OR 6310: Mathematical Programming II. Spring 2014.
Homework 2 Solutions.

1. Let $P_{i} \subseteq \mathbf{R}^{d_{i}}$ be a nonempty polyhedron defined by n_{i} inequalities, $i=1,2$, and let $P:=P_{1} \times P_{2}:=\left\{\left(x_{1} ; x_{2}\right): x_{1} \in P_{1}, x_{2} \in P_{2}\right\}$.
a) Show that P is a polyhedron in \mathbf{R}^{d} defined by n inequalities, with $d=d_{1}+d_{2}$ and $n=n_{1}+n_{2}$, bounded iff both P_{1} and P_{2} are.
b) Show that, if v_{i} is a vertex of $P_{i}, i=1,2$, then $\left(v_{1} ; v_{2}\right)$ is a vertex of P. Show that all vertices of P arise in this way.
c) Suppose v_{i}, v_{i}^{\prime} are vertices of $P_{i}, i=1,2$. Show that $\left[\left(v_{1} ; v_{2}\right),\left(v_{1}^{\prime} ; v_{2}^{\prime}\right)\right]$ is an edge of P if $v_{1}=v_{1}^{\prime}$ and $\left[v_{2}, v_{2}^{\prime}\right]$ is an edge of P_{2}, or if $\left[v_{1}, v_{1}^{\prime}\right]$ is an edge of P_{1} and $v_{2}=v_{2}^{\prime}$. (In fact, all edges of P arise in this way, but you need not prove it; you can assume it for (d).)
d) Show that $\delta\left(P_{1} \times P_{2}\right)=\delta\left(P_{1}\right)+\delta\left(P_{2}\right)$.
(This product construction allows you to relate the Hirsch conjecture (of course, now known to be false) for one value of (d, n) to that for other values. Another such construction, the "wedge," converts the polyhedron $Q:=\left\{x \in \mathbf{R}^{d}: A x \leq b, a^{T} x \leq \beta\right\}$ into the polyhedron $Q^{\prime}:=\left\{(x ; \xi) \in \mathbf{R}^{d+1}: A x \leq b, a^{T} x+\xi \leq \beta,-\xi \leq 0\right\}$. You might want to think of parts (a) - (c) above for Q and Q^{\prime}. Using these ideas, one can show that the conjecture is true for all values of (d, n) iff it holds for all d and $n=2 d$: this is the so-called d-step conjecture. Similar arguments were used by Santos to modify his "spindle" example in dimension 5 to give a counterexample to the Hirsch conjecture in dimension 43, and to construct counterexamples for all higher dimensions.)
a) Let $P_{i}=\left\{x_{i} \in \mathbf{R}^{d_{i}}: A_{i} x_{i} \leq b_{i}\right\}, i=1,2$, where A_{i} and b_{i} have n_{i} rows. Then $P=\left\{\left(x_{1} ; x_{2}\right) \in \mathbf{R}^{d}: A_{i} x_{i} \leq b_{i}, i=1,2\right\}$ and is hence a d-polytope defined by n inequalities. If $\left\|x_{i}\right\| \leq \rho_{i}$ for all $x_{i} \in P_{i}$, for $i=1,2$, then $\|x\| \leq \rho_{1}+\rho_{2}$ for all $x \in P$, so P is bounded. Conversely, if say $\left\|x_{1}\right\|$ is unbounded for $x_{1} \in P_{1}$, then choose any fixed $x_{2} \in P_{2}$ and note that $\left\|\left(x_{1} ; x_{2}\right)\right\|$ is then unbounded for $\left(x_{1} ; x_{2}\right) \in P$, so P is unbounded.
b) There is an objective function $c_{i}^{T} x_{i}$ that is minimized uniquely over P_{i} at $v_{i}, i=1,2$. Then $c^{T} x:=c_{1}^{T} x_{1}+c_{2}^{T} x_{2}$ is minimized uniquely over P at $\left(v_{1} ; v_{2}\right)$, which is therefore a vertex. Conversely, if $c^{T} x:=c_{1}^{T} x_{1}+c_{2}^{T} x_{2}$ is minimized uniquely over P at $\left(v_{1} ; v_{2}\right)$, then $c_{i}^{T} x_{i}$ is minimized uniquely over P_{i} at $v_{i}, i=1,2$, so each v_{i} is a vertex of P_{i}.
c) Suppose $c_{1}^{T} x_{i}$ is minimized uniquely over P_{1} by v_{1}, and the set of minimizers of $c_{2}^{T} x_{2}$ over P_{2} is the line segment joining v_{2} and v_{2}^{\prime}. Then the set of minimizers of $c^{T} x:=$ $c_{1}^{T} x_{1}+c_{2}^{T} x_{2}$ is exactly the line segment joining $\left(v_{1} ; v_{2}\right)$ and $\left(v_{1} ; v_{2}^{\prime}\right)$, showing that this is an edge. The same argument works in the other case. To show the converse, note that if $c^{T} x$ as above defines an edge of P, and neither $c_{1}^{T} x_{1}$ nor $c_{2}^{T} x_{2}$ is uniquely minimized, then the set of minimizers of $c^{T} x$ contains at least a line segment times a line segment, a contradiction. Suppose therefore without loss of generality that $c_{1}^{T} x_{1}$ is minimized uniquely over P_{1} at v_{1}. Now if $c_{2}^{T} x_{2}$ is minimized over P_{2} at more than an edge of P_{2}, we again get a contradiction.
d) Let $\left(v_{1} ; v_{2}\right)$ and $\left(w_{1} ; w_{2}\right)$ be two vertices of P. There is a path from v_{1} to w_{1} in P_{1} of length at most $\delta\left(P_{1}\right)$, which gives a path of the same length from $\left(v_{1} ; v_{2}\right)$ to $\left(w_{1} ; v_{2}\right)$ in P by just holding the second component fixed. Similarly, there is a path from $\left(w_{1} ; v_{2}\right)$ to $\left(w_{1} ; w_{2}\right)$ of length at most $\delta\left(P_{2}\right)$ holding the first component fixed. Concatenating these two paths gives one of length at most $\delta\left(P_{1}\right)+\delta\left(P_{2}\right)$. To show that the diameter is at least this sum, let v_{i} and w_{i} be vertices of P_{i} a distance $\delta\left(P_{i}\right)$ apart, $i=1,2$. Then any path from $\left(v_{1} ; v_{2}\right)$ to $\left(w_{1} ; w_{2}\right)$ gives by projection on its two components a path from v_{1} to w_{1} and one from v_{2} to w_{2}, and so its total length is at least $\delta\left(P_{1}\right)+\delta\left(P_{2}\right)$.
2. In certain combinatorial optimization problems, the polyhedron defined by certain classes of inequalities is not a $0-1$ polytope, but a polytope whose every vertex has components taking on only the values $0,1 / 2$, or 1 . Call such a polytope a $(0,1 / 2,1)$-polytope.

