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Abstract

We compare the projective methods for linear programming due to de Ghellinck and Vial,
Anstreicher, Todd and Fraley. These algorithms have the feature that they approach feasibility and
optimality simultaneously, rather than requiring an initial feasible point. We compare the directions
used in these methods and the lower bound updates employed. In many cases the directions coincide
and two of the lower bound updates give the same result. It appears that Todd’s direction and

Fraley’s lower bound update have slight advantages, and this is borne out in limited computational

testing.



1. Introduction

By definition, interior-point methods for linear programming generate sequences of points that
are (relatively) interior to the feasible polyhedron. Thus techniques have to be devised to deal with the
frequent case that an initial interior point is not known. From a theoretical point of view, there is no
difficulty, since Karmarkar showed in his original paper [16] that primal and dual problems can be
combined into one system with a known interior solution using an artificial variable, which was then
minimized. To avoid increasing the dimension this way, a number of researchers suggested attacking
an artificial problem including an artificial variable and/or an artificial bounding constraint, which
then requires setting a high cost and/or high right-hand side so that the original problem is correctly
solved. See, for example, [17] or [20].

De Ghellinck and Vial [11] proposed an interior method for linear programming that generates
a sequence of not necessarily feasible points that approach feasibility and optimality simultaneously.
Anstreicher [3] developed another method with the same property, but which explicitly introduced an
artificial variable. This variable does not appear in the objective function, but a constraint is added
(which is satisfied only in the limit) equating the artificial variable to zero. Both de Ghellinck and
Vial’s and Anstreicher’s methods are based on primal projective methods, but whereas de Ghellinck
and Vial derive their algorithm from their earlier feasibility method [10], Anstreicher’s is motivated
by the standard-form variants of Karmarkar’s method due to Anstreicher [2], Gay [9], Gonzaga [14],
Jensen and Steger [21], and Ye and Kojima [27]. De Ghellinck and Vial’s method [11] does not
explicitly introduce an artificial variable, although they show in [10] that their feasibility algorithm is
equivalent to minimizing an artificial variable using Karmarkar’s algorithm. Todd [24] proposed a
modification of Anstreicher’s approach.

Standard-form primal projective methods use lower bound estimates on the optimal value.
Both de Ghellinck and Vial’s and Anstreicher’s papers gave methods to update such lower bounds, and
Todd showed that Anstreicher’s update is the optimal value of a linear programming problem with just
two constraints, which is easily obtained using the dual. De Ghellinck and Vial proposed a different

technique that requires the solution of n quadratic equations, where n is the number of variables.



Later, Fraley [5] devised an update technique based on linear programming that could be used in de
Ghellinck and Vial’s algorithm.

Our aim in this paper is to compare these various combined phase 1-phase 2 projective
methods. In section 2 we consider the search directions generated by the algorithms, and show in what
circumstances they coincide (when viewed in a common space). The basic determinant is which
constraints are tight in the direction-finding subproblem of Todd [24]. In section 3 we address the
lower-bound update schemes. When applied to a feasible problem, de Ghellinck and Vial’s lower
bound is the weakest, followed by that of Anstreicher and Todd, and finally by that of Fraley, which is
the strongest. We give an example to show that all inequalities can be strict. When the problem is
not feasible, it is possible that de Ghellinck and Vial’s method will establish this (by generating a lower
bound of +co), while the others fail to. We suggest a simple remedy.

Finally, section 4 gives the results of limited computational testing on small randomly-
generated problems. On these problems, all three directions require roughly the same number of
iterations, although Todd’s can obtain feasible solutions early. De Ghellinck and Vial’s lower bound
update has difficulties on problems with unbounded feasible regions. The combination of Todd’s
direction with Fraley’s update seems preferable theoretically, and this is consistent with the numerical
results. Fraley and Vial [6,7] also give more extensive computational results for the combination of
de Ghellinck and Vial’s direction and Fraley’s lower bound update on the NETLIB problems; they also
test a two-phase primal projective algorithm with encouraging results.

