
OR 6310: Mathematical Programming II. Spring 2014.
Homework 2 Solutions.

1. Let Pi ⊆ IRdi be a nonempty polyhedron defined by ni inequalities, i = 1, 2, and let
P := P1 × P2 := {(x1;x2) : x1 ∈ P1, x2 ∈ P2}.

a) Show that P is a polyhedron in IRd defined by n inequalities, with d = d1 + d2 and
n = n1 + n2, bounded iff both P1 and P2 are.

b) Show that, if vi is a vertex of Pi, i = 1, 2, then (v1; v2) is a vertex of P . Show that
all vertices of P arise in this way.

c) Suppose vi, v
′
i are vertices of Pi, i = 1, 2. Show that [(v1; v2), (v′1; v

′
2)] is an edge of P

if v1 = v′1 and [v2, v
′
2] is an edge of P2, or if [v1, v

′
1] is an edge of P1 and v2 = v′2. (In fact,

all edges of P arise in this way, but you need not prove it; you can assume it for (d).)
d) Show that δ(P1 × P2) = δ(P1) + δ(P2).

(This product construction allows you to relate the Hirsch conjecture (of course, now
known to be false) for one value of (d, n) to that for other values. Another such construction,
the “wedge,” converts the polyhedron Q := {x ∈ IRd : Ax ≤ b, aT x ≤ β} into the polyhedron
Q′ := {(x; ξ) ∈ IRd+1 : Ax ≤ b, aT x + ξ ≤ β,−ξ ≤ 0}. You might want to think of parts (a)
– (c) above for Q and Q′. Using these ideas, one can show that the conjecture is true for all
values of (d, n) iff it holds for all d and n = 2d: this is the so-called d-step conjecture. Similar
arguments were used by Santos to modify his “spindle” example in dimension 5 to give a
counterexample to the Hirsch conjecture in dimension 43, and to construct counterexamples
for all higher dimensions.)

a) Let Pi = {xi ∈ IRdi : Aixi ≤ bi}, i = 1, 2, where Ai and bi have ni rows. Then
P = {(x1;x2) ∈ IRd : Aixi ≤ bi, i = 1, 2} and is hence a d-polytope defined by n inequalities.
If ‖xi‖ ≤ ρi for all xi ∈ Pi, for i = 1, 2, then ‖x‖ ≤ ρ1 + ρ2 for all x ∈ P , so P is bounded.
Conversely, if say ‖x1‖ is unbounded for x1 ∈ P1, then choose any fixed x2 ∈ P2 and note
that ‖(x1;x2)‖ is then unbounded for (x1;x2) ∈ P , so P is unbounded.

b) There is an objective function cT
i xi that is minimized uniquely over Pi at vi, i = 1, 2.

Then cT x := cT
1 x1 + cT

2 x2 is minimized uniquely over P at (v1; v2), which is therefore a
vertex. Conversely, if cT x := cT

1 x1 + cT
2 x2 is minimized uniquely over P at (v1; v2), then

cT
i xi is minimized uniquely over Pi at vi, i = 1, 2, so each vi is a vertex of Pi.

c) Suppose cT
1 xi is minimized uniquely over P1 by v1, and the set of minimizers of

cT
2 x2 over P2 is the line segment joining v2 and v′2. Then the set of minimizers of cT x :=

cT
1 x1 + cT

2 x2 is exactly the line segment joining (v1; v2) and (v1; v′2), showing that this is an
edge. The same argument works in the other case. To show the converse, note that if cT x as
above defines an edge of P , and neither cT

1 x1 nor cT
2 x2 is uniquely minimized, then the set

of minimizers of cT x contains at least a line segment times a line segment, a contradiction.
Suppose therefore without loss of generality that cT

1 x1 is minimized uniquely over P1 at v1.
Now if cT

2 x2 is minimized over P2 at more than an edge of P2, we again get a contradiction.
d) Let (v1; v2) and (w1;w2) be two vertices of P . There is a path from v1 to w1 in P1

of length at most δ(P1), which gives a path of the same length from (v1; v2) to (w1; v2) in
P by just holding the second component fixed. Similarly, there is a path from (w1; v2) to
(w1;w2) of length at most δ(P2) holding the first component fixed. Concatenating these
two paths gives one of length at most δ(P1) + δ(P2). To show that the diameter is at least
this sum, let vi and wi be vertices of Pi a distance δ(Pi) apart, i = 1, 2. Then any path
from (v1; v2) to (w1;w2) gives by projection on its two components a path from v1 to w1

and one from v2 to w2, and so its total length is at least δ(P1) + δ(P2).
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2. In certain combinatorial optimization problems, the polyhedron defined by certain
classes of inequalities is not a 0-1 polytope, but a polytope whose every vertex has compo-
nents taking on only the values 0, 1/2, or 1. Call such a polytope a (0,1/2,1)-polytope.

Show that every (0, 1/2, 1)-polytope in IRd has diameter at most 2d − 1. Prove that
there is a (0,1/2,1)-polytope in IRd with diameter b3d/2c (first consider d = 1, 2 and then
see if you can blow these examples up to higher dimensions.)

