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Abstract

This note provides a variation on a recent result of Fletcher showing that the BFGS and DFP
quasi-Newton update formulae for unconstrained minimization satisfy a least-change property with
respect to a measure introduced by Byrd and Nocedal. We provide an alternative proof based on
Fletcher’s for a result of Dennis and Wolkowicz that uses a related measure to derive a quasi-Newton

update used in the self-scaling variable metric algorithms of Oren and Spedicato.



1. Introduction

Dennis and Wolkowicz [2] investigated a number of issues concerning quasi-Newton update

formulae for use in unconstrained optimization using the measure

= . l/n (1)

defined on the cone 81_1’- of nxn symmetric positive-definite matrices. See also Wolkowicz [12].
Clearly, w(A) is related to the {y-condition number of A, but is sensitive to all its eigenvalues. One
of the results of Dennis and Wolkowicz gives a variational derivation of a quasi-Newton update (the
“nverse-sized BFGS update”) used in the self-scaling variable metric algorithms of Oren, Luenberger
and Spedicato [7-9]. Here we will provide an alternative proof of this result using a result of Fletcher
[3]. (In fact, instead of w(A) we will use n ¢n w(A), but this is a monotonic function of w(A);
n fn w(A) is also closely related to Karmarkar’s potential function for linear programming [4], as also
noted by Dennis and Wolkowicz.) Fletcher gave a new variational derivation of the BFGS and DFP

quasi-Newton update formulae using as a measure of closeness to the identity the function
P(A) := trace(A) — €n det(A) (2)

defined on sﬁ. The function % was introduced by Byrd and Nocedal [1] in their convergence

analysis of quasi-Newton methods.

The function —£n det(:) is a self-concordant barrier for the cone S;l*— in the terminology of
Nesterov and Nemirovsky [5, Chapter 3]. The associated parameter is mn, much less than the
dimensionality n(n+1)/2 of SK. This allows efficient optimization over the cone Sg, for example
to find the maximum volume ellipsoid inscribed in a polyhedron [5, Chapter 7]. Moreover, —{n det(-)
is also an n-logarithmically homogeneous barrier for S;f (Nesterov and Nemirovsky [6]), meaning

simply that



2

—{n det(tA) = —n det(A) — nint, t >0, (3)

since det is homogeneous of degree n. Hence it can also be used in potential function methods for

optimizing over S;{~ [6]. This suggests that we consider the function

¢(A) := n In trace(A) — €n det(A) (4)

on Sg , where the coefficient n is chosen to match the parameter of the barrier, so that ¢ is
homogeneous of degree 0. Note that ¢(A) =n fn w(A).
Suppose A has eigenvalues ITRRITe Then
#A) =0t (T ) — X oy
(5)
=nlan+nlnpg—ning,

where Ji denotes the arithmetic and g the geometric mean of the positive numbers Hs- The first

expression shows that ¢ is closely related to Karmarkar’s potential function

(6)

nlncTx — Eénxj
for minimizing ¢ x over the intersection of an affine flat and the nonnegative orthant Ri [4]. The

second shows that

¢(A) > n o n, with equality iff A = pl for some u > 0, (N

from the arithmetic-geometric mean inequality. Hence ¢ measures in some sense the distance of A

from the set of scaled identities (see Dennis and Wolkowicz [2, Proposition 2.1]), while ¢ measures the

distance from the identity (Fletcher [3, Theorem 1.1]).
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We will give an alternative proof of the Dennis and Wolkowicz result [2, Theorem 5.1] that ¢
provides a variational derivation of a quasi-Newton update used in self-scaling variable metric

algorithms. This result is fairly natural, since, as noted above, ¢ is insensitive to scale.

Two comments are in order before we proceed. First, while ¢ is convex, ¢ is not, which
somewhat complicates our analysis. (Dennis and Wolkowicz show that w is pseudo-convex.) Second,
Karmarkar’s potential function (6) can usually be driven to —oo when minimizing ¢Tx, while ¢
has a lower bound (7). This is because cTx can usually achieve its lower bound, assumed to be zero,
without all components of x being 0, while trace(A) — 0 for A € Sg only if A — 0. Hence ¢

is a “centering” potential function, like the part
nénxTs — Eénxj — Zénsj

of the primal-dual potential function (e.g. [11]) for linear programming, which strives to keep all

products X8 equal (xj is a primal variable, 5 a dual slack).