We close this section by giving references to several papers that have considered the difficulties
of obtaining an initial interior point solution, either theoretically or practically. The initialization of
the dual affine method is discussed in Adler et al. [1], and of the primal barrier method in Gill et al.
[12]. For the primal-dual path-following method, a theoretical analysis is provided, for instance, in
Kojima et al. [17], while McShane et al. [20] give proposals for implementation. Lustig has now
proposed [18] an elegant way to deal with the problem in this approach, and Lustig et al. [19] have

shown that his technique reduces to Newton’s method on a natural system of equations involving no



artificial variables or constraints. Shifted barrier methods, especially suited to warm starts, have been

discussed by Freund [8] and by Gill et al. [13].

2. The search directions of the algorithms

All the algorithms under consideration reformulate the linear programming problem

(LP) Az =D

*
v
Nt

min ¢’ x
(P)
Ax =0
dTx =1
x > 0,

where A :=[A,-b], ¢T=[¢T, 0] and dT =[0T, 1]. We assume that {x: cTx < 0, Ax =0,
dTx = 0, x > 0} = {0}, so that, if (P) is feasible, it has a bounded set of optimal solutions. Given a
point x > 0 with dTx = 1 but usually not Ax = 0, all the algorithms first try to improve the
current lower bound on the optimal value of (P). In the next section we discuss the updating
techniques used by de Ghellinck and Vial, Anstreicher and Todd, and Fraley. The algorithms then
choose a search direction to improve the current iterate x.

This section is concerned with comparing the search directions of the three algorithms. We
therefore assume that all algorithms have the same point x at the start of an iteration. We assume

that x = e, since otherwise all the algorithms scale the data to transform x to e. We also assume



that, after updating, all the algorithms have the same finite lower bound, which we denote by z. (The
algorithms of Anstreicher and Todd can also deal with the case that z = -oo, but we ignore this here.)
For most of this section, we suppose that Ae # 0, so that the current iterate is infeasible.
We make a few remarks at the end of the section about the case that e is feasible.
De Ghellinck and Vial’s algorithm is based on applying one step of their feasibility method [10]

to the system

u'x =0
Ax =0 (1)
x>0,x#£0,
where
u = ¢ - zd. (2)

(If x is feasible in (1), then X = x/dTx is feasible in (P) with objective value z, so is optimal.)
Their search direction is then

q:=qgy = Pge, (3)
where

B:= (4)

is the matrix in (1) and, for any matrix M, PM denotes the orthogonal projector into the null space
of M. The update that de Ghellinck and Vial use for z assures that q £ e, so that in particular

q # 0. The next point is then

e+ Aq
X, (A) = /i 5
s = (5)
for some A > 0. Note that if q is nonnegative, it is feasible in (1), and x +()\) approaches a

multiple of q as ) tends to infinity; if not, a search in direction q can be shown to decrease an

appropriate potential function suitably [11].



Anstreicher [3] and Todd [24] embed (P) in a larger problem for which x = e gives a

solution that is feasible in all but one constraint. Introducing an artificial variable yields

min &¢7%
(P) Ax =0
dTx =1
é’l‘c = 0

IV
=

where

N T

A=A, -Ad, & =[T0, 47

= [d7,0], and €T :=[0T,1].

Then &:=[eT, 1]T € R" 2 s feasible in (P) except for the constraint 7% = 0. Given the lower

bound z, Todd’s algorithm then finds a search direction g by solving the direction-finding

subproblem
min 2]
(DFSP) Ag =0

eTg =0 (6)
(- 2)Tg <-(c-2)Te )
£Tg <-¢Te (®)

and if v> g,
(¢-vd)Tg <0, (9)

T

where v := & & is the current objective function value. The motivation for (DFSP) is discussed in

detail in [24]. Roughly speaking, if it were possible to take a unit step in the direction g from & and
remain nonnegative, then

f, =18
T 71447



would be in the null space of A, satisfy ET5(+§ 0 by (8), and chi+§ z by (7). Thus it would be
optimal. Usually, a unit step is impossible, and then (7) assures progress toward the lower bound gz,
(8) progress toward feasibility, and (9) monotonicity in the objective function where possible. With
the constraint (6), the objective of (DFSP) can be viewed as minimizing the angle between & and
e +¢ (or %) subjectto A& +8)=0, (&-2d)7(&+8) <0, ET(e 4+8) <0, and if v > g,
(& - vd)T(e + g) < 0.

