
On the implementation of SDPT3 (version 3.1) – a Matlab

software package for semidefinite-quadratic-linear programming

K. C. Toh ∗, R. H. Tütüncü †, and M. J. Todd ‡

May 17, 2004

Abstract

This code is designed to solve conic programming problems whose constraint cone is a product of
semidefinite cones, second-order cones, nonnegative orthants and Euclidean spaces. It employs a primal-
dual predictor-corrector path-following method, with either the HKM or the NT search direction. The
basic code is written in Matlab, but key subroutines in Fortran and C are incorporated via a Mex
interface. Routines are provided to read in problems in either SDPA or SeDuMi format. Sparsity and
block diagonal structure are exploited, but the latter needs to be given explicitly or detected via a
subroutine that is provided. Various techniques to improve the efficiency and stablility of the algorithm
are incorporated. For example, step-lengths associated with semidefinite cones are calculated via the
Lanczos method. Numerical experiments show that this general purpose code can solve 80% of a total
of about 300 problems to an accuracy of at least 10−6 in relative duality gap and infeasibilities.

1 Introduction

Let Sn (Sn
+) be the space of n × n symmetric (positive semidefinite) matrices, endowed with the standard

trace inner product. For each matrix x ∈ Sn, it can be identified linear isometrically as a vector in IRn(n+1)/2

through the following vectorization operator

svec(x) = [x11,
√

2x12, x22, . . . ,
√

2x1n,
√

2xn−1,n, xnn]T .

We denote the inverse of svec by smat. We use the notation [u; v] to denote the concatenation of the
columns vectors u, v.

Let K = Sn1 × · · · × Snp and K+ = Sn1
+ × · · · × Snp

+ . We consider a standard semidefinite program with
the form:

(P) min 〈cs, xs〉+ 〈cu, xu〉

s.t. As (xs) + Au xu = b, xs ∈ K+, xu ∈ IRnu .
(1)

The notation 〈p, q〉 denotes the standard inner product in the appropriate space. The pair cs, xs ∈ K are
block diagonal matrices with cs = (cs

1, . . . , c
s
p), xs = (xs

1, . . . , x
s
p). The linear map As : K → IRm is given by

As(xs) =
∑p

j=1As
j(x

s
j), with

As
j(x

s
j) = [〈as

j,1, xs
j〉; . . . ; 〈as

j,m, xs
j〉],

∗Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543.
(mattohkc@math.nus.edu.sg). Research supported in part by NUS ARF grant R-146-000-312.

†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA (reha+@andrew.cmu.edu).
Research supported in part by NSF through grant CCR-9875559.

‡School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853, USA
(miketodd@cs.cornell.edu). Research supported in part by NSF through grant DMS-9805602 and ONR through grant N00014-
96-1-0050.

1

where as
j,1, . . . , a

s
j,m ∈ Snj are constraint matrices associated with the jth block. For computational purpose,

it is convenient to identify As
j with the following m× nj(nj + 1)/2 matrix:

As
j =

[
svec(as

j,1), . . . , svec(as
j,m)

]T
. (2)

With the matrix representation of As
j , we have that As

j(x
s
j) = As

jsvec(xs
j).

The dual of the standard semidefinite program described in (1) is the following:

(D) max bT y
s.t. (As)T y + zs = cs, zs ∈ K+,

(Au)T y = cu,
(3)

where (As)T : IRm → K is the adjoint of As defined by

(As)T y = ((As
1)

T y, . . . , (As
p)

T y) =

(
m∑

k=1

ykas
1,k, . . . ,

m∑
k=1

ykas
p,k

)
.

The program (D) only has semidefinite and equality constraints. But we should mention that SDPT3
can also explicitly handle second-order cone and linear constraints. That is, the dual problem may have
additional constraints of the form cl − (Al)T y ≥ 0 and cq − (Aq)T y ∈ Qt1 × . . . ×Qtq , where each Qtj is a
second-order cone.

SDPs of the form (P) and (D) arise frequently in control theory; see [1] for details. Thus the main purpose
of this paper is to inform readers in the control community that our general purposed code, SDPT3, can be
useful to their work.

