SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NY 14853-3801

TECHNICAL REPORT NO. 1170

July 1996

On Adjusting Parameters
in Homotopy Methods
for Linear Programming®
by
Michael J. Todd

1Research supported in part by NSF through grant DMS-9505155 and ONR through grant
N00014-96-1-0050.



On Adjusting Parameters in Homotopy
Methods for Linear Programming

Michael J. Todd *
School of Operations Research
and Industrial Engineering
Rhodes Hall
Cornell University
Ithaca, NY 14853

July 1996

Dedicated to Michael J. D. Powell on his 60th birthday.

Abstract
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lems and path-following (infeasible-) interior-point methods. If we
have a metric in solution space that corresponds to the complexity
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metric in parameter space, which can be used to guide parameter-
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infeasible- interior-point methods for linear programming.
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1 Introduction

This paper is concerned with developing guidelines for optimal adjustment of
parameters in homotopy or path-following algorithms in optimization, con-
centrating on interior-point methods for linear programming. The general
idea of such algorithms is that, given a particular problem, we regard part of
the data, and possibly some additional parameters, as a parameter vector.
To obtain a solution corresponding to some fixed value of the parameters,
we trace a path as the parameter vector is adjusted from an initial artificial
value, for which the corresponding solution is known, to the desired value.
The thesis of our work is that for some such algorithms, in particular for
several interior-point methods for linear programming, there is a natural
(Riemannian) metric on parameter space with two properties: firstly, the
distance between two parameter vectors measures the complexity of obtain-
ing the solution corresponding to the second given that corresponding to the
first; and secondly, that this complexity can be attained by following the
shortest path joining the two vectors in this metric.

While our focus here is on algorithms for linear programming, Mike Pow-
ell’s work in optimization has been mainly concerned with nonlinear program-
ming. However, the methods we consider use primarily ideas from nonlinear
programming, particularly those of the classical barrier function approach
to constrained optimization. In addition, Powell himself has made two very
fine contributions to interior-point algorithms for linear programming: an
analysis of Karmarkar’s original algorithm [7] for discretizations of a simple
two-variable semi-infinite programming problem [20, 19], and a general con-
vergence proof [21] for Polyak’s modified barrier method [18]. In the first,
the concern was complexity: Powell showed that the number of iterations re-
quired could be close to the bound established by Karmarkar; in the second,
the topic was proving convergence of a (primal) method that did not require
an initial strictly feasible solution. Our interest here also revolves around
these two themes of complexity and infeasible- interior-point methods, but
now from a primal-dual viewpoint.

There is another connection to Powell’s work, indeed to his pioneering
paper with Fletcher [4] on Davidon’s variable metric algorithm for uncon-
strained minimization [2]. These papers introduced the famous DFP update
formula and more generally gave birth to the field of quasi-Newton meth-
ods. The idea of a variable metric is key in this and also in our work. For



unconstrained minimization, the Hessian of the objective function or a posi-
tive definite approximation to it defines a local norm at the current solution,
and steepest descent with respect to this metric permits good progress in
decreasing the function. As the iterates move, the curvature of the function
changes, and the appropriate metric to yield good behavior also changes.

In interior-point methods a variable metric is also fundamental, but here
it is used to describe the constraint set K rather than the objective function.
This is different from incorporating curvature from the constraint functions
into the objective function via the Lagrangian as in sequential quadratic
programming, for example, because curvature is induced even by linear con-
straints: the metric reflects the geometry of all the constraints, not just those
estimated to be active at the solution. Just as in general relativity the pres-
ence of all (but especially nearby) masses curves space-time, so here the
presence of all (but especially nearby) constraint boundaries determines the
local geometry.

To give an example, for the nonnegative orthant K = R, at every
point  of the positive orthant int k' = ", we can define a local norm
by ||o|ls := ||X~'v||2, where here and below X denotes the diagonal matrix
containing the components of x. First, this norm reflects in some sense the
shape of K: {z +v : ||v|l, < 1} € int K. Second, it is the ellipsoidal norm
defined by the Hessian of a barrier function for I, namely the logarithmic
barrier function

o(z) = ~ﬁ:1n(:c(j)), (1.1)

where 2 denotes the jth component of z: ||v]l, = (v'¢"(x)v)"/?. Third,
if we are close to a desired point in this norm, we can approximate it well
by a single Newton step: if  solves min{p~'c'z + ¢(z) : Az = b,z € K},
and we have a point € int K with ||z — z||, < ¢ for some absolute constant
§ < 1, then one Newton step from z will give a very good approximation to
#. (Results of this form have been proved in a very general framework by
Nesterov and Nemirovskii [14].)