Our aim now is to show to what extent the direction § from (DFSP) generates a next point
x4 which can be written in the form (5). We will show that this occurs if the solution to (DFSP)
has constraints (7) and (8) tight and constraint (9) not binding. Thus let (DFSP') be (DFSP)

with (7) and (8) replaced by equalities and (9) removed:

min ||g]]
(DFSP') Ag =0
&Tg =0

e Prhe
(R

where B isasin (4).

Proof. Let us write (DFSP') in terms of § = (g), where q = § + é.
Let

AT = (@ - 2d)T = (7T, 0).



Then we see that (DFSP’) is

min ||q-&|]
Ag=0 (11)
8Tg=n+2
aTg =0
€74 =0

But since £7§ = §, we must have § = 0 so that (11) reduces to

min flq - e ||

uTq:O
Agq =10
eTq =1+ 2.

If Ppe were 0, then e would be in the column space of [u,AT], so that this last problem and hence

(DFSP') would be infeasible. Thus Ppe is not zero, and eTPBe = || Ppe 112 > 0. Let us denote

Now (g-e)Te =1, so
la-vel®=lla-e+ (1-9) ell*= llael*+ (1-9)° llell® + 2(1-7).
Therefore the problem above is equivalent to

min [lg - 7 e ||

Bgq =10 (12)



The solution to this problem, with the constraint eTq =n + 2 removed, is q = 7y PBe. But this

vector also satisfies eTq = n + 2, so that it must solve (12). Since the objective function is strictly

convex, the solution to (12) is unique. It follows that the solution to (11) is
~ PBe
q= ( 0 ) (13)

so that g in (10) is the unique solution to (DFSP’). 0O

Corollary 2.2. If g is the optimal solution to (DFSP’) and

- e+ pug
X (p) =, 14
Hw = (14)
then for each A > 0 there is some p > 0 with
x4 (A)
. +(
Xy(p) = ( y ) (15)

for some positive v, where x +()\) is the next iterate produced by de Ghellinck and Vial’s algorithm

as in (5).

Proof. We find

r
+
=
[41-33
I

( (1-p) e + py Pge )

l-p

HT
1-HPB6>

so that
e+
%40 = (
+1—u B¢ 1

If we choose = A /(A + 7v), we obtain (15). O



The corollary shows that, modulo appropriate step sizes and lower bound updates, the iterates

of de Ghellinck and Vial’s algorithm can be simulated by those of an algorithm operating in Rn+2

and using (DFSP’ ) to generate search directions. Basically, the corollary follows because the search

direction § in (13) is equivalent to g in (10) in the sense of Gonzaga [15].

It remains to discuss the direction chosen by Anstreicher’s algorithm. The original Anstreicher

direction is the solution to

min 4 g
Ag =0
(DFSP'!) eTg =0
£Tg=-¢Te
lgli< R,

DO

where R:= [(n +1) (n + 2)]

is the circumradius of the simplex S={&% > 0:87%x =n + 2}.

(DFSP”) is analogous to the direction-finding subproblem in the standard-form variants of

Karmarkar’s algorithm (see, e.g., [2]). However, at the end of section 4 of [3], Anstreicher suggests

using instead the solution to

min [|g]|
Ag =10
(DFSP’'y eTg =0
iTg <-aTe
g =-¢"e

as long as the constraint (16) is tight at the optimal solution.

(DFSP).

(16)

This problem is again very close to
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Let Vg denote the projection of v into {%: Ax =0, 8T =0 }. Then the solutions to
(DFSP'), (DFSP") and (DFSP''"y all lie in the plane spanned by éq and fq, where 4 =¢ - zd.
The same is true for the optimal solution to (DFSP) as long as the monotonicity contraint (9) is not
present or not binding at the solution. Figure 1 illustrates these directions in several cases. Here gT
denotes the solution to (DFSP) assuming (9) is not present or not binding, gy, denotes the
solution to (DFSP') (of corollary 2.2), and § A denotes the solution to (DFSP!'") if (16) is tight and
otherwise to (DFSP”). In all cases, the horizontal constraint is é Tg < —:f Té and the slanted one

1Tg < -aTe.

