
Linear Convergence of a Modified Frank-Wolfe
Algorithm for Computing Minimum Volume

Enclosing Ellipsoids

S. Damla Ahipasaoglu∗ Peng Sun† Michael J. Todd‡

October 5, 2006

Dedicated to the memory of Naum Shor

Abstract
We show the linear convergence of a simple first-order algorithm

for the minimum-volume enclosing ellipsoid problem and its dual, the
D-optimal design problem of statistics. Computational tests confirm
the attractive features of this method.
Keywords: Linear convergence, Frank-Wolfe algorithm, minimum-
volume ellipsoids, optimizing on a simplex.

1 Introduction

Suppose we are given a matrix X = [x1, x2, . . . , xm] ∈ IRn×m whose columns,
the points x1, . . . , xm, span IRn. Since the volume of the ellipsoid

E(0, H) := {x ∈ IRn : xT Hx ≤ n},
∗School of Operations Research and Industrial Engineering, Cornell University, Ithaca,

NY 14853, USA. This author was supported in part by NSF through grant DMS-0513337
and ONR through grant N00014-02-1-0057. e-mail: dse8@cornell.edu

†The Fuqua School of Business, Duke University, Durham, NC 27708, USA. email:
psun@duke.edu

‡School of Operations Research and Industrial Engineering, Cornell University, Ithaca,
NY 14853, USA. This author was supported in part by NSF through grant DMS-0513337
and ONR through grant N00014-02-1-0057. e-mail: mjt7@cornell.edu

1

where H � 0, is (det H)−1/2 times that of a ball in IRn of radius
√

n, finding
a minimum-volume central (i.e., centered at the origin) ellipsoid containing
the columns of X amounts to solving

minH�0 f(H) := − ln det H
(P) xT

i Hxi ≤ n, i = 1, . . . ,m.
(1)

We call this the minimum-volume enclosing ellipsoid (MVEE) problem.
Khachiyan in [8] showed that the seemingly more general problem of

finding a not necessarily central ellipsoid of minimum volume containing
a finite point set in IRn reduces to the MVEE problem for a related
point set in IRn+1, so we henceforth consider only the central case. Such
ellipsoid problems arise in data analysis and computational geometry (see
the references in [15, 10]) and as a subproblem in optimization, e.g., for each
iteration of the ellipsoid method of Yudin and Nemirovskii [20] and Shor [13]
(where a closed-form solution is available) or to initialize Lenstra’s integer
programming algorithm [11].

Problem (P) is convex, with linear constraints. After some simplification,
its Lagrangian dual turns out to be

maxu g(u) := ln det XUXT

(D) eT u = 1,
u ≥ 0,

(2)

which is also the statistical problem of finding a D-optimal design measure on
the columns of X, that is, one that maximizes the determinant of the Fisher
information matrix E(xxT): see, e.g., Atwood [1, 2], Fedorov [3], John and
Draper [6], Kiefer and Wolfowitz [9], Silvey [14], and Wynn [18, 19].

In [2], Atwood developed an algorithm for (D) that is a simple mod-
ification of those of Fedorov [3] and Wynn [18]. Indeed, we will see in
Section 2 that Atwood’s method is a specialization to (D) of the Frank-
Wolfe algorithm [4] with Wolfe’s “away steps” [17]. We will prove linear
convergence of the objective function values for both (P) and (D) using the
Wolfe-Atwood method.

Note that (D) is a convex problem, with feasible region the unit simplex.
For such problems, Wolfe [17] sketched the proof of, and Guélat and Marcotte
[5] proved in detail, linear convergence of the Frank-Wolfe algorithm with
away steps. However, the objective function g of (D) does not satisfy the
conditions assumed by Wolfe and by Guélat and Marcotte: it is neither

2

boundedly concave, nor strictly (let alone strongly) concave. Instead of using
their approach, we prove our result by applying Robinson’s analysis [12] of
upper Lipschitzian continuity to a perturbation of problem (P).

In Section 3, we consider concave maximization over the simplex, and
prove linear convergence of the method under assumptions a little weaker
than those of Wolfe and Guélat-Marcotte. Instead of strong convexity,
we suppose that Robinson’s second-order sufficient condition holds at the
maximizer. (We do assume twice differentiability, while Guélat and Marcotte
require only a Lipschitz continuous gradient.)

Finally, Section 4 gives some computational results of the Wolfe-Atwood
algorithm for the MVEE problem, showing its surprising efficiency and
accuracy. However, for m � n, it can be much slower than the DRN method
(a specialized interior-point algorithm) with an active set strategy in Sun
and Freund [15].

From both a theoretical and computational viewpoint, the simple first-
order method of Wolfe and Atwood for the MVEE problem appears to be an
attractive algorithm, like many of those developed by N. Z. Shor.

