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1 Introduction

In this paper we give an alternate derivation of the search direction chosen in Karmarkar’s algorithm
[9] for a standard-form linear vprogra,mming problem, which makes clear its very close relationship
to the simpler affine potential reduction algorithms. Our derivation is strongly motivated by and
closely related to several proposed by Gonzaga; see p. 162 in [5], p. 162 in (7], and p. 222
in [8]. However, while Gonzaga looks at the intersection of a spherical neighborhood and the
cone generated by the feasible region, we keep the original feasible region and intersect it with a
neighborhood that is a spherical cone. In this way, we can view Karmarkar’s direction as a steepest
descent direction with respect to a certain metric and we describe this precisely. The motivation
here, of taking as a neighborhood of the current interior point not an ellipsoid but rather an
ellipsoidal cone, was apparently first discussed by Megiddo [10] in the context of a modification of -
the affine-scaling algorithm of Dikin [2]. See also p. 171 in [7] (note that “f” in (30) should be
“r”) and Padberg [11].

We also prove directly that a fixed decrease in the potential function can be obtained by takingz
a step of an appropriate length in this direction. This proof is again very similar to those ofZ
Gonzaga [5, 7). We need, as he did, to make an additional assumption, which follows if the feasible=
region is compact. We provide an example showing that this restriction is necessary.

There are two ways to remove this unpleasant restriction. One is to use a monotonic variant o€
the direction, as discussed by Gonzaga in [5]. The other is to convert the given standard-form linear—
programming problem into homogeneous form using an extra variable, as discussed by Anstreicher—
[1], de Ghellinck and Vial [4], Gay [3], Jensen and Steger [12], and Ye and Kojima [15]. As noted irm
[13], the latter approach is equivalent to adding a dummy variable set equal to one to the origina1

standard-form problem and then following Gonzaga’s approach.

2 The Karmarkar Direction

We are concerned with the standard-form linear programming problem

(P) minimize cTz

subject to Az =b, z >0,

where A € R™** b € R™ and ¢ € R*. We assume that F}(P) := {zr € R*: Az = b,z > 0}i s
nonempty, that we have an initial point in this set, and that (P) has an optimal solution. Let u. s

also assume that the objective function is not constant on the feasible region of (P); if so, this ca=mn



easily be detected at the first iteration, and the algorithm halted. We further assume that b is
nonzero; otherwise, the feasible region is a cone, and given that (P) has an optimal solution, the
origin is optimal.

Interior-point methods for (P) generate a sequence of points in F(P). At each iteration,
given the current point & € F4(P), most methods scale the problem so that the current point is
e:=(1,1,...,1)T. To simplify the notation, we will assume that the current point is itself e.

Karmarkar’s method tries to drive a potential function down to —oco. Let v(P) denote the
optimal value of (P), and suppose we have a lower bound z on v(P). By our assumptions, for any

z € F(P), we have cTz > z. For any ¢ > n, let us define
¢q(2,2) := qIn(cFz — z) — In(2), (1)

where

In(z) := zn:ln(:cj). (2)
j=1

It is helpful also to write ¢ in another form. We can easily find a vector g such that g7z = 1 for
all feasible z, for example by scaling a row of Az = b corresponding to a nonzero component of b.

In any case, g will be in the row space of A. Then we can alternatively write

dq(z,2) 1= qIn((c — zg)¥z) — In(z). (3)

A natural way to choose the search direction is as the steepest descent direction for the function

bq(., 2) for a certain ¢ and 2. This direction is the solution to the problem

(SP) minimize V¢,(e,2)Td
subject to Ad =0,
ldll <1,

and is a positive multiple of — PV ¢,(e,z). Here P denotes the orthogonal projection operator
onto the null space of A; we also write v, for the projection Pv of a vector v. We can alternatively

define the steepest descent direction as the limit of the solutions (suitably scaled) to

(SP(¢)) minimize ¢q(e + d)
subject to Ad =0,
lldll < e,

as € — 0. The result is the same. This search direction is used in the affine potential reduction
algorithm of Gonzaga [6], for ¢ equal to n + 4/n. (Note that most of [6] assumes that the optimal
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value is known to be zero, and uses z = 0, but that the final section shows how lower bounds on
v(P) can be used and updated.)