The proof is by induction, being trivial for d = 1 (there are seven cases, including the
empty polytope). Suppose it is true for (0, 1/2, 1)-polytopes of dimension at most d − 1,
and consider one in IRd, say P , and two vertices of P , say v and w.

a) If v1 = w1 = α, for α = 0 or 1, let Q := {x ∈ P : x1 = α}. Then v and w are vertices
of Q (you can prove this using an argument as in Q1, or just assume it). By omitting its
first coordinate, Q can be thought of as a polytope in IRd−1, so by the inductive hypothesis
(since all its vertices are also vertices of P by an argument like that in Q1, so (0, 1/2, 1)-
valued), there is a path from v to w in Q of length at most 2(d− 1)− 1. This is also a path
from v to w in P .

b) If v1 is 0 or 1 (assume wlog the first), and w1 = 1/2, then w is not optimal in
min{x1 : x ∈ P}, so since local optimality implies global optimality for linear optimization
in a polytope, there is a vertex z adjacent to w with z1 < w1. Hence z1 = 0. By a), there
is a path in P from v to z of length at most 2(d − 1) − 1, so one from v to w of length at
most 2d− 2.

c) If v1 = 0 and w1 = 1 (or vice versa), then by the same argument as in (b), there is a
vertex z of P adjacent to w with z1 = 0 or 1/2. Then using (a) or (b), there is a path in P
from v to z of length at most 2d− 2, so one from v to w of length at most 2d− 1.

d) If v1 = w1 = 1/2, then either x1 ≥ 1/2 for all x ∈ P , or x1 < 1/2 for some x ∈ P . In
the first subcase, {x : x1 = 1/2} is a supporting hyperplane to P , so Q := {x ∈ P : x1 =
1/2} is a (0, 1/2, 1)-polytope with all its vertices (including v and w) also vertices of P . As
in (a), there is a path in Q (hence in P ) from v to w of length at most 2(d − 1) − 1. In
the second subcase, as in (b) there is a vertex u adjacent to v with u1 = 0, and a vertex z
adjacent to w with z1 = 0. By case (a), there is a path in P from u to z of length at most
2(d− 1)− 1, so one from v to w of length at most 2d− 1.

This completes the inductive step and the proof.
The proof of existence of the bad examples is also by induction, starting with P1 = [0, 1]

in IR1 and P2 = {x ∈ IR2 : 0 ≤ xj ≤ 1, j = 1, 2, 1/2 ≤ x1 + x2 ≤ 3/2} in IR2. These have
the required diameters 1 and 3. For larger d, define Pd = P2 × Pd−2. This is a (0, 1/2, 1)-
polytope in IRd, with diameter δ(P2)+ δ(Pd−2) by Q1, and this is 3+ b3(d− 2)/2c = b3d/2c
as desired.

3. a) Consider a polyhedron P and a vertex v of P that uniquely minimizes cT x over
P . Show that {x ∈ P : cT x ≤ γ} is bounded for every γ > cT v.

b) Klee and Walkup constructed an (unbounded) polyhedron of dimension 4 with 8
facets and diameter 5 > 8 − 4 violating the Hirsch conjecture, and from this (see Q1) a
polyhedron P of dimension d = 8 with n = 16 facets and diameter 10 = n − d + 2, also
violating the conjecture. Hence P has two vertices a distance 10 apart. Use part (a) to
construct a polytope Q of dimension 8 with 17 facets and two vertices v and w of Q so that:

(i) some linear objective function cT x is minimized uniquely over Q by v; and
(ii) every path from w to v on which cT x is monotonically decreasing uses at least

10 > 17− 8 edges.
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(This shows that the “monotonic” Hirsch conjecture is false even for 8-dimensional poly-
topes. In fact, using projective transformations instead of an extra bounding hyperplane,
one can show that it fails even for dimension 4.)

a) If {x ∈ P : cT x ≤ γ} is not bounded, it contains a ray {u + λw : λ ≥ 0} for some
nonzero w. Because of the extra constraint, cT w ≤ 0. If cT w < 0, then cT x is unbounded
below on P , a contradiction, while if cT w = 0, then v + λw, λ ≥ 0 shows that cT x is not
uniquely minimized by v, again a contradiction. (Here we have used the representation
theorem for polyhedra, which implies that the direction of any ray in Q also is the direction
of a ray from every point of Q.)

b) Let v and w be two vertices of P a distance 10 apart. Choose c so that cT x is uniquely
minimized over P by v, and choose γ greater than cT u for all vertices u of P . Define Q as
in (a) using this c and γ. Then cT x is uniquely minimized over Q by v, so v is a vertex
of Q, and if c̃T x is uniquely minimized over P by w, it is also uniquely minimized over Q
by w, so w is a vertex of Q; similarly, every u that is a vertex of P is also a vertex of Q.
Moreover, every vertex u of Q with cT x < γ is a vertex of P : take the same objective that
is uniquely minimized over Q at u and use “local implies global” to show that it is also
minimized over P at u. Finally, any edge of Q between two vertices u and u′ with cT x < γ
is also an edge of P , by the same reasoning.

Now consider any path of vertices from w to v on which cT x is monotonically decreasing.
Then every vertex on this path has cT x ≤ cT w < γ. It follows that such vertices cannot be
on the new facet defined by cT x = γ, so they are all vertices of P . Since every path in P
from w to v contains at least 10 edges, so does every monotonic path in Q from w to v.
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