2 Algorithms and analysis for the MVEE

problem

Note that the objective function g of (D) is a concave function with gradient

w(u) := ∇g(u) = (xi(XUXT)−1xi)
n
i=1, (3)

and that, with
u+ := (1− τ)u + τei, (4)

rank-one update formulae give

(XU+XT)−1 =
1

1− τ

[
(XUXT)−1 − τ(XUXT)−1xix

T
i (XUXT)−1

1− τ + τwi(u)

]
(5)

and
det XU+XT = (1− τ)n−1[1− τ + τwi(u)] det XUXT . (6)

It is therefore computationally inexpensive to update ∇g after an update
such as (4) and to perform a line search on g to determine the optimal τ .

3

Indeed, the optimal stepsize is (see, e.g., (2.19) in Khachiyan [7])

τ∗ =
wi(u)/n− 1

wi(u)− 1
. (7)

For these reasons, applying the Frank-Wolfe algorithm [4] to (D) is an
attractive procedure, and this was proposed by Fedorov [3] and Wynn [18],
the latter without the line search, in the context of optimal design. Without
confusion, we can thus call this the FW algorithm.

We say H is feasible in (P) if it is positive definite and satisfies the
constraints of (P); similarly, u is feasible in (D) if it satisfies the constraints
of (D) and moreover has a finite objective function value, i.e., XUXT � 0.
Suppose H and u are feasible in (P) and (D) respectively. Then

n ≥
∑

i

uix
T
i Hxi =

∑
i

H • xiuix
T
i = H • (XUXT) = Tr(H1/2XUXT H1/2).

Hence

− ln det H − ln det XUXT = − ln det HXUXT

= − ln det H1/2XUXT H1/2

= −n ln(Πn
j=1λj)

1/n

≥ −n ln

(∑n
j=1 λj

n

)

= −n ln

(
Tr(H1/2XUXT H1/2)

n

)
≥ 0,

where the λj’s are the positive eigenvalues of H1/2XUXT H1/2. This proves
weak duality, and gives the following sufficient conditions for optimality in
both (P) and (D):

(a) ui > 0 only if xT
i Hxi = n; and

(b) H = (XUXT)−1,

since we must have all eigenvalues equal, and hence H1/2XUXT H1/2 a
multiple of the identity, to have the geometric and arithmetic means coincide,
and we must have the multiple equal unity to have the trace equal n. In

4

fact, it is easy to show using the Karush-Kuhn-Tucker conditions for (P)
that these conditions are also necessary. Moreover, u provides a vector of
Lagrange multipliers for (P).

We also have (e.g., Khachiyan [7]), that for any feasible u,

uT w(u) = n,

so that, given (b), (a) above holds if xT
i Hxi ≤ n for all i. Hence, for a feasible

u, we need only check that H = (XUXT)−1 is feasible in (P) to check the
optimality of u. Henceforth, we use H(u) to denote this matrix:

H(u) := (XUXT)−1. (8)

The FW algorithm thus starts with some feasible u, and then at each
iteration finds the index i with maximal wi(u) = xT

i H(u)xi, stops if this
maximum value is at most (1 + ε)n, and otherwise replaces u with u+ in (4),
where τ is chosen to maximize g(u+).

We motivated the algorithm above using the optimality conditions, but
note that ei solves the problem

max
ū
{g(u) +∇g(u)T (ū− u) : eT ū = 1, ū ≥ 0},

so at each iteration we maximize a linear approximation to g and do a
line search on the line segment joining our current iterate to the optimal
solution of the linearized problem: that is, we are performing the Frank-
Wolfe algorithm on (D).

When the algorithm stops, we have (1 + ε)−1H feasible in (P), so that
this and u are both optimal in their respective problems up to an additive
constant of n ln(1 + ε) ≤ nε. Moreover, conv{±x1, . . . ,±xm} is contained
in {x ∈ IRn : xT Hx ≤ (1 + ε)n}, but also contains {x ∈ IRn : xT Hx ≤ 1},
since the maximum of |vT x| over the latter is

√
vT H−1v =

√
vT XUXT v =√∑

i ui(vT xi)2 ≤ maxi |vT xi| for any v. Thus we have a
√

(1 + ε)n rounding

of this convex hull. Finally, for 0 < η ≤ 1, we have n ln(1+ε) ≤ 2 ln(1+η) for
ε = η/n, so for this value of ε we get an ellipsoid that has minimum volume
up to the the factor (1 + η).

(Khachiyan [7] shows that to find a (1 + ε)n rounding of the convex hull
of m points y1, . . . , ym in IRn, or to find a nearly minimum-volume not-
necessarily-central ellipsoid containing these points, it suffices to find a good
rounding or a nearly minimum-volume central ellipsoid for the set of the

5

previous paragraph, where xi = (yi; 1) ∈ Rn+1 for each i. So at the expense
of increasing the dimension by one, we can confine our attention to the central
case.)