In this derivation, the trust region constraint ||d|| < 1is added because the potential function
¢, is nonlinear, and so the linear approximation used in the objective of (SP) is only accurate close

to e. However, if ¢ = n, as in Karmarkar’s original algorithm, then the potential function

dn(z,2) = nln((c - zg)T:c) — In(z)

is homogeneous of degree zero in z. Moreover, the first-order Taylor approximation at the point
¢ = e can easily be seen to be accurate for any point that is a positive multiple of e. Hence perhaps
a more suitable trust region to use for this function is a neighborhood of e that is a spherical cone
of small semi-angle. (An alternative trust region would seem to be a cylinder with spherical cross-
section centered on the ray {ce : o € R}; the same result as obtained below would hold in this case,
but the neighborhood seems less suitable because the approximation is very inaccurate for points
in the boundary of the cylinder near the origin.) Similar arguments can be made for (SP(¢)).

Such a spherical cone, with semi-angle arccos((l—l-e)"% ), can be written as the set of z satisfying

IET€

(oTa)

> (14 €¢)"2y/n.
Alternatively, this is the set of z with 2Te > 0 and
T
eT(I-(1+ e)f%—)a: <0.

Now write z = e + d. Then z satisfies the linear constraints Az = b and lies in this cone if and

only if
Ad =0, eTd > —n, ()
dT(I - (1+ e)—e—‘f?)d ~2¢eTd < me.

Observe that Ad = 0 implies that e7d = el d, so we can replace “e” by “e,” in the above constraints.
P p P

Next we use the following result.
T
Lemma 1 Ifb is nonzero, I — —e%?— is positive definite.

T
Proof. As a symmetric rank-one update of the identity, I — e%fﬂ is positive definite iff its
T 2
determinant is positive. But the latter is 1 — 5"—;’1 = U—e—”—gﬂﬂ— Since Ae = b # 0 = Aep, this

quantity is positive as desired. O



From the lemma, it follows that for any sufficiently small €, the matrix I — (1 + 6)5-’;%; is also
positive definite. Thus for any sufficiently small €, the constraint eT'd > —n follows from the other
constraints in (4). Hence, z = e + d satisfies Az = b and lies in the conical neighborhood of e iff d
lies in the null space of A and a small ellipsoid, for all sufficiently small e. We can now proceed in
cither of two ways, corresponding to the two problems (SP) and (SP(¢)) above.

First, we see that as € converges to 0, the ellipsoidal constramt on d tends to that corresponding
to the metric defined by the positive definite matrix I — —2— Hence it is natural to choose our

search direction d as the solution to

(SP’) minimize Vgén(e, 2)Td
subject to Ad =0,
dT(I - e”e 2% )d < 1.

Note that (SP’) differs from (SP) only in that the Euclidean metric has been replaced by that
determined by I —

Theorem 1 Let A := cTe — z be the current duality gap. Then we have:
a) The solution to subproblem (SP) is a positive multiple of

d = —PVapy(e,z)

= —(q/A)ep + €p. )

b) The solution to subproblem (SP') is a positive multiple of

n— (n/A)c e,
n—ele,

= —(n/A)cp + ép. (6)
Proof. a) Since Ad = 0 for all feasible solutions, we may change the objective in (SP) to
min(PV ¢4(e, z))Td. Then the optimal solution to this problem, considering only the constraint
lld|] € 1, is a positive multiple of d = —PV.$,(e, z). But this solution also satisfies the constraint
Ad = 0, so is the optimal solution to the original problem (SP) also.