2. The Result

In the interpretation of the theorem below, B is viewed as an approximation to the Hessian
matrix of a nonlinear function being minimized by an iterative algorithm. A step from x to x + has
resulted in new information; the change s = x, — x in parameter values yields the difference y in
gradient values. A line search assures sTy > 0, and then we seek a new approximation B + to the

Hessian matrix that incorporates the new information yet is close in some sense to the old matrix B.

Theorem (Dennis and Wolkowicz [2]). Let B € S;l}_ with H = B_'l, and let s,y € R with

s’y > 0. Then the unique solution to



. /2. 1/2
min ¢(H" B H )

B+€Sn
B, =B} (8)
B+s =y
1s
Bss'B YYT
Be=(e S50+ ©
with
T
y Hy
=L 10
v STy (10)

Proof. First we show that (8) has a solution. Clearly, (8) has a feasible solution, for example that

1/2

1
given by (9), and we may confine our search to those B,  with ¢(H /2B+H ) at most

¢(H1/ QE +H1/ 2) for some fixed feasible B ++ We show that such B lie in a compact subset of

S;{” , whence the minimum is attained.

1/2

— 1/2
Let B := H / B H have eigenvalues fiq,....fin, SO that

1/2 1/2
¢(H/B+H/)=n2n§:uj~§:€11uj

ik

Since each summand is nonnegative, an upper bound on the sum implies that each summand is
bounded so that there is ¢ > 0 with
# > ¢ ), py foreach j. (11)
B g - 1/2 —1/2 = e . .
But Bys =y (with y=H"y, s=H s) shows |[|B_|| > |I7ll/|ls]l. This provides a lower
bound on the maximum eigenvalue of |[B 41, and then (11) shows that each s is bounded away
from zero. Similarly, H]_?;"lll > I58)I/lIFll, which gives an upper bound on the smallest eigenvalue of

B, and hence, using (11) again, on each ;. But the set of matrices B, in S§™ with each
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eigenvalue in some compact interval in (0,00) is compact, and hence so is the corresponding set of
?
B ’s.

Because the nontrivial linear constraints of (8) are linearly independent, the optimal solution

must be a stationary point of the Lagrangian function
1/2 1/2
LB, A, A) := ¢(H / B_H / ) + trace(AT(B] — B,)) + AT(Bys — y)

where A and )\ are Lagrange multipliers. Proceeding exactly as in Fletcher [3], we find

= 3@ .= 5 o= + ).i 4+ A — A+ ()\s )..’ (12)
8(B-i*)l,] trace(Hl/zB+Hl/2) ! ! ” K lJ
for all 1.
et 1/2 1
trace(H / B, H /2)
V= i . (13)

Multiplying (12) by v, we obtain
-1
0= % (Hy — ((By/v) 7 ) + vAyy — vy + ((UA)ST)ij

for all 1,j. This shows that B +/1/ is the unique solution (with multipliers vA, vA) found by

Fletcher for the problem

min ¢(H1/QC+H1/2)
C,eSt
— T
C+s =y/v,

so that Theorem 2.1 of [3] gives
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B,/v=B - Bss™B , (0/V)(/)"

sTBs sT(y/v)
or
Bss'B yy©
B, =(B — &&= ) v 4 2. 14
+ ( sTBs ) sty (14)

The only possible freedom we have in choosing B, is the choice of v. But if we pre- and

1/2

postmultiply (14) by H and take the trace we find

gl 1/

sty )

1/2 1 1o1/2
ny = (trace(l) - trace(B————ST.%—B————) v + trace (
s"Bs

T
:(1’1-—-—1)Il+y—T}—IX,
sy

so that » must equal v in (10). Since (8) has a solution, since any such solution is a stationary
point of L, and since the only stationary point is given by (9), that must be the unique solution to

(8). The proof is complete.

The update (9) with ~ given by (10) is the first case of the update resulting from the
switching strategy in Oren [7], and is the optimally-conditioned one from a class of updates considered
by Oren and Spedicato [9] when v is fixed as in (10). It is also an update suggested for the initial
update by Shanno and Phua [10]. Another update suggested in [7,9] arises in the version of the

theorem where B and H, B + and H 4 and s and y are interchanged.
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