We call a feasible u ε-primal feasible if xT
i H(u)xi ≤ (1 + ε)n for all i,

and say that it satisfies the (strong) ε-approximate optimality conditions if
moreover xT

i H(u)xi ≥ (1 − ε)n whenever ui > 0. (In the next section,
we will have both weak and strong ε-approximate optimality conditions,
corresponding to these two properties.) The algorithms of Khachiyan [7] and
Kumar and Yildirim [10] seek an ε-primal feasible u, while that of Todd and
Yildirim [16] seeks one satisfying the ε-approximate optimality conditions.
In fact, apart from the details of their initialization and termination, the
first two methods coincide with that of Fedorov (and Wynn, although he
didn’t use an optimal line search) for the optimal design problem, and hence
a specialization of that of Frank and Wolfe. We therefore denote them the
FW-K method and the FW-KY method.

Let us now describe the method analyzed by Todd and Yildirim
informally. At each iteration, we have a feasible u, and we compute the
index i with maximum wi(u) − n as before. We also compute the index j
with maximum n − wj(u) among those j with uj > 0. If w(i) − n is larger
than n−wj(u), we proceed as in the FW algorithm, but otherwise, we replace
u by

u+ := (1− τ)u + τej, (9)

where now τ is chosen from negative values to maximize g subject to u+

remaining feasible. (The optimal unconstrained τ is again given by (7),
with j replacing i, as long as wj(u) > 1: otherwise, τ is made as negative
as feasible.) It is easily seen that ej solves the problem of minimizing the
linearization of g on a restriction of the feasible set, where zero components of
u are fixed at zero, so this is the FW algorithm with away steps as in Wolfe
[17] (u moves away from ej), with specific initialization and termination
details given. This algorithm was also proposed by the statistician Atwood
[2] for the optimal design problem. We therefore call it the WA-TY method.

Observe that (P) can be reformulated as having a strictly convex
continuous objective function and a compact feasible set, so that it has a
unique optimal solution H∗ with optimal value f∗, and (D) also has an
optimal solution, possibly not unique, with optimal value g∗ = f∗. The
analyses of Khachiyan [7], Kumar-Yildirim [10], and Todd-Yildirim [16]
bound the number of steps until an ε-primal feasible solution u is obtained

6

(or until one satisfying the ε-approximate optimality conditions is found), by
bounding the improvement in g(u) at each iteration.

Khachiyan starts with u0 = (1/m)e, while Kumar-Yildirim and Todd-
Yildirim start with a more complicated procedure to determine a u0 with
at most 2n positive components. Khachiyan shows that at most 4n(ln n +
ln ln m + 2) iterations are necessary from his initial solution until a 1-primal
feasible solution is found, while Kumar and Yildirim show that no more than
16n(ln n + 1) are needed from their start to obtain the same quality. The
same is true for the WA-TY method, since until a 1-primal feasible solution is
obtained, no away steps will be performed. We therefore concentrate on the
algorithms after they produce a 1-primal feasible solution (which also satisfies
the 1-approximate optimality conditions) until they reach an ε-primal feasible
solution or one that satisfies the ε-approximate optimality conditions. For
this analysis, we need the following results.

Lemma 2.1 (Khachiyan [7], Lemma 2). If u is δ-primal feasible (and hence
if it satisfies the δ-approximate optimality conditions),

g∗ − g(u) ≤ nδ. (10)
ut
For our analysis of away steps, it is convenient to characterize normal FW

steps where ui is increased from zero as add-iterations, and those where it is
increased from a positive value as increase-iterations. Away steps are called
drop-iterations if uj is decreased to zero, and otherwise decrease-iterations.
Note that every drop-iteration can be associated with either a previous add-
iteration where that component of u was last increased from zero, or with
one of the original at most 2n positive components of u0.

Lemma 2.2 Suppose δ ≤ 1/2.
(a) If u is not δ-primal feasible, any add- or increase-iteration improves

g(u) by at least 2δ2/7.
(b) If a feasible u does not satisfy the δ-approximate optimality conditions,

any decrease-iteration improves g(u) by at least 2δ2/7.

Proof: Khachiyan [7] (Lemma 3, see also the proof of Lemma 4) proved
(a), while Todd and Yildirim [16] (Lemma 4.2) proved (b). ut

Because they are limited by remaining feasible, drop-iterations may not
provide a certifiably large increase in g, but at least g does not decrease.

7

Let k(δ) (respectively, k̄(δ)) denote the number of iterations of the FW-K
or FW-KY method (number of add-, increase-, and decrease-iterations of the
WA-TY method) from the first iterate that is δ-primal feasible (satisfies the
δ-approximate optimality conditions) until the first that is δ/2-primal feasible
(satisfies the δ/2-approximate optimality conditions). Then Lemmas 2.1 and
2.2 show that

k(δ) ≤ nδ/(2(δ/2)2/7) = 14n/δ, (11)

and similarly for k̄. So if K(ε) (respectively, K̄(ε)) denotes the number
of iterations (number of add-, increase-, and decrease-iterations) from the
first iterate that is 1-primal feasible (satisfies the 1-approximate optimality
conditions) until the first that is ε-primal feasible (satisfies the ε-approximate
optimality conditions), we find

K(ε) ≤ k(1) + k(1/2) + · · ·+ k(1/2dln 1/εe−1)
≤ 14n(1 + 2 + · · ·+ 2dln 1/εe−1) ≤ 28n/ε,

(12)

and again similarly for K̄. Hence we have the following

Theorem 2.1 (a) The total number of iterations for the FW-K algorithm to
obtain an ε-primal feasible solution is at most 28n/ε + 4n(ln n + ln ln m + 2),
while for the FW-KY algorithm, it is at most 28n/ε + 16n(ln n + 1).