2 Symmetrized Newton equation

The computationally most expensive step in each iteration of our interior-point method (IPM) is the com-
putation of the search direction (∆xs,∆xu,∆y, ∆zs) from the symmetrized Newton equation with respect
to an invertible block diagonal scaling matrix P (usually chosen as a function of the current iterate xs, zs).
For the choice of the HKM scaling matrix, the search direction is obtained from the following linear system:

As(∆xs) + Au∆xu = rp := b−As(xs)−Auxu

(As)T ∆y + ∆zs = rd := cs − zs − (As)T y

(4)(Au)T ∆y = ru := cu − (Au)T y

∆xs + H(∆zs) = r := σµ(zs)−1 − xs,

where µ = 〈xs, zs〉/(
∑p

j=1 nj), and σ ∈ (0, 1) is a parameter. In the above, H is the linear operator on K
defined by

H(∆zs) = (H1(∆zs
1), . . . ,Hp(∆zs

p))

Hj(∆zs
j) =

1
2
(
(zs

j)
−1(∆zs

j)x
s
j + xs

j(∆zs
j)(z

s
j)
−1
)
.

3 Computation of search direction

The standard method to compute the solution of the Newton equation (4) is to first solve the Schur com-
plement equation (SCE): [

M Au

(Au)T 0

]
︸ ︷︷ ︸

M

[
∆y

∆xu

]
=

[
h

ru

]
, (5)

where h = rp + As(H(rd) − r). The matrix M is symmetric positive definite with M = AsH(As)T =∑p
j=1As

jHj(As
j)

T . Once ∆y has been computed, ∆zs and ∆xs can readily be obtained from the second and
last equation of (4).

The matrix M is generally dense even if the constraint matrices As
j are sparse, and its computational cost

is
∑p

j=1 O(mn3
j) + O(m2n2

j) if the constraint matrices are dense. This cost may be reduced substantially if
sparsity in the constraint matrices are properly exploited. In our implementation, we exploit the sparsity
based on ideas proposed in [2]. On the other hand, if there are only second-order cone and linear constraints,
M is typically a sparse matrix (possibly plus a low rank matrix) if the constraint matrices Aq and Al are
sparse.

The linear system (5) typically becomes more and more ill-conditioned as µ decreases to 0. Thus iterative
refinement is generally recommended to improve the accuracy of the computed solution. An even better
approach to solve (5) is via a preconditioned symmetric quasi-minimal residual method (PSQMR) with the
preconditioner computed based on the following analytical expression of M−1:

M−1 =

[
M−1 −M−1AuS−1(Au)T M−1 M−1AuS−1

S−1(Au)T M−1 −S−1

]
, (6)

where S = (Au)T M−1Au. The approach using PSQMR works reasonably well if the number of columns
of Au is small and if they are not nearly dependent. However, when those conditions are not satisfied, the
PSQMR approach is not a good method to use because (a) computing S becomes very expensive, and (b)
the computed preconditioner based on (6) is no longer an accurate approximation for M−1. In this case, we
reformulate the equality constraint in (D) as

(Au)T y + zu
+ = cu, zu

+ ≥ 0

−(Au)T y + zu
− = −cu, zu

− ≥ 0,

with the corresponding primal variable xu expressed as

xu = xu
+ − xu

−, xu
+, xu

− ≥ 0.

But such a reformulation is not without difficulties. In fact, the variables xu
+, xu

− tend to become very large
and zu

+, zu
− tend to become extremely small as the IPM progresses, and this generally makes the component

matrices, Audiag(xu
+./zu

+)(Au)T and Audiag(xu
−./zu

−)(Au)T , in M extremely ill-conditioned. Fortunately, the
following heuristic to modify the vectors xu

+, xu
− can typically ameliorate such an ill-conditioning problem:

xu
+ := xu

+ − 0.8 min(xu
+, xu

−), xu
− := xu

− − 0.8 min(xu
+, xu

−).

This modification does not change the original variable xu but does slow down the growth of xu
+, xu

−. After
these modified vectors have been obtained, we also modify the vectors zu

+, zu
− as follows if µ ≤ 10−4:

(zu
+)i :=

0.5µ

max(1, (xu
+)i)

, (zu
−)i :=

0.5µ

max(1, (xu
−)i)

, i = 1, . . . , nu.

Such a modification in zu
+, zu

− ensures that they approach 0 at the same rate as µ, and thus prevents the
dual problem (D) from approaching the equality constraint too closely prematurely.

4 Computation of step-length

Once a direction ∆xs is computed, a full step will not be allowed if xs+∆xs violates the positive semidefinite
constraint. Thus, the next iterate must take the form xs +α∆xs for an appropriate choice of the step-length
α. It is straightforward to verify that for the jth block, the maximum allowed step-length that can be taken
without violating the positive semidefiniteness of the matrix xs

j + αs
j∆xs

j is given as follows:

αs
j =


−1

λmin(R−T
j ∆xs

jR
−1
j)

, if the minimum eigenvalue λmin is negative

∞ otherwise,
(7)

where xs
j = RT

j Rj is the Cholesky factorization of xs
j . If the computation of eigenvalues necessary in αs

j above
becomes expensive, then we resort to finding an approximation of αs

j by estimating extreme eigenvalues using
Lanczos iterations [4]. This approach is quite accurate in general and represents a good trade-off between
the computational cost and the quality of the resulting stepsizes. An appropriate step-length α that can be
taken in order for xs + α∆xs to stay in K takes the form

α = min(1, γαs
1, . . . , γαs

p), (8)

where γ ∈ (0, 1) is an appropriate step-length parameter.
A similar computation determines the step-size β used for the y and z variables.