The second expression for d is obtained by using the definition of qb‘ in (1). Alternatively, if (3)
is used, the first term becomes (g/A)(¢c, — 2g;); but since g is in the row space of A, its projection
vanishes and the same expression results.

b) Again we change the objective to min(PVzén (e, 2))Td. Also, let

T
epe

M::I—«——;zi. (7)



Then the optimal solution to the problem (SP’), considering only the constraint dTMd <1, is a

positive multiple of d := —M~1PV,¢,(e, z). But from the Sherman-Morrison formula,

T
€p€

—, (8)

M1=T+
n——egep

so we find

ST

= —M-1PV.dn(e, 2)
=~ + 22 )PVadale,2)
—(I + =25)((n/A)ep — )

n—eg'ep
T
N n—(n/A)el ep
= —(n/A)cp+ —-————P———n_egep €p.

(9)

Moreover, we see that d automatically satisfies the omitted constraint Ad = 0, so that it is a
positive multiple of the solution to (SP’). O

We wrote d in the form given in (b) above to show its similarity to the direction d in (a), which
is familiar from the affine potential reduction method. However, note that d is just a positive

scalar multiple of

A —cTe
d=—cpt o1, e (10)
p P

which is the Karmarkar direction for the standard-form problem derived in Lemma 3.1 of Gonzaga

(7.
For our second method, we proceed directly from the constraints (4), postponing taking lirnits.

epe

T
Let us choose ¢ sufficiently small that the smallest eigenvalue of I — (1 4 €)-5-2 is at least some

fixed positive A = A(€) independent of € whenever € < & cf. Lemma 1. Then we consider (for € < €)

(SP’(¢)) minimize ¢n(e+d,z)
subject to Ad =0, egd > —n,
€ BT
dT(I - (1 + )22 )d — 2¢celd < ne.

Note that any d satisfying the last inequality above also satisfies
Alld]|? = 2ev/nl|d]| < ne,

so that
”d“ < e:{n+v;e2+)\nc’

which tends to zero as ¢ — 0. Henceforth assume that € is chosen sufficiently small that this

bound on ||d|| is less than 1. Then the constraint el d > —n is automatically strictly satisfied, and



e + d must be positive in each component, so that (SP’(¢)) is the minimization of a continuous
function on a compact set and has an optimal solution, which we denote by d(€). Moreover, since
d = 0 satisfies the only nonlinear constraint of (SP’(¢)) strictly, and the constraints are convex, the
Karush-Kuhn-Tucker conditions hold at d(e). Hence for some p = p(¢) € R and y = y(e) € R™
we have

Vada(2,2)+ ATy + (21 = (14 OZ2)d(e) = 20e5) = 0,

Ad(e) = 0, (11)

1> 0, w(d(OT(L = (1422 )d(e) — el d(€) — ne) = 0,
where z = e + d(¢). Now multiply the first equation of (11) by d(e)T and use the other equations

to deduce
p(2ne + 2eeld(e)) + d(€) Vodn(z,2) = 0.

If we now take limits as € — 0, and recall that d(€) — 0 so that V¢, (z, z) remains bounded, we
find that pe — 0 also. Now let

d(€) == 2ud(e),
and multiply the first equation of (11) by the projection matrix P to get

€p

T
°p Yd(€) = =PV ¢n(z, 2) + 2peey. (12)

(I-(1+e)—

Taking limits in (12) and using (9) and pe — 0, we arrive at

Theorem 2 As € — 0, a positive multiple of the optimal solution to (SP'(¢)) converges to the
direction d of (6).

Hence we have seen that the Karmarkar direction for standard-form problems can be derived
by either minimizing the potential function over the intersection of the feasible region with an
infinitesimally small spherical cone centered at the current solution e, or by taking the steepest

T
descent direction for this function at e, where the metric is defined by the matrix I — 3’5&

3 Convergence Analysis

In this section we show that the potential function can be reduced by a fixed constant at each

iteration, as long as a certain assumption holds, which follows if the feasible region is compact. This



" then yields the standard convergence results. We give an example showing that such a potential
reduction may not be achievable if the feasible region is unbounded, and provide a simple remedy.
To show this potential reduction, we must have updated the lower bound z on v(P) suitably.