Note that moving in the direction gGV or g A one always hits the optimality constraint at
the same time or before one hits the feasibility constraint. Thus, unless their algorithms terminate in a
finite number of iterations with an optimal solution, they never achieve feasibility. (However,
Anstreicher discusses the possibility of taking a partial step (the solution to (DFSP) with (7) and (9)
removed) when this attains feasibility; no complexity analysis is given for this variant.) On the other
hand, Todd’s algorithm can achieve feasibility if case (c) in figure 1 obtains.

If feasibility is attained in Todd’s algorithm, it is maintained from then on either by reverting
to the standard-form variant of Karmarkar’s algorithm [2, 9, 14, 21, 27] or by replacing (8) in (DFSP)
by an equality. In fact, these two approaches give the same iterates. If the current iterate is feasible,
all three algorithms are equivalent to the standard-form variant; see Vial [26].

To conclude the section, we note that de Ghellinck and Vial [11] never add a monotonicity
constraint (although monotonicity can be maintained in their feasibility algorithm, see [10]).
Anstreicher does just in “phase 0” (before a finite lower bound is generated), although his analysis is
unchanged if monotonicity is required throughout, and Todd uses it throughout (as long as v> z).
The addition of the monotonicity constraint is necessary theoretically if the initial lower bound is -co

and the feasible region is unbounded. However, this constraint is inconsistent with the way

de Ghellinck and Vial update their lower bound.



(c)

Figure 1: Comparison of search directions
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3. Updating the lower bounds

Here we describe the methods used to update the lower bound z in the algorithms of
de Ghellinck and Vial [11], Anstreicher [3], Todd [24] and Fraley [5]. We assume that the current
finite lower bound is # for all methods and that the current iterate is x = e. While derived in a
different manner, the updates of Anstreicher and Todd are identical. Let us denote the updated lower
bounds of de Ghellinck and Vial, Anstreicher and Todd, and Fraley by Zavs ZAT and an

respectively. We alm to show

Theorem 3.1.  If (P) is feasible, then zy S Zpp < zp. Moreover, both inequalities may

be strict.

First we define Fraley’s update. For any vector w, let wp denote its projection into the null

space of A. Then, since w'x = WTXP = ng if Ax =10, (P) can be written as

min ch
Ax =0
dgx:
x>0

If we omit the constraints Ax = 0, we obtain a relaxed problem whose objective value is at most that

of (P), which we denote by z,. The dual of this relaxed problem is

max 2

dpz < ¢p (17)

whose optimal value is therefore at most z,. This is the basis for the lower-bound updates for the
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feasibility-maintaining algorithms of Anstreicher [2], Gay [9], Gonzaga [14], Jensen and Steger [21] and
Ye and Kojima [27], based on the method of Todd and Burrell [22].

However, it is easy to strengthen this bound. Indeed, for any vectors f, g,..., one could instead
replace the constraints Ax = 0 by the constraints (f - fp)Tx =0, (g- gp)Tx = 0,..., which are of the
form yTAx = 0 and hence define a relaxed problem. Let us replace Ax = 0 with the single
constraint (e - ep)Tx = 0. The dual of the resulting relaxed problem will be denoted (FD), for

Fraley’s dual, and can be written as

max z
(FD)
dpz + (e - ep)T < cp

Note that dp =d - ATyd for some y 4, and similarly for cp and ep, so that (FD) is equivalent to

max Z
dz + AT(yc - 2yq - ve) < ¢

which is clearly a restriction of the dual

max 2z

dz + ATy < ¢

of (P). Todd [23] suggested a similar restriction where y was of the form y¢ - oy, with o not
necessarily equal to z.
If the current lower bound % is greater than the optimal value of (FD), say ZpDy then it

remains unchanged; otherwise, it is increased to ZpD- Hence Fraley’s lower bound is

zp = max {2, zpp}- (18)
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Here we have used Fraley’s problem (7.3) [5] to improve the bound; she also suggests two further
improvements that require the solution of three-variable linear programming problems.
Next we turn to the lower bound of Anstreicher and Todd. This is based on the problem (P)

of the previous section. For any vector W, let \?vf) denote its projection onto the null space of

A =[A, -Ae]. Then (P) can be written as

min 6pTi
Ax =0
&pr( =1
E;IST& =0
x>0,

Again, we may relax this problem by omitting the constraints A% = 0. The dual of this relaxation

will be denoted (ATD), for Anstreicher and Todd’s dual, and can be written as
(ATD)

In order to relate this to (FD) , we need to express &p , etc., in terms of dp, ete...