Show that every $(0,1 / 2,1)$-polytope in \mathbf{R}^{d} has diameter at most $2 d-1$. Prove that there is a $(0,1 / 2,1)$-polytope in \mathbf{R}^{d} with diameter $\lfloor 3 d / 2\rfloor$ (first consider $d=1,2$ and then see if you can blow these examples up to higher dimensions.)

The proof is by induction, being trivial for $d=1$ (there are seven cases, including the empty polytope). Suppose it is true for ($0,1 / 2,1$)-polytopes of dimension at most $d-1$, and consider one in \mathbf{R}^{d}, say P, and two vertices of P, say v and w.
a) If $v_{1}=w_{1}=\alpha$, for $\alpha=0$ or 1 , let $Q:=\left\{x \in P: x_{1}=\alpha\right\}$. Then v and w are vertices of Q (you can prove this using an argument as in Q1, or just assume it). By omitting its first coordinate, Q can be thought of as a polytope in \mathbf{R}^{d-1}, so by the inductive hypothesis (since all its vertices are also vertices of P by an argument like that in Q1, so $(0,1 / 2,1)$ valued), there is a path from v to w in Q of length at most $2(d-1)-1$. This is also a path from v to w in P.
b) If v_{1} is 0 or 1 (assume wlog the first), and $w_{1}=1 / 2$, then w is not optimal in $\min \left\{x_{1}: x \in P\right\}$, so since local optimality implies global optimality for linear optimization in a polytope, there is a vertex z adjacent to w with $z_{1}<w_{1}$. Hence $z_{1}=0$. By a), there is a path in P from v to z of length at most $2(d-1)-1$, so one from v to w of length at most $2 d-2$.
c) If $v_{1}=0$ and $w_{1}=1$ (or vice versa), then by the same argument as in (b), there is a vertex z of P adjacent to w with $z_{1}=0$ or $1 / 2$. Then using (a) or (b), there is a path in P from v to z of length at most $2 d-2$, so one from v to w of length at most $2 d-1$.
d) If $v_{1}=w_{1}=1 / 2$, then either $x_{1} \geq 1 / 2$ for all $x \in P$, or $x_{1}<1 / 2$ for some $x \in P$. In the first subcase, $\left\{x: x_{1}=1 / 2\right\}$ is a supporting hyperplane to P, so $Q:=\left\{x \in P: x_{1}=\right.$ $1 / 2\}$ is a $(0,1 / 2,1)$-polytope with all its vertices (including v and w) also vertices of P. As in (a), there is a path in Q (hence in P) from v to w of length at most $2(d-1)-1$. In the second subcase, as in (b) there is a vertex u adjacent to v with $u_{1}=0$, and a vertex z adjacent to w with $z_{1}=0$. By case (a), there is a path in P from u to z of length at most $2(d-1)-1$, so one from v to w of length at most $2 d-1$.