5 Primal-dual predictor-corrector path-following algorithm

For notational convenience, we let c = (cs, cu), x = (xs, xu) and z = (zs, zu), where zu = 0.

Algorithm IPC. Suppose we are given an initial iterate (x0, y0, z0) with x0, z0 ∈ K ×Rnu . Set γ0 = 0.9.

For k = 0, 1, . . .

(Let the current and the next iterate be (x, y, z) and (x+, y+, z+) respectively. Also, let the current and the
next step-length parameter be denoted by γ and γ+ respectively.)

• Set µ = 〈x, z〉/
∑p

j=1 nj, and

φ = max
(

〈x, z〉
1 + |〈c, x〉|+ |〈b, y〉|

,
‖rp‖

1 + ‖b‖
,

‖rd‖
1 + ‖cs‖

,
‖ru‖

1 + ‖cu‖

)
. (9)

Stop if φ is sufficiently small.

• (Predictor step)
Solve the linear system (5), with σ = 0 for the component r in (4). Denote the solution of (4) by
(δx, δy, δz), with δzu = 0. Let αp be the step-length defined as in (8) with ∆xs replaced by δxs; and let
βp be the corresponding step-length associated with zs.

• Take σ to be σ = min (1, 〈x + αp δx, z + βp δz〉/〈x, z〉) .

• (Corrector step)
Solve the linear system (5) with r in (4) replaced by

r = σµ(zs)−1 − xs −
(
(zs)−1δzsδxs + δxsδzs(zs)−1

)
/2.

Denote the solution of (4) by (∆x,∆y, ∆z), with ∆zu = 0.

• Update (x, y, z) to (x+, y+, z+) by

x+ = x + α ∆x, y+ = y + β ∆y, z+ = z + β ∆z,

where α is computed as in (8) with γ chosen to be γ = 0.9 + 0.09 min(αp, βp). The step-length β
associated with zs is computed similarly.

• Update the step-length parameter by

γ+ = 0.9 + 0.09 min(α, β).

6 Cell array representation for problem data

Our implementation exploits the block structure of the given SDP problem. The block structure of the
problem data is described by a (p + 1) × 2 cell array named blk. The constraint matrices are stored in a
(p + 1)× 1 cell array named At, and the data for the objective function and the decision variables is stored
in a (p + 1)× 1 cell array named C, X, and Z, respectively. For the jth block with j = 1, . . . , p, the content
of the elements of the cell arrays is given as follows:

blk{j,1} = ’s’, blk{j,2} = nj

At{j} = (As
j)

T , C{j} = cs
j , X{j} = xs

j , Z{j} = zs
j .

The unrestricted block is coded as follows:

blk{p+1,1} = ’u’, blk{p+1,2} = nu

At{p+1} = (Au)T , C{p+1} = cu, X{p+1} = xu, Z{p+1} = 0.

An LMI example. Consider the following LMI problem:

max −η

s.t. GY + Y GT � 0
−Y � −I

Y − ηI � 0
Y11 = 1, Y ∈ Sn,

(10)

where G ∈ IRn×n. This problem is a dual SDP with Y identified as a vector y in IRn(n+1)/2. In this case,
we have (A1)T y = svec(Gsmat(y) + smat(y)GT). The SDP data can be generated for SDPT3 as follows:

blk{1,1} = ’s’; blk{1,2} = n; blk{2,1} = ’s’; blk{2,2} = n;
blk{3,1} = ’s’; blk{3,2} = n; blk{4,1} = ’u’; blk{4,2} = 1;
n2 = n*(n+1)/2; zz = sparse(n2,1); I = speye(n);
At{1,1} = [lmifun(G,I), zz]; At{2,1} = [-lmifun(I/2,I), zz];
At{3,1} = [lmifun(I/2,I), svec(blk(1,:),-I)]; At{4,1} = [1, zz’];
C{1,1} = sparse(n,n); C{2,1} = -I; C{3,1} = sparse(n,n); C{4,1} = 1;
b = [zz; -1];

In the above, lmifun(G,H) is a function (available in SDPT3) that generates the matrix representation of
the linear map y ∈ IRn(n+1)/2 7→ svec(Gsmat(y)HT + Hsmat(y)GT).