Lemma 3.2. If W = (w7, 0)T, then

wp + a (e - ep)
)

(64

W

where « = (e - ep)T w /[ {1+ |le- epHQ). Also



B (e- ep)
G, = ( ) (20)

where B := 1/ (1 + |le- epHQ).

Proof. We assume without loss of generality that A (and hence A) has full row rank. Then

P, =I1-AT (AAT)'lA. Now AAT = AAT + AeeTA, so by the Sherman-Morrison formula,

A
AAT) T AeeTA(AAT) ]

AATYL Ty-1 (
(AATT =40 1+ eTA(AAT)'lAe

and hence AT(AAT)'lA = AT(AAT)'lA - Ble-ep)(e- ep)T. Now it is easy to show that

Py + B (e-ep)e-ep)T B (e - ep)
P. = , (21)
B (e- ep)T 5

a>)

from which the lemma follows. [

Using the lemma, we can express Anstreicher and Todd’s dual as

max Z

(ATD) dpz + (e - ep)(agz + AB - ac)

IN

‘p

adz+)\,3~ac <0,

where ay = Ble «ep)Td and «ac = Ble - ep)Tc. Now since 8 > 0 and A is unrestricted, we can

express (ATD) in terms of the new unrestricted variable 7:= ayz + Af - o and z to get
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max z
(ATD) dpz + (e-ep)T < ¢p

T < 0.

If the optimal value of this problem is denoted by z ATD?’ then Anstreicher and Todd’s lower bound
update is

zpp = max { , ZATD) (22)

Since this last form of (ATD) is clearly more restricted than (FD), we immediately have

Zpp 2 ZATD and hence

Zp 2z (23)

However, note that (ATD) is a linear programming problem with n+2 constraints and only
two variables. At a nondegenerate optimal solution, only two constraints will be active, and if neither
is the last constraint then this solution also solves (FD) and (23) holds with equality.

Finally, we define de Ghellinck and Vial’s update. This is based on ¢ in (3). Since B

depends on u which depends on z, q is a function of z. Indeed, we can write
q=q(z) = PBe = Pug PAe = Pug ep, (24)

where up = ¢p - zdp.

Suppose first that up = 0 for some Zg which is a degenerate case. Then every feasible
solution to (P) has objective function value z (see, e.g., [11]). It is possible that zp and/or z,p
is infinite ((FD) and (ATD) are homogenous in z - z; and 7), in which case they show that (P) is
infeasible. Otherwise, Zp = Lo = 2 De Ghellinck and Vial reduce the optimization problem to a

feasibility problem in this case, which is equivalent to setting z = zg- Henceforth we assume that this
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exceptional case does not occur. If up # 0,
=1- T 2, dh
Pug upup/ [[upl|”, and hence
q(z) = ep - v(z) (cp - zdp), (25)
e T 2
where v(z) := (cp - zdp) "ep/ llep - zdpl|”.
De Ghellinck and Vial define

z if qZ) e
Gv = {

max {zZ : q(z) < e forz < z < Z } otherwise. (26)

It follows that q(z¢y) { e, so that in particular |lq(zy )|l = 1. From this it is easy to see that §
in (10) has ||g|| < R, which is a sufficient condition for progress to be made. De Ghellinck and Vial
[11] also suggest other lower bounds based on linear programming duality; however, these cannot
assure that q(z) « e, so we confine ourselves to zy, in (26).

It remains to show that zny, isa valid lower bound whenever z is. Fraley [5] establishes

the following result. For completeness, we give a proof.

Lemma 3.3. Suppose (P) is feasible and has optimal value zy, and q(z) <ee.