Such bounds come from linear programming duality. The dual of (P) is

(D) maximize b7y
subject to ATy+s=¢, s2>0,

and if (y, s) is feasible in (D), the corresponding duality gap with respect to z = e is Te—bTy =
eT(c—ATy) = eTs. Note that for any vector v € R*, Pv differs from v by a vector in the row space
of A; we write y, for a vector in R™ with Pv = v — ATy,. We may assume that in calculating cp
and e,, we also have y. and y.. Now observe that for any v, (y(v) 1= Ye—V¥e, (V) 1= cp+v(e—€p))
is feasible in the equality constraint of (D), and if s(v) is nonnegative, the corresponding duality
gapis eTs(v) = eTc,+v|le—¢e,||?. Hence, if there is any v such that s(v) is nonnegative, we choose

the smallest such » and then update z if necessary so that

2> cTe—els(v), A<els(v). (13)

_~T
Observe that, if an update is performed so that A = eTs(v), then v = %——:—%?1, and this is the
“elep

coefficient of e, in (10).

From (9), we have
eI PV

d = —PV¢— ‘L‘_i“e—ep“ €p (14)
= —PV¢ - peyp,

where V¢ is shorthand for Vy¢(e, z) and

pom GFVS _ IPVS V9 (15)
le—epll? ~ lle=epll*  lle—epll®

In this section, ¢ is always defined using (3) rather than (1). The difference is significant since
sometimes V¢ appears without the projection P, and then the result depends on which definition

is used. We find it very convenient to consider also the direction

d = d+ pe
= —PV¢+ple—e) (16)

= —x¢tet ple —ep).

One reason this direction is important is that we can show



Lemma 2 d £ e, so that ||d|| > 1.

Proof. Suppose not, so that e — d > 0. Note that
A = A
—(e—d)=c, + —(1-p)(e—¢p) (17)
n n

which is of the form s(v) above, and the corresponding duality gap is eTs(v) = 2eT (e — d). Now

eTPVG

efd=—eTPVo+el(e— e,,)‘ =0. (18)

le — epl|?

Thus the duality gap is —%—eTe = A. But since s(v) is strictly positive, we can find a feasible dual
slack with a smaller v, and this would give a smaller duality gap than A, contradicting (13). O
Note that Lemma 2 also shows that d is nonzero.
Since €TV = eT((n/A)(c — zg) — €) = 0, we can alternatively write using (15) and (16)

7 €€ €€ T
L=y ey ”
=: —PgV¢,

where the last equation defines the matrix Pg. It is easy to check that Pg is a projection matrix;
indeed, as shown by Gonzaga in Lemma 2.2 of [7], Py is the matrix projecting onto @ := {z €
R" : Az = ob for some o}.

Now we use the following standard lemma, due to Karmarkar; for a proof, see for example [14].

Lemma 3 IfeTd = 0 and o||d|| < 1, then

dnle+ ad,z) < dn(e z)+aV¢Td+-mz—~ (20)
et od2) < e 31— alld])
If we apply this lemma with d = d and o = -z-l-ll—m we arrive at:
Proposition 1 Ifa = ‘2‘11%21“1’ then e + ad > 0 and
- 1
bule+3d,2) < $ule,) = 7. (21)

Proof. Note that
Vold = -V T PaVé = —||PoV¢||* = —[ld|I?,
using (19) and the fact that Pg is a projection matrix. Thus aV¢Td < —[|d||/2 < —1/2, using
R . ~ &?2||d)E . .
?emma 2. Also, our choice of & ensures that Saoald) = 1/4, from which the result follows using
20). O



How can we use Proposition 1, when the point e + @&d is not feasible in (P)? We use the fact
that the two directions d and d are equivalent in the sense of Gonzaga [5], so that line searches
in these directions in some sense give equivalent points. Indeed, using the homogeneity of ¢, we

obtain: B )
¢n(€ + aod, Z) = (}5”(6 + a(d + Pe)’ Z)

= u((1+ap)(e+ Tfa_pcz)a z) (22)
= ¢nle+ 254, 2)
as long as 1+ ap > 0. (Note that there is a slight mistake in Lemma 2.6 of Gonzaga [7] on the
potential reduction achievable in two equivalent directions: the condition that  + ah > 0 should
be z + ah € C. This is related to the condition 1 + ap > 0 needed above.)