Actually, we shall use not only local norms, but also the induced Rie-
mannian metrics (the distance between two points is the length of a shortest
path, measured using the local norm, connecting them) in what follows. The
resulting Riemannian metric in parameter space will have the two properties
mentioned at the beginning.



This paper is organized as follows. In Section 2 we describe the homotopy
methods of interest, first in an abstract framework and then for linear pro-
gramming. Then Section 3 discusses metrics in solution space, first in general
and then for linear programming, and then shows under a certain key hy-
pothesis how the complexity of a path-following method can be bounded by a
constant times the induced distance between two parameter vectors. In Sec-
tion 4 we calculate the local norm in parameter space for linear programming,
and Section 5 then finds some shortest paths. Some of these challenge the
conventional wisdom that recommends approaching feasibility faster than (or
at the same rate as) optimality in infeasible-interior-point methods. Finally,
Section 6 sketches a justification for the crucial hypothesis concerning the
metrics in the case of linear programming.

A forthcoming paper will show how the same ideas can be applied to
pivoting algorithms and to interior-point methods for more general convex
programming problems, and will contain proofs of some of the results that
are omitted here.

Related ideas of how to adjust parameters in interior-point methods ap-
pear in the target-following work of Mizuno [11] and Jansen, Roos, Terlaky,
and Vial [5, 6]. Of course, the key ideas of Nesterov and Nemirovskii [14] on
how barrier functions induce metrics with computational significance were
also an important catalyst. While this research was in progress, I became
aware of related later work by Nesterov and Nemirovskii [15] on moving ef-
ficiently in a multi-parameter surface. I would also like to acknowledge very
helpful conversations with Jim Renegar on this approach, with Clovis Gon-
zaga on infeasible-interior-point methods, and with Gongyun Zhao, who has
had very similar ideas, on appropriate metrics.

Our notation is mostly standard. We will use upper case letters (like X,
S, and W) to denote the diagonal matrices containing the components of the
corresponding vectors (like z, s, and w), and e to denote the n-vector of ones,
o that Xe = x, etc. Thus X Se denotes the vector whose components are
the products of those of ¥ and s, but we shall also use zs to denote the same
vector, and similarly 212z and In x to denote the vectors of square roots,
reciprocals, and logarithms of the components of x, etc. Sequences will be
indicated by subscripts, and components by superscripts inside parentheses,
as in (1.1) above.



2 Homotopy methods for mathematical pro-
gramming

Here we describe formally the class of methods we are dealing with and show
how interior-point algorithms for linear programming are included.

Solution vectors z lie in some subset Z of a Euclidean space, while pa-
rameter vectors A lie in a subset A of another Euclidean space. (Perhaps
it would be more accurate to say subsets of finite-dimensional real vector
spaces, because we shall use metrics (Riemannian metrics) on these spaces,
which may be very different from Euclidean metrics, in order to measure the
complexity of homotopy algorithms.) The solution and the parameter are
related implicitly by the equation

F(z,A) =0. (2.1)

We assume that F is continuously differentiable and that for each A € A
there is a unique z = z(\) € Z satisfying (2.1). We also assume that the
partial derivative with respect to z, F;(2(A), A), is nonsingular for any A € A.

We suppose we know z := z(Xg) (or a good approximation to it) for
some Ay € A, and we seek z; := z(\;) for some A, € A. The basic idea of a
homotopy or path-following method is to define a path 7 : [0,1] — A from
Ao to Ap (i.e., with v(7) = A; for i = 0, 1), and to trace or approximate the
solutions C(t) := 2(7(t)) as t goes from 0 to 1. The basic mechanics of the
method determine how the tracing is to be performed (usually via Newton or
Newton-like steps), whereas the key high-level question is how the path v is
to be chosen. Our criterion throughout will be the complezity of obtaining 21,
i.e., of tracing the path (. Simple examples show that the linear interpolation

may not be best according to this criterion.

While the focus here is on short-step path-following methods, we suspect
that the paths selected will also be appropriate for adaptive- or long-step
methods, where the parameter is moved at each iteration as far along the
path as a single Newton step can track accurately or where a long step along
the path is attempted by taking a sequence of Newton steps.