(b) The total number of iterations for the WA-TY method to obtain a
solution u which satisfies the ε-approximate optimality conditions is at most
56n/ε + 32n(ln n + 2).

(c) The total number of iterations for the FW-K algorithm to obtain an
η-optimal solution (i.e., a solution u with g∗−g(u) ≤ η) is at most 3.5n2/η+
4n(ln n+ln ln m+6), while for the FW-KY algorithm, it is at most 3.5n2/η+
16n(ln n+2) and for the WA-TY method it is at most 7n2/η +32n(ln n+3).

Proof: The argument for (a) is stated above the statement of the theorem,
and for (b) we need only note that the number of drop-iterations is bounded
by the number of add-iterations plus 2n.

For part (c) we note first that if we have an η/n-primal feasible solution
or one that satisfies the η/n-approximate optimality conditions, then we
automatically have an η-optimal solution by Lemma 2.1. Thus (c) almost
follows from (a) and (b). To obtain the improved coefficient for n2/η, and
to simplify the proof, we use the proof technique of Wolfe [17]. Let γ denote
g∗−g(u) and γ+ denote g∗−g(u+). We obtain a 1/2-primal feasible solution
or one satisfying the 1/2-approximate optimality conditions in 14n or 28n

8

more steps than to find a 1-primal feasible solution or one satisfying the
1-approximate optimality conditions. From then on, γ ≤ n/2 and u is not
δ-primal feasible or does not satisfy the δ-approximate optimality conditions
for all δ < γ/n ≤ 1/2. Then Lemmas 2.1 and 2.2 show that, at every add-,
increase-, or decrease-iteration, γ+ ≤ γ − 2γ2/(7n2), so if we set γ̄ to be
γ/(3.5n2) and similarly for γ̄+, we find

1

γ̄+

≥ 1

γ̄(1− γ̄)
≥ 1 + γ̄

γ̄
=

1

γ̄
+ 1,

and so, from its initial positive value, 1/γ̄ will increase to at least k in k
iterations; thus γ will be at most η in at most 3.5n2/η iterations. For the
WA-TY method, the bound must again be doubled for the drop-iterations.
ut

Observe that the more complicated analysis of Khachiyan leads to bounds
on the number of iterations to be able to guarantee a certain quality solution,
while the simpler argument for part (c) gives bounds on the number of
iterations required to obtain a certain quality solution, but we may not know
that this quality has been reached.

We now wish to show that the WA-TY algorithm modification, i.e., the
inclusion of decrease- and drop-iterations, leads to an asymptotic bound that
grows with ln(1/ε) rather than 1/ε, that is linear convergence. Unfortunately,
this bound depends on the data of the problem as well as the dimensions,
and so does not provide a global complexity bound better than that above.

We use the following perturbation of (P):

minH�0 − ln det H
(P (z)) xT

i Hxi ≤ n + zi, i = 1, . . . ,m.

Given u satisfying the δ-approximate optimality conditions, let H(u) be as
in (8), and define z := z(u, δ) ∈ IRm by

zi :=

{
δn if ui = 0
xT

i H(u)xi − n else.

Observe that each component of z has absolute value at most δn, and that
this property fails if we merely assume that u is δ-primal feasible. Moreover,

uT z =
∑

i:ui>0

uizi = uT w(u)− neT u = n− n = 0. (13)

9

Lemma 2.3 Suppose u satisfies the δ-approximate optimality conditions.
Then H(u) is optimal in (P (z(u, δ))).

Proof: We note that H(u) is feasible and that u provides the required vector
of Lagrange multipliers, which suffice because the problem is convex. ut

Let φ(z) denote the value function, the optimal value of (P (z)). Then
φ is convex, and if u′ is any vector of Lagrange multipliers for the optimal
solution of (P (z)), then u′ is a subgradient of φ at z. In particular, if u∗ is
any vector of Lagrange multipliers for the optimal solution of (P), then u∗ is
a subgradient of φ at 0, and we find for any u satisfying the δ-approximate
optimality conditions and z := z(u, δ),

g(u) = f(H(u)) = φ(z) ≥ φ(0) + uT
∗ z

= g∗ + (u∗ − u)T z
≥ g∗ − ‖u− u∗‖‖z‖.