Theorem 3 Provided d # 0, we have
o:=a&/(l+ap)>0, (23)
where & is as in Proposition 1 and p is defined in (15), and
fule +0d,2) < Gule,) ~ 7. (24)

Moreover, the hypothesis holds if either the feasible region of (P) is compact or there is a nonneg-

ative nonzero vector in the row space of A.

Proof. From the definition of &, we see that
e+ ad= (1+ap)e+aa?

is positive for all & < a&. Hence if 1 + ap equalled zero for any such «, we could deduce d >0,
contrary to hypothesis. It follows that 1 + @ > 0, and hence o > 0 as desired. Then (24) is
implied by Proposition 1 and (22).

For the last part, note that d lies in the null space of A, and is therefore orthogonal to its row
space. Thus we cannot have d > 0 if either the feasible region of (P) is compact (d would be a
direction of recession) or there is a nonnegative nonzero vector in this row space (since this cannot
be orthogonal to a positive vector). O

We now provide an example to show that if the hypothesis fails, then a step in the direction d

may not be able to provide a decrease of 1/4 in the potential function.



Example 1 Let A = [1,10,-10],b = 1, and ¢ = (0,2,1)T. Then z = e is feasible, and we can
take g = AT. We then find

-10 200 1
Cp, = —1— 302 e, = ——1-— 191 and e — e, = —1— 10
P 901 »P T 901 ’ P 201
301 211 -10

The optimal value of this problem is 0, corresponding to ¢ = (1,0,0)T, and the lower bound
updating technique described at the beginning of this section will increase any negative lower
bound to 0. (The smallest ¥ making s(v) := ¢, + v(e — ;) nonnegative is 10, and then els(v) =
eTep + vlje — €2 = 32 4+ 105%; = 3, while the current value is ¢’e = 3.) Thus ¢ — zg = ¢, and

A=3-0=3,son/A=1and

-1 ) -210
Vog=c—e= 1 ,PV¢:cp—ep:2—O-I 111
0 90
We then find p = ﬁ;%% = -9, s0 d = —PV¢ — pe, = (10,8,9)T. The corresponding direction

d=d+ pe=(1,-1,0)T. We would like to move a stepsize & = 'inld’ﬂ = 4/2/4 in the direction d.
However, every point on the ray from e in the direction d is a positive multiple of a point of the form
e+ad, with a < 1/9. Indeed, an “infinite” stepsize leads to the point at infinity in the direction of
d, which corresponds to (is a positive multiple of ) the point e+ 3d = (10/9,8/9,1). The potential
function ¢,(.,0) is decreasing all along this ray, converging to a value of ¢,(d,0) = 3.0774 from its
original value ¢,(e,0) = 3.296, a reduction of only about .22.

As we noted in the introduction, there are two ways to circumvent the problems illustrated
by the example above. One is to require that the search direction be monotone with respect to
the objective function, as suggested by Gonzaga in [5]. In the example above, this leads to the
direction 3%(930, —31,62)7, and the potential function can be decreased by 2.81 by searching in
this direction. However, the proof that the potential function can be reduced is more complicated
than that above.

The other remedy is to use the last part of Theorem 3, and ensure that some nonnegative

nonzero vector lies in the row space of A. The simplest way to do this is to introduce a dummy
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variable, so that (P) becomes

(P) minimize cT'z + 0¢
subject to Az + 0£ = b,
0Tz + 16 =1,
€20,£20,

and the final equality constraint provides the desired nonnegative nonzero vector in the row space
of the augmented A. This reformulation is equivalent to converting the given standard-form
linear programming problem into homogeneous form using an extra variable, as discussed by
[1, 4, 3, 12, 15]; see [13].

If we modify our example thus, then ¢, and e, just have a zero component appended. The
lower bounding technique can only guarantee a duality gap of at most 13 in this case, but for
simplicity let us suppose that we have z = —1, so that A = 3—(—1) = 4 = n. Then PV¢ also just
has a zero component appended. However, now it turns out that p = —9/202 and then d becomes

-2%5(220, —103,-81)T. A line search in this direction can decrease the potential function by 3.16.
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