rewrite the optimization
problem with convex constraints (you may want to consider the symmetric square root).

a) We use the ellipsoid F(B,y), whose volume is proportional to vdet B. We want
every point in the ellipsoid to satisfy each constraint aij < 1, where a; is the jth column
of A. This holds as long as a]Ty + \/aJTBaj < 1. So we can write the problem as

min —IndetB
B,y

a;fpy + 1/&?301]' < 1, forall j,

B positive definite.



We can eliminate the last constraint as follows: Define the function Indet(M) on symmetric
n X n matrices as Indet(M) if M is positive definite, —oo otherwise. Then replace the
objective function above by —Indet(B); this objective function implicitly requires B to be
positive definite. Moreover, we do not have to worry about this non-real-valued function,
since if { By} is a sequence of positive definite matrices converging to a non-positive definite
matrix B, then Indet(Bj) converges to —oo. It can be shown that —Indet is a convex
function on symmetric matrices.

b) By Cauchy-Schwarz, any = with ||z| < 1/||a;| for all j lies in P, so we can take the
ball of radius € := 1/ max{||a;||} as E, i.e., B = €*I, y = 0 is feasible in the optimization
problem above, as is easily checked.

c) If y = 0, the constraints become ,/a]TBaj < 1 for all j, which is equivalent to
a;FBaj < 1, which is linear in B.

d) If y is a variable, the problem above is not convex in B (think of the 1-dimensional
case: B is a number, and /B is not convex). If we square as above, we get CL;FBaj <
(1—- a]Ty)2, which is convex in B but now not in y. But if we use instead the symmetric
square root D of B as our variable, the objective becomes —Indet(D?) = —2Indet(D), and
the constraints a]Ty + \/a;‘»FD%j = a]Ty + || Daj|| <1 for all j, and this is convex since Da;
is linear in D and the norm is convex!

(A paper by Khachiyan and Todd suggests instead solving a sequence of problems with
linear constraints on B and y instead of this one with nonlinear constraints.)