(14)

Here the last equality follows from (13). We have already noted that ‖z‖ ≤
n
√

mδ. To obtain an improvement on Lemma 2.1, we need to bound ‖u−u∗‖.
Since f is strongly convex near any H � 0 and the constraints are linear,
the second-order sufficient condition of Robinson [12] holds for (H, u′) for
any (P (z)), where H is the optimal solution and u′ any vector of Lagrange
multipliers. Moreover, since the constraints are linear and Slater’s constraint
qualification holds (when ‖z‖ < 1), the constraints are regular in the sense of
Robinson at any feasible H. In addition, the constraints on H (besides the
open convex set constraint that H � 0) are polyhedral, so that Robinson’s
Corollary 4.3 applies, which shows that, for some Lipschitz constant L, there
is some u∗ which is a vector of Lagrange multipliers for (P) such that

‖u− u∗‖ ≤ L‖z‖ ≤ Ln
√

mδ

whenever ‖z‖ is sufficiently small. From this and (14) we conclude

Proposition 2.1 There is some constant M > 0 (depending on the data of
problem (P)) such that, whenever u satisfies the δ-approximate optimality
conditions for some sufficiently small δ, we have

g∗ − g(u) ≤ Mδ2. (15)
ut
Applying Proposition 2.1 instead of Lemma 2.1 in (11), we obtain

k̄(δ) ≤ Mδ2/(2(δ/2)2/7) = 14M for sufficiently small δ, (16)

10

and this yields, using the argument above (12), the existence of a constant
Q > 0 with

K̄(ε) ≤ Q + 28M ln(1/ε) for sufficiently small ε.

We therefore have

Theorem 2.2 There are data-dependent constants Q̄ and Q̂ such that:
(a) The WA-TY algorithm for problem (P) requires at most Q̄ +

56M ln(1/ε) iterations to obtain a solution that satisfies the ε-approximate
optimality conditions; and

(b) The WA-TY algorithm for problem (P) gives a sequence of optimality
gaps g∗ − g(u) that is nonincreasing and, asymptotically, at every add-,
increase-, or decrease-iteration, decreases by the factor 1 − (3.5M)−1, so
that at most Q̂ + 7M ln(1/η) iterations are required to obtain an η-optimal
solution.

Here M is as in Proposition 2.1.

Proof: Part (a) follows directly from the analysis above, again allowing for
the drop-iterations. For part (b), note that asymptotically, for every add-,
increase- or decrease-iteration, Lemma 2.2 and Proposition 2.1 imply that

g∗ − g(u+) ≤ (1− 2

7M
)(g∗ − g(u)),

which gives the result. ut
To conclude this section, we observe that Proposition 2.1 not only

is used to help prove the convergence result above, but also implies
that asymptotically, solutions u that satisfy the ε-approximate optimality
conditions are likely to be much closer to optimality than those that are
merely ε-primal feasible, even if no improved bound can be given because M
is unknown.

3 The Frank-Wolfe algorithm with away steps

on the simplex

We now prove linear convergence of the Frank-Wolfe algorithm with Wolfe’s
away steps [17] for the problem

maxu g(u)
(S) eT u = 1,

u ≥ 0,
(17)

11

where g is a twice continuously differentiable concave function on the simplex,
using arguments similar to those in the previous section. The assumptions
we need are slightly weaker than those in Wolfe [17] and Guélat and Marcotte
[5].

Let us write w(u) for ∇g(u) to conform to the previous section. By
simplifying a little, we arrive at the necessary and sufficient optimality
conditions

(i) w(u) ≤ uT w(u)e, and

(ii) wi(u) = uT w(u) if ui > 0.

We say that u satisfies the weak ε-approximate optimality conditions if
w(u) ≤ (uT w(u) + ε)e, and the strong ε-approximate optimality conditions
if moreover wi(u) ≥ uT w(u)− ε if ui > 0.

Corresponding to Lemma 2.1, we can show

Lemma 3.1 If u satisfies the weak or strong δ-approximate optimality
conditions, then

g∗ − g(u) ≤ δ. (18)

Proof: We note that g(ū) ≤ g(u) + w(u)T (ū− u) for all ū by concavity, and
the maximum value of the latter over the simplex is g(u) + maxi(wi(u) −
uT w(u)) ≤ g(u) + δ. ut

Given a feasible u, the Frank-Wolfe algorithm for (S) stops if u satisfies
the weak ε-approximate optimality conditions. If not, it solves the problem
of maximizing the linearization above over the simplex, or equivalently finds
the index i maximizing wi(u)−uT w(u) > ε, and replaces u by u+ in (4) where
again τ is chosen to maximize g. To bound the improvement this yields, we
need a bound L on the norm of ∇2g(u) over the simplex (we use the operator
norm, i.e., the largest absolute value of an eigenvalue of this matrix). We
find

g(u+) = g(u) + τw(u)T (ei − u) + 1
2
τ 2(ei − u)T∇2g(u′)(ei − u)

≥ g(u) + τw(u)T (ei − u)− 1
2
τ 2L(ei − u)T (ei − u)

≥ g(u) + τw(u)T (ei − u)− Lτ 2,
(19)

where u′ is some point between u and ei. Here we have used the fact that
any pair of points in the unit simplex are at a distance of at most

√
2.