Then v(z) # 0. Moreover, z < z, implies z <z, and v(z) > 0, and v(z) > 0 implies z < zy4,

Proof. Let x* be optimal in (P). Then egx’k =eTx¥, ch* = cTx* = 24, dgx* =dTx* =

1,and x* > 0. From
q(z) =ep - v(z)(cp -2zdp) <e
we deduce that
-v(z)(z4 - 2) <0

from which all parts of the lemma follow.
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Corollary 3.4 ([11]). zgy is a valid lower bound if Z is.

Proof. There is nothing to prove if (P) is infeasible. Otherwise, if zay > 7, then q(Z) <e
so that & < zy and v(z) > 0. We must have v(z) > 0 forall 2z < z <z, otherwise some such
z would have qg(z) < e and v(z) =0, a contradiction. Hence all such z, and also z.y;, are valid

lower bounds. [0

When (P) is feasible and zy; > 2, 2y 1S at most the optimal value of

sup z
(GVD) ep - v(z) (cp - zdp) <e
v(z) >0,
which can be written
sup %

dpz + (e - ep) (—;%Z—)) < ¢p

1
(-;Z—Z“)') < 0.

(GVD)

Comparing this with (ATD), we conclude that
2y S oz if (P) is feasible, (27)

since (GVD) is more constrained.

We have now established the inequalities in Theorem 3.1. To finish the proof, we give an

example demonstrating that both inequalities may be strict. Let

A = (3,-1,-1),
cp = ¢=(1,3, 0)7, and

d = (0,0, )T.
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Then AAT = 11 and an easy computation gives
1 T
ep = £ (812,127 and dp = 5 (3,-1,10)7,

so that (FD) is

max z
3z + 3r <11
-z - 1 <33

10z - = < 0,

with optimal solution z = %, T = % Let 2 =-2. Then zp = max {%, -2} :%. If the constraint
7 < 0 is added to get (ATD), the optimal solution becomes z = 0, 7 = 0, so that Iy = 0.

Finally, the constraints q (z) < e can be written as

3.2 + 1322 - 407 < 0O
2+ 162 - 61 < 0
1122 + 122 - 11 > 0

so that g(2) < e for 7 =- 2. It is easily seen that zay is the negative root of the last quadratic,
which is -(6-+4157)/11. (This example shows that the complexity of (26) is necessary in defining
LGy it is not sufficient to choose any z for which q(z) < e with at least one equality. Indeed,

q(1) < e, but 1 is not a valid lower bound.) Hence in this case

Zqy < ZpT < ZF

In fact, zp is the optimal value of (P), since (FD) is equivalent to its dual. O
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Theorem 3.1 includes the hypothesis that (P) is feasible. Is it possible that when (P) is
infeasible, Zay will be larger than Zy OF Zp, Or even that Zay will be +oo, proving

infeasibility, while zp < oo? Again, the answer is affirmative, as shown by the following example.

Let

19 1 0
A:[m 0 1]

¢ =c¢p = (1,19, 317, and

d = (0,0, D)7

It is clear that (P) is infeasible, since Ax = 0, x > 0 implies x = 0. It is easy to see that the null

space of A is spanned by c, and that
ep = 3= (-1,19,8)T, and dp =& (-1, 19, 31)T
for o = 31/1325 > 0. The dual of (FD) is
min (-1, 19, 31)Tx
T
zi? (28,8,-4) x =0
a(-1,19,30)T x =1

x > 0,

which clearly has a feasible solution x = £(0, 1, Q)T for some @ > 0, with (optimal) objective value

vy=1=1325/31.
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Suppose % > v. (Any # is a lower bound since (P) is infeasible.) Then z ) = zp = 2.

However, for z > v, ¢p - zdp # 0 so that cp - zdp is a nonzero multiple of ep and

(cp- zdp)Te

e (cp -2dp) = 0 < e.
Cp—Z P

q(z) =ep
Hence gy = +o00.

It is easy to guard against this possibility. One must compute q(2z) and v(z). If q(z) <e
and v(z) < 0, then set z, . = 2p = +© and stop, since lemma 3.3 implies that (P) is infeasible.
Otherwise, continue. If there is some z with q(z) < e and v(z) =0, then e-ep >0 and it is clear
that (ATD) and (FD) are unbounded, so again z, = zp = +00 and we can stop. If nosuch z
exists, then v(z) >0 forall z <z <zqy, and the argument above shows that zny, < zpp < 2z,
even if (P) is infeasible.