We remark that a parallel theory can be developed for the case that
F(z,\) = f(z)— A, with f piecewise-linear. In this case, pivots replace New-
ton steps at each iteration, and the metrics to be defined are not Riemannian
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but basically count the number of pieces of linearity encountered. Lemke’s
method [10] can be viewed as a homotopy method in this framework. For sim-
plicity, we confine ourselves here to the continuously differentiable case. This
still encompasses a great variety of computational algorithms, for example
smooth continuation methods for zero-finding or fixed-point problems. Our
motivation comes from interior-point, and in particular infeasible-interior-
point methods, for linear programming and its extensions, originating with
Karmarkar [7]. Here, due largely to the pioneering work of Nesterov and Ne-
mirovskii [14], a great deal is known about the behavior of a Newton step at
each iteration based on a fundamental metric defined by a barrier function.
Our aim is to formalize the use of these metrics and use them to suggest
“good” paths v to be used in path-following methods.

Let us therefore describe the framework of path-following interior-point
methods for linear programming. In fact, our development also applies to
similar methods for more general conic problems as studied by Nesterov
and Nemirovskii [14], where the nonnegative orthant is replaced by a closed
convex solid pointed cone. If the cone has a self-scaled barrier in the sense
of Nesterov and Todd [16, 17], then similar results can be established. Such
problems include those of semidefinite programming, which have been much
studied recently.

2.1 Interior-point methods for linear programming

Suppose we wish to find an optimal solution to the problem

msvin clT:E
(LP) Az = by,
x > 0,
and its dual
max by
(LD) ATy + s = ¢,
s > 0,

where A € R b € R™, ¢ € K", z,s € N", and y € R, We always
suppose A fixed and, without loss of generality, of full row rank. The right-
hand-side vector and the cost vector may be fixed, but often will be part of



the parameter vector. Our approach is via solutions to the system

Az — b =0, (x>0)
ATy + s —c =0 (s>0) (2.3)
XSe — 2 =0

for a sequence of values of b, ¢, and v. Recall that our notation here is that e
always denotes a vector of ones in ", while X and S are diagonal matrices
with Xe = z and Se = s; v? denotes the vector whose components are the
squares of those of v € R" (the target vector). We also write xs for XSe
when no confusion can result.

Note first that the optimality conditions for (LP) and (LD) are exactly
(2.3) for v = 0. Interior-point methods consider solutions for vectors v > 0,
in which case = and s are both positive (interior points of the cone R7% ).
We will therefore ignore the nonnegativity conditions in (2.3), and write the
left-hand side of these equations as F(z,A), where always z := (z,y,8) €
Z =R, xR xR,

Note that F,(z, A) is then

0 A O
AT 0 T |,
0 S X

which is nonsingular for any x,s > 0; it is also well-known that there is a
unique solution (z,y,s) € Z for any b, ¢, and v > 0 for which Az = b and
ATy + s = ¢ have solutions with z,s > 0.

There are several choices for A. Suppose first that (LP) and (LD) have
strictly feasible solutions, with x and s positive. Then there is a very impor-
tant path in the set of feasible solutions to (LP) and (LD), called the central
path. It consists of all solutions to (2.3) with b=by, c=cy, and v? = pe for
some positive . Suppose we have strictly feasible solutions g and (yo, So),
with zgso close to pe for some g > 0. Then we can approximate a solution
to (LP) and (LD) by following the central path; this corresponds to choosing
M= p € A= (0,00), fixing b and c as by and ¢, and replacing v? by pe.
In this case our parameter is one-dimensional, so the question of choosing
the path 7 is moot, but we will still be able to say something about the
complexity of moving from p = fig to gt = p in terms of the length (suitably
defined) of this path.



Recall that for any feasible solutions = and (y, s) to (LP) and (LD),
To—bTy=(ATy+s) z— (Az)Ty=s'2>0,

so the primal objective value is always at least the dual objective value. The
difference is called the duality gap, and is zero at optimality. If 2= (2,9, 9)
solves (2.3) with v? = pe, then the duality gap is

sTe=el XSe=ce'(ue) =npy, (2.4)

so finding a solution for a small value p; guarantees a small duality gap.
Hence central path-following algorithms (e.g., Monteiro-Adler [13] and Kojima-
Mizuno-Yoshise [8, 9]) are included in our framework.

Next suppose we again have strictly feasible solutions =g and (¥, So), but
Toso is not close to a multiple of e. We could perform some “centering” steps
to approach the central path and then proceed as above, but it may be more
efficient to use a target-following method. Thus we again fix b and ¢ as by
and ¢, but now use A := v € A = R}, as our parameter vector. Note that
the duality gap for the corresponding solution is now

sTo=e' XSe=e'v’=|v|3 (2.5)

so we want to adjust A = v from its initial value vo with £gsg = v§ to some v,
of small norm. Thus the methods of Mizuno [11] and Jansen-Roos-Terlaky-
Vial [5, 6] are embraced.