Away steps modify the algorithm as follows. We now stop if u satisfies
the strong ε-approximate optimality conditions. If not, we solve the problem

12

of maximizing the linearization over the simplex, or find the index i as above.
We also minimize the linearization over the face of the simplex with u in its
relative interior, or equivalently find the index j maximizing uT w(u)−wj(u)
among those j’s with uj > 0. If wi(u) − uT w(u) ≥ uT w(u) − wj(u), we
perform a usual Frank-Wolfe step as above. Otherwise, we make an away
step: we replace u by u+ as in (9), where τ is chosen from negative values to
maximize g subject to u+ remaining feasible.

We characterize iterations as add-, increase-, decrease-, or drop-iterations
exactly as in the previous section.

We can now prove a result analogous to Lemma 2.2:

Lemma 3.2 (a) If a feasible u does not satisfy the weak δ-approximate
optimality conditions, any add- or increase-iteration improves g(u) by at least
min{δ/2, δ2/(4L)}.

(b) If a feasible u does not satisfy the strong δ-approximate optimality
conditions, any decrease-iteration improves g(u) by at least δ2/(4L).

Proof: (a) We use (19). The value of τ maximizing the right-hand side
is (wi(u) − uT w(u))/(2L). If this is less than 1, we use this stepsize and
guarantee an improvement in g of at least (wi(u)−uT w(u))2/(4L) ≥ δ2/(4L).
Otherwise, L < (wi(u) − uT w(u))/2, so choosing τ equal to 1 assures an
improvement in g of at least (wi(u)− uT w(u))− L ≥ (wi(u)− uT w(u))/2 ≥
δ/2.

(b) We use the corresponding form of (19) with j replacing i. The value
of τ maximizing the right-hand side is (wj(u) − uT w(u))/(2L) < 0. If this
leads to a feasible u+, we similarly obtain an improvement in g of at least
(wj(u) − uT w(u))2/(4L) ≥ δ2/(4L). If not, we have a drop-iteration, and
there is nothing to prove (g does not decrease). ut

This analysis leads to a global bound as in Khachiyan’s analysis. Indeed,
while u does not satisfy the weak 2L-approximate optimality conditions, it
is easy to see that the gap g∗ − g(u) decreases by a factor of two at every
add-, increase-, or decrease-iteration. If u satisfies the weak or strong δ-
approximate optimality conditions, with δ ≤ 2L, we can obtain a solution
satisfying the weak or strong δ/2-approximate optimality conditions in at
most δ/(δ2/(16L)) = 16L/δ iterations, so a total of 32L/ε suffice to obtain
one satisfying the weak or strong ε-approximate optimality conditions. These
bounds are similar to (in fact, slightly weaker than) those in equation (6.3)
in Wolfe [17]. The reasons are the same as those given below the proof of

13

Theorem 2.1: our bounds are on the number of iterations before a certain
quality solution is guaranteed.

We now again improve Lemma 3.1 to obtain linear convergence. Since
we have no simple closed-form dual problem, we work with the following
perturbation of the problem (S):

maxu g(u)− zT u
(S(z)) eT u = 1,

u ≥ 0,
(20)

where z ∈ IRm is a perturbation vector. Given u satisfying the strong δ-
approximate optimality conditions, we define z := z(u, δ) ∈ IRm by

zi :=

{
δ if ui = 0
wi(u)− uT w(u) else.

We note that each component of z is at most δ in absolute value, and that
this property fails if we assume only the weak δ-approximate optimality
conditions. Moreover,

uT z =
∑

i:ui>0

uizi = uT w(u)− (uT w(u))uT e = 0.

The gradient of the objective function of (S(z)) is w̄(u) = w(u) − z, with
uT w̄(u) = uT w(u) by the equation above.

Lemma 3.3 If u satisfies the strong δ-approximate optimality conditions,
then u is optimal in (S(z(u, δ)).

Proof: Observe that u satisfies the optimality conditions for (S(z(u, δ)) by
the remarks above. ut

Let u∗ denote any optimal solution of (S). Then u∗ is feasible for (S(z))
with z = z(u, δ), and we conclude that g(u∗)− zT u∗ ≤ g(u)− zT u, so that

g∗ − g(u) ≤ zT (u∗ − u) ≤ ‖z‖‖u− u∗‖.

We have already observed that ‖z‖ ≤ δ
√

m, so it suffices to bound ‖u− u∗‖.
To use Robinson’s Corollary 4.3 again, we need to assume that

there is an optimal solution u∗ of (S) satisfying the strong sufficient
condition of Robinson [12].