To conclude this section we note an important distinction between de Ghellinck and Vial’s
lower bound update and the others. From (26), LGy depends critically on 2, while according to (18)
and (22), z AT and Zp depend on # only to ensure that they are no less. Indeed, Zy can only
improve # if q(2) < e, which requires n strict inequalities. It appears that in practice, it takes
longer to generate the first lower bound with de Ghellinck and Vial’s update, and if monotonicity is

imposed the initial lower bound is hardly ever improved.

4. Computational Results

Here we give the results of limited computational testing of various algorithms applied to the
random test problems studied in Todd [25]. Algorithm B of that paper is Anstreicher’s phase 1 -
phase 2 method as modified by Todd [24], applied to the problem (f’) of section 2. It is easy to
modify the code to use the direction gGV or g A instead of & (see section 2). We also impose the
monotonicity constraint (if (9) is not satisfied, project all vectors orthogonal to ¢ - vd and recompute

g), except where noted below. Besides its theoretical justification, the monotonicity constraint appears
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very helpful computationally, especially in improving or generating the initial lower bound; see also the
results of Anstreicher and Watteyne [4]. Similarly straightforward is the implementation of the lower
bound zp instead of z AT according to section 3, we merely remove the last inequality in (ATD).
While quantities such as c¢p, dp and ep are not directly available in the implementation, they can
easily be derived using lemma 3.2; hence we were able to implement the lower bound update Zay
also. The combination of three direction choices and three lower bound updates yielded nine
algorithms. The computation of projections to calculate search directions and update lower bounds
requires careful implementation. We used the orthogonal matrix Q from a QR factorization of the
scaled matrix AT. In addition, after each iteration, the current solution was again projected onto the
null space of the scaled matrix A. Because most of the ill-conditioning is caused by different scales for
different rows of AT, we ordered the rows by decreasing sizes of the components of the current iterate.
All algorithms were coded in FORTRAN using double precision.

For each method we made eight runs, in each of which ten random dense problems of the same
characteristics and size were solved. The first four runs involved nondegenerate problems without null
(zero in all feasible solutions) or unbounded (in the optimal solution set) variables, of sizes 50x100,
100x200, 150x300 and 200x400 (in each case this is the dimension of A in (LP): A had an extra
column). These were generated by model 1 of [25]. The second set of four runs were generated by
model 2 of [25] and had a quarter of the variables null and a quarter unbounded; the dimensions were
as in the first four runs, with no primal or dual degeneracy (except for the small amount forced by the
null or unbounded variables).

In all problems, the initial lower bound was taken to be —1010 when zqy Was used;
otherwise it was taken to be -0o. When z = -co, @ =& - zd is replaced by d in (DFSP) -
(DFSP''"). The termination criterion was as in [25]; we stopped when the maximum of .95 times the
relative error in the constraints, ten times the value of the artificial variable, and the relative error in
the objective function value was below a tolerance €, or (unsuccessfully) if the maximum was the first

term and exceeded € or if the algorithm could make no further progress in reducing a suitable
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potential function. We chose € = 107 throughout, although this was almost never achieved for the
model 2 problems, and we judged these satisfactorily solved if they achieved a tolerance of 2X10—2, as
in [25]. The results differ slightly from those given in [25] for the same algorithm, because of the
change in €.