This completes the inductive step and the proof.
The proof of existence of the bad examples is also by induction, starting with $P_{1}=[0,1]$ in \mathbf{R}^{1} and $P_{2}=\left\{x \in \mathbf{R}^{2}: 0 \leq x_{j} \leq 1, j=1,2,1 / 2 \leq x_{1}+x_{2} \leq 3 / 2\right\}$ in \mathbf{R}^{2}. These have the required diameters 1 and 3. For larger d, define $P_{d}=P_{2} \times P_{d-2}$. This is a $(0,1 / 2,1)$ polytope in \mathbf{R}^{d}, with diameter $\delta\left(P_{2}\right)+\delta\left(P_{d-2}\right)$ by Q1, and this is $3+\lfloor 3(d-2) / 2\rfloor=\lfloor 3 d / 2\rfloor$ as desired.
3. a) Consider a polyhedron P and a vertex v of P that uniquely minimizes $c^{T} x$ over P. Show that $\left\{x \in P: c^{T} x \leq \gamma\right\}$ is bounded for every $\gamma>c^{T} v$.
b) Klee and Walkup constructed an (unbounded) polyhedron of dimension 4 with 8 facets and diameter $5>8-4$ violating the Hirsch conjecture, and from this (see Q1) a polyhedron P of dimension $d=8$ with $n=16$ facets and diameter $10=n-d+2$, also violating the conjecture. Hence P has two vertices a distance 10 apart. Use part (a) to construct a polytope Q of dimension 8 with 17 facets and two vertices v and w of Q so that:
(i) some linear objective function $c^{T} x$ is minimized uniquely over Q by v; and
(ii) every path from w to v on which $c^{T} x$ is monotonically decreasing uses at least $10>17-8$ edges.
(This shows that the "monotonic" Hirsch conjecture is false even for 8-dimensional polytopes. In fact, using projective transformations instead of an extra bounding hyperplane, one can show that it fails even for dimension 4.)
a) If $\left\{x \in P: c^{T} x \leq \gamma\right\}$ is not bounded, it contains a ray $\{u+\lambda w: \lambda \geq 0\}$ for some nonzero w. Because of the extra constraint, $c^{T} w \leq 0$. If $c^{T} w<0$, then $c^{T} x$ is unbounded below on P, a contradiction, while if $c^{T} w=0$, then $v+\lambda w, \lambda \geq 0$ shows that $c^{T} x$ is not uniquely minimized by v, again a contradiction. (Here we have used the representation theorem for polyhedra, which implies that the direction of any ray in Q also is the direction of a ray from every point of Q.)
b) Let v and w be two vertices of P a distance 10 apart. Choose c so that $c^{T} x$ is uniquely minimized over P by v, and choose γ greater than $c^{T} u$ for all vertices u of P. Define Q as in (a) using this c and γ. Then $c^{T} x$ is uniquely minimized over Q by v, so v is a vertex of Q, and if $\tilde{c}^{T} x$ is uniquely minimized over P by w, it is also uniquely minimized over Q by w, so w is a vertex of Q; similarly, every u that is a vertex of P is also a vertex of Q. Moreover, every vertex u of Q with $c^{T} x<\gamma$ is a vertex of P : take the same objective that is uniquely minimized over Q at u and use "local implies global" to show that it is also minimized over P at u. Finally, any edge of Q between two vertices u and u^{\prime} with $c^{T} x<\gamma$ is also an edge of P, by the same reasoning.

Now consider any path of vertices from w to v on which $c^{T} x$ is monotonically decreasing. Then every vertex on this path has $c^{T} x \leq c^{T} w<\gamma$. It follows that such vertices cannot be on the new facet defined by $c^{T} x=\gamma$, so they are all vertices of P. Since every path in P from w to v contains at least 10 edges, so does every monotonic path in Q from w to v.