Sample run.

>> [obj,X,y,Z] = sqlp(blk,At,C,b);

num. of constraints = 7

dim. of sdp var = 9, num. of sdp blk = 3

dim. of free var = 1

SDPT3: Infeasible path-following algorithms

version predcorr gam expon scale_data

HKM 1 0.000 1 0

it pstep dstep p_infeas d_infeas gap mean(obj) cputime

0 0.000 0.000 2.0e+01 3.5e+00 9.6e+01 -6.363961e+00 0.0 chol 1 1

1 0.788 0.824 4.3e+00 6.1e-01 2.1e+01 -1.002356e+01 0.0 chol 1 1

2 0.735 0.878 1.1e+00 7.5e-02 8.0e+00 -6.284520e+00 0.1 chol 1 1

12 0.865 0.841 1.2e-07 8.1e-11 1.2e-05 -4.565973e+00 0.5 chol 1 1

13 1.000 0.827 7.4e-08 1.4e-11 4.7e-06 -4.565975e+00 0.6 chol 1 1

14 0.805 0.813 4.7e-07 2.6e-12 2.1e-06 -4.565976e+00 0.6

Stop: relative gap < infeasibility.

--

number of iterations = 14

primal objective value = -4.56597554e+00

dual objective value = -4.56597647e+00

gap := trace(XZ) = 2.06e-06

relative gap = 4.50e-07

actual relative gap = 1.67e-07

rel. primal infeas = 4.70e-07

rel. dual infeas = 2.62e-12

norm(X), norm(y), norm(Z) = 2.1e+05, 6.6e+00, 1.6e+01

norm(A), norm(b), norm(C) = 1.4e+01, 1.0e+00, 2.0e+00

Total CPU time (secs) = 0.6

CPU time per iteration = 0.0

termination code = 0

>> Y = smat(blk(1,:),y)

Y =

1.0000 0.0000 0.0000

0.0000 3.2451 1.7220

0.0000 1.7220 2.3211

7 Numerical results

Here we describe the results of our computational testing of SDPT3, on problems from the following sources
(a number of these problems come from control theory, and many others from engineering design and signal
processing):

1. SDPLIB collection of Borchers, available at
http://www.nmt.edu/∼borchers/sdplib.html

2. DIMACS Challenge test problems, available at
http://dimacs.rutgers.edu/Challenges/Seventh/Instances/

3. Sparse SDPs from structural optimization, available at
http://www2.am.uni-erlangen.de/∼kocvara/pennon/problems.html

4. Sparse SDPs collection of Hans Mittelmann, available at
ftp://plato.asu.edu/pub/sdp/

5. SDPs from electronic structure calculations, available at
http://www.cims.nyu.edu/∼mituhiro/software.html

6. SDPs from polynomial optimizations [3].

7. Second-order cone problems generated by the Matlab FIR filter toolbox, available at
http://www.csee.umbc.edu/∼dschol2/opt.html

Our results were obtained on a Pentium IV PC (2.2GHz) with 4G of memory running Linux, using
Matlab 6.5. Figure 1 shows the performance of SDPT3 (version 3.1) on a total of about 300 semdefinite-
quadratic-linear programming (SQLP) problems. It shows that SDPT3 was able to solve 80% of the problems
to an accuracy of at least 10−6 in the measure φ defined in (9).

References

[1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control
Theory. SIAM Studies in Applied Mathematics. SIAM, Philadelphia, USA, 1994

[2] K. Fujisawa, M. Kojima, and K. Nakata, Exploiting sparsity in primal-dual interior-point method for
semidefinite programming, Mathematical Programming, 79 (1997), pp. 235–253.

[3] D. Henrion, private communication.

[4] K.C. Toh, A note on the calculation of step-lengths in interior-point methods for semidefinite program-
ming, Computational Optimization and Applications, 21 (2002), pp. 301–310.

[5] K.C. Toh, M.J. Todd, and R.H. Tütüncü, SDPT3- A Matlab Software package for Semidefinite Pro-
gramming, Optimization Methods and Software, 11 (1999), pp. 545–581.

[6] R.H. Tütüncü, K. C. Toh and M. J. Todd, Solving Semidefinite-Quadratic-Linear Programming Using
SDPT3, Mathematical Programming Ser. B, 95 (2003), pp. 189–217.

0 20 40 60 80 100
−10

−8

−6

−4

−2

0

2

Percentage of problems solved

ac
cu

ra
cy

 ex
po

ne
nt

att
ain

ed

Performance of SDPT3−3.1 on 303 SQLP problems

Figure 1: The accuracy exponent is defined to be log10(φ), where φ is defined as in (9).