First we consider model 1 problems. Only one of the forty problems was successfully solved
using de Ghellinck and Vial’s lower bound update Zay with any of the three direction choices when
the monotonicity constraint was imposed; on all but this one problem the initial lower bound was
never updated. The reason for this failure is that de Ghellinck and Vial’s lower bound update is
inconsistent with the addition of the monotonicity constraint, so that the direction produced is not
guaranteed to reduce the potential function; in fact, this is how the algorithms terminated, with an
indication of impossibility of progress. We therefore modified the methods when zy Was used so
that the monotonicity constraint was relaxed -- the resulting directions are denoted éGV’ etc. In this
case, the algorithms with Zay solved all the problems. The results are given in table 1 (we do not
give the unsatisfactory results of Zay with monotonicity). When using the lower bound update
2y several of the problems show a sequence of iterates with norms increasing rapidly, leading to
considerable inaccuracies; the numerical stability of the implementation allows accuracy to be regained,
but slow progress is made because the norms of the iterates have to be decreased to that of the optimal
solution. All the other methods solved all problems without numerical difficulties. There is a slight
advantage (in iteration count) to the directions gGV and g, over §,. The main difference
between the former directions is not in the number of iterations, but in the solutions obtained - in
eleven of the forty problems using z AT (ten using ZF) feasibility was attained when gT was
employed. Finally, there is a very slight improvement when Fraley’s lower bound update Zp replaces
Zp- In table 1, for all runs on the same problem set with the same lower bound update, but with
different direction choices, identical statistics reflect identical runs, except for the “17.5’s” in the first

column and the “37.9’s” in the third.



24

The results for model 2 problems are given in table 2. Here we give the average number of
iterations until termination and the number of problems (out of 10) solved satisfactorily. Again,
de Ghellinck and Vial’s lower bound update performs very poorly when the monotonicity constraint is
imposed, so the results in table 2 are for the case where this constraint is relaxed. Even in this case,
none of the forty problems was successfully solved, but at least some of the time (in 15 of the 40
problems) lower bound updates were performed. Indeed, problems with unbounded variables have the
property that there is a nonzero solution x to Ax =0, (c- Zd)TX =0, x > 0 for any z, and this
proves that q(z) & e. Hence, theoretically, no updates will ever be made. (A similar statement can be
made for the other lower bound updates, an observation of Anstreicher; see the discussion in [25].
However, in practice, with suitable tolerances lower bounds are updated; in our runs, in 39 of the 40
problems.) For these particular problems, the Anstreicher-Todd and Fraley lower bound updates
perform identically. Finally, the Anstreicher and de Ghellinck-Vial directions happen to give identical
results on this problem set, and the results are very similar to those with the Todd direction; on only
one out of the forty problems does the latter yield a feasible solution. In table 2, for all runs on the
same set of problems with the same lower bound update, but with different direction choices, identical
statistics reflect identical runs.

These computational results support our earlier claims. The directions gT and g qy are
comparable in terms of iteration counts, and slightly superior to § A while gT attains feasibility
where the other directions cannot. The lower bound updates z AT and zp are comparable, with a
very slight advantage to the latter; the update LGV performs very poorly. Overall, the combination
of éT and Zp is recommended. As in [25], the major difficulty is in obtaining the first lower bound
when the problems have null or unbounded variables. This is consistent with the numerical results of

Fraley and Vial [6,7] on the NETLIB problems.
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50x100 100x200 150x300 200x400
gqv  Zqv 325 37.5 37.9 43.3
Eqv  ZAT 17.5 20.4 22.5 23.0
gqv o 17.5 20.3 22.4 23.0
N Zay 32.5 37.5 37.9 43.3
gA ZAT 17.5 23.4 26.7 26.9
A 2p 17.5 23.3 26.6 26.9
g 2qy 32.3 37.1 37.9 42.9
g AT 17.7 20.2 22.4 23.3
&1 zp 17.5 20.1 22.5 23.3
Table 1. Average number of iterations for model 1 problems

50x100 100x200 150x300 200x400
gqv Qv 32.0/0/7 31.1/0/2 30.5/0/0 32.9/0/6
Eqv  ZAT 31.0/9 31.4/6 32.2/3 32.5/4
gqv  IF 31.0/9 31.4/6 32.2/3 32.5/4
g Zqy 32.0/0/7 31.1/0/2 30.5/0/0 32.9/0/6
Y AT 31.0/9 31.4/6 32.2/3 32.5/4
A 2 31.0/9 31.4/6 32.2/3 32.5/4
g 2oy 32.0/0/7 31.1/0/2 30.5/0/0 32.9/0/6
gt AT 30.9/9 31.4/5 32.0/2 32.5/6
&7 2 30.9/9 31.4/5 32.0/2 32.5/6

Table 2. Average number of iterations/number of problems
satisfactorily solved for model 2 problems

For the methods using 2+, the last entry is the number of problems for which a lower bound update
& gV
was made.)
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