14

Of course, the condition should be adapted to the maximization problem
(S) instead of a minimization problem. We do not need to prescribe the
Lagrange multipliers because the constraints are linear. This condition
certainly holds if g is strongly concave as in Wolfe [17] and Guélat and
Marcotte [5], but is slightly weaker. The above condition implies that u∗

is a strict local maximizer, and since the problem is convex, it is the unique
maximizer.

Since the constraints are linear and polyhedral, and the Slater condition
holds, the other conditions required for Robinson’s Corollary 4.3 hold, and
we conclude that there is some Lipschitz constant N such that

‖u− u∗‖ ≤ N‖z‖ ≤ N
√

mδ

whenever δ is sufficiently small. From this we obtain

Proposition 3.1 There is some constant M depending on the data of prob-
lem (S) such that, whenever u satisfies the strong δ-approximate optimality
conditions for sufficiently small δ, we have

g∗ − g(u) ≤ Mδ2.
ut
From this we obtain, exactly as in the last section, the following linear

convergence result.

Theorem 3.1 There are constants Q̄ and Q̂ such that:
(a) The Frank-Wolfe algorithm with away steps for problem (S) requires

at most Q̄ + 64LM ln(1/ε) iterations to obtain a solution that satisfies the
strong ε-approximate optimality conditions; and

(b) The Frank-Wolfe algorithm with away steps for problem (S) gives a
sequence of optimality gaps g∗ − g(u) that is nonincreasing and, asymptoti-
cally, at every add-, increase-, or decrease-iteration, decreases by the factor
1 − (4LM)−1, so that at most Q̂ + 8LM ln(1/η) iterations are required to
obtain an η-optimal solution.

Here L is a bound on the norm of the Hessian matrix of g on the simplex,
and M is as in Proposition 3.1.

4 Computational Study

In this section we present some computational results for the Wolfe-Atwood-
Todd-Yildirim (WA-TY) modified FW algorithm, using different initializa-

15

tion strategies. Specifically, we test the original Khachiyan initialization
strategy, where the initial feasible u is set to be the center of the simplex in
IRm, that is, ui = 1/m for all i = 1 . . . m. We also test the Kumar-Yildirim
initialization strategy, see [10].

We compare the above Frank-Wolfe-type first-order algorithms with a
second-order interior-point algorithm, the DRN algorithm proposed in Sun
and Freund [15]. For better illustration, we use the same test data sets as in
Sun and Freund [15]. All computations were conducted on a Dell Xeon with
3GHz CPU, running Linux and Matlab version 7 (R14).

In Table 1, we compare the computation time of the DRN algorithm
and the WA-TY algorithm with the two initialization strategies on small- to
medium-sized data sets. We set ε = 10−7 for the WA-TY algorithm, and
ε1 = ε2 = 10−7 for the DRN algorithm (see Sun and Freund [15]). It is
clear from the results that, while the computation time for algorithm DRN
increases dramatically with the increase in the number of data points m,
the running time for the WA-TY algorithm increases more or less linearly.
Therefore while DRN is slightly faster for small-sized problems, the WA-
TY algorithm shows a decisive advantage in large-scale problems compared
to the DRN algorithm not combined with active set strategies. Another
observation is that the Kumar-Yildirim initialization strategy demonstrates
a considerable advantage over the original Khachiyan initialization strategy,
especially for problems with large m.

We also tested the original FW-K and FW-KY algorithms. We stopped
the algorithms after 100,000 iterations, which took from 300 to 450 seconds,
at which point the optimality gap ε was only around 10−4. It is striking that
the away steps enable the FW algorithm to achieve a high degree of accuracy.

We note that [15] did not take advantage of the rank-one updating
formulae for the FW-K method (called there the conditional gradient
method) in the complexity analysis in the end of Section 4. The pessimistic
view regarding its computation time in practice (see the end of Section 7
in [15]) is also partly due to the same error in the implementation. Our
experience in this paper confirms that the correctly implemented FW-KY
method is able to reach low accuracy (10−3) in a reasonable time for small
instances, but not high accuracy (10−7).

Table 2 demonstrates the performance of the WA-TY algorithm on
larger data sets, compared with the DRN algorithm combined with an
active set strategy as in Sun and Freund [15]. For the Kumar-Yildirim
initialization strategy, it seems that the computation time grows linearly in n

16

Table 1: Geometric mean of solution times of algorithms DRN and the WA-
TY algorithm with the Kumar-Yildirim initialization (KY Init.) versus the
Khachiyan initialization (Kha Init.), for random samples of 10 problems,
using data sets for Table 2 of Sun and Freund [15].