If we do not have strictly feasible solutions, we can choose an arbitrary
starting point zo = (@, Yo, sg) € Z and set by = Axg, cg = ATy + so. There
remain several choices for A. If zgs¢ is close to pge for some o > 0, we can
choose A = (b,c, i) € A := AR} ,) X (AT(R™) + R%,) x Ry, and follow
solutions to (2.3), with v* replaced by pe, as A moves from Mg := (bo, o, to) tO
At := (by, c1, p1) for some suitably small y1. If not, we can choose A := (b, ¢,v)
in the obvious A and proceed similarly. We can also replace b and ¢ by
(1 — )by + 0by and (1 — 0)co + fcy, and use A := (8, ) or A := (6,v) as our
parameter. Hence we include most infeasible-interior-point methods; see,
e.g., Mizuno-Todd-Ye [12] and the references therein.

3 Metrics reflecting complexity

In this section we show how, given a metric dz on Z indicating the complexity
of moving the solution vector, we can infer a metric dp on A so that we can
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obtain (a good approximation to) z(A;) from (a good approximation to)
2(Ao) in O(da (Ao, A1) basic steps, and the corresponding path v in A is the
shortest path in A according to dj.

We will suppose that Z is a differentiable manifold endowed with a Rie-
mannian structure, whose distance reflects the complexity of moving between
two different solution vectors. We then pull this metric back to A, which is
also assumed to be a differentiable manifold. Then the distance in A from
Ao to A, will represent the “best” complexity of a path-following method to
approximate z(A;) given z(Xo), and the corresponding shortest path a desired
path to follow in A to achieve this complexity. We illustrate the development
using linear programming.

Let Z be a differentiable manifold equipped with a Riemannian structure
(see, for example, Boothby [1]), so that for each z € Z, there is an inner
product {-,-), defined on the tangent space at z. Thus for every tangent
vector 7 at z (we use Z instead of dz to simplify the notation; it does not
necessarily indicate the derivative of a path, but no confusion should result),
we can define its z-norm by

1212 == (3,23 (3.1)

We call this the local norm at z. Then given a piecewise smooth path ¢ :
[0,1] — Z, we define its length by

.
00 = [ IEO s (3:2)
0
Finally, the distance between zg and z; in Z is defined to be
dz(Z(), 21) = 1létf gz(C), (33)

where the infimum is taken over all piecewise smooth paths ¢ from 2o to z1,
i.e., with ((i) = z, i =0,1. We also define a modified metric

d'y(z0, 21) = do(ay(20, 21) := iIle 02(C)

for points zo = z(Xo) and z; = z(A1), where now the infimum is taken over
piecewise smooth paths ¢ : [0,1] — z(A) from 2o to 2.
Given a point z = z(\) € Z, we call z € Z an n-approzimation to z if
either
dz(z,2) <n or |lz—Z|:<n (3.4)



The second choice is often more convenient, and we shall use it in our appli-
cation to linear programming, but it requires that z — 2 be a tangent vector
at z; this certainly holds if Z is an open set (as in linear programming), so
that the tangent space at any point is the Euclidean space in which Z is em-
bedded. Note that given only z and A, it may be hard to recognize whether
(3.4) holds; we will comment further on this in Section 6.

The key requirement we make on our metric is

Hypothesis 3.1 There are constants ¢ > 0 and n > 0 with the following
property. Suppose Z = z(A) and Z = z(\y) for some X\, Ay € A, and suppose
=z is an n-approzimation to Z. Then, as long as

d/Z<zv/§+) < (35)

the Newton step from z for the system F(., Ay) = 0 is well-defined and yields
an n-approzimation z, t0 Zi.

In other words, if we have a good approximation z to the solution vector
corresponding to the parameter vector A, and we adjust the parameter vector
<o that the solution vector moves a small amount (¢ in the Riemannian
metric), then we can recover a good approximation to the new solution vector
by performing a single Newton step.

Verifying that Hypothesis 3.1 holds in a particular setting can be arduous.
For now, we merely define the metric for the cases of linear programming,
postponing any discussion of its validity until the final section.

3.1 Linear programming

Here Z = R", x R™ x R}, and at any z € Z, the tangent space is just
R x ™ x R, First we define primal and dual norms in both primal ()
and dual (s) spaces. We set

olle = 1X " olla, s = [ Xulle, (3.6)

lulls == 157 ulla, (VIS = (1