Geometric Mean of Time (Seconds)
n m DRN WA-TY (KY Init.) WA-TY (Kha. Init.)
10 50 0.025 0.101 0.103
10 100 0.103 0.197 0.214
10 200 0.613 0.204 0.254
10 400 4.727 0.355 0.525
10 600 15.435 0.557 0.897
10 800 38.112 0.603 1.045
20 200 0.576 0.321 0.384
20 300 1.876 0.498 0.634
20 400 4.523 0.757 0.936
20 600 14.155 0.879 1.172
20 800 34.370 1.307 1.779
20 1000 71.292 1.289 1.982
20 1200 141.178 1.424 2.433
30 450 6.041 0.906 1.043
30 900 49.573 1.764 2.395
30 1350 187.907 2.529 3.794
30 1800 453.820 3.268 5.327

17

Table 2: Geometric mean of solution times and number of iterations
(plus, minus and drop) of the WA-TY algorithm with the Kumar-Yildirim
initialization versus the Khachiyan initialization and the DRN algorithm with
an active set strategy, for random samples of 10 problems, using data sets in
Table 3 of Sun and Freund [15].

Dimensions WA-TY (KY Init.) WA-TY (Kha. Init.) DRN/Act. Set
n m Time (sec.) # Iterations Time (sec.) # Iterations Time (sec.)
20 1,000 1.24 1885.97 2.16 2974.86 0.77
10 10,000 6.06 2108.53 45.59 11943.62 0.55
20 10,000 12.84 4055.55 56.10 13828.65 2.13
20 20,000 20.07 3714.98 177.66 23755.99 2.71
20 30,000 42.87 5403.83 394.78 35328.57 3.35
30 10,000 19.60 5479.05 66.89 15137.82 7.29
30 20,000 38.32 5839.51 222.60 25941.59 8.73
30 30,000 57.98 6085.83 458.17 36032.44 9.47

and m. The results also indicate that the Kumar-Yildirim initialization is not
only advantageous in theory, but also in practice, especially for large-scale
problems. The superiority in the active set strategies suggests the potential
of speeding up the computations by combining the WA-TY algorithm with
some active set heuristics.

18

References

[1] C. L. Atwood. Optimal and efficient designs of experiments. The Annals
of Mathematical Statistics, 40:1570–1602, 1969.

[2] C. L. Atwood. Sequences converging to D-optimal designs of
experiments. The Annals of Statistics, 1:342–352, 1973.

[3] V. V. Fedorov. Theory of Optimal Experiments. Academic Press, New
York, 1972.

[4] M. Frank and P. Wolfe. An algorithm for quadratic programming. Nav.
Res. Log. Quart., 3:95–110, 1956.

[5] J. Guélat and P. Marcotte. Some comments on Wolfe’s ‘away step’.
Mathematical Programming, 35:110–119, 1986.

[6] St. R. C. John and N. R. Draper. D-optimality for regression designs:
A review. Technometrics, 17:15–23, 1975.

[7] L. G. Khachiyan. Rounding of polytopes in the real number model of
computation. Mathematics of Operations Research, 21:307–320, 1996.

[8] L. G. Khachiyan and M. J. Todd. On the complexity of approximating
the maximal inscribed ellipsoid for a polytope. Mathematical
Programming, 61:137–159, 1993.

[9] J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems.
Can. J. Math., 12:363–366, 1960.

[10] P. Kumar and E. A. Yıldırım. Minimum volume enclosing ellipsoids and
core sets. Journal of Optimization Theory and Applications, 126(1):1–
21, 2005.

[11] H. W. Lenstra, Jr. Integer programming with a fixed number of
variables. Mathematics of Operations Research, 8:538–548, 1983.

[12] S. M. Robinson. Generalized equations and their solutions, part II:
Applications to nonlinear programming. Math. Prog. Study, 19:200–221,
1982.

19

[13] N. Z. Shor. Cut-off method with space extension in convex programming
problems. Kibernetika, 13(1):94–95, 1977. English translation:
Cybernetics 13(1), 94–96.

[14] S. D. Silvey. Optimal Design: An Introduction to the Theory for
Parameter Estimation. Chapman and Hall, New York, 1980.

[15] P. Sun and R. M. Freund. Computation of minimum volume covering
ellipsoids. Operations Research, 52:690–706, 2004.

[16] M. J. Todd and E. A. Yıldırım. On Khachiyan’s algorithm for the
computation of minimum volume enclosing ellipsoids. Technical Report
TR 1435, School of Operations Research and Industrial Engineering,
Cornell University, Ithaca, New York, 2005.

[17] P. Wolfe. Convergence theory in nonlinear programming. In J. Abadie,
editor, Integer and Nonlinear Programming, pages 1–36. North-Holland,
Amsterdam, 1970.

[18] H. P. Wynn. The sequential generation of D-optimum experimental
design. Annals of Mathematical Statistics, 41:1655–1664, 1970.

[19] H. P. Wynn. Results in the theory and construction of D-optimum
experimental designs. Journal of the Royal Statistical Society. Series B
(Methodological), 34:133–147, 1972.

[20] D. B. Yudin and A. S. Nemirovskii. Informational complexity
and efficient methods for the solution of convex extremal problems.
Ékonomika i Matematicheskie metody, 12:357–369, 1976. English
translation: Matekon 13(2), 3–25.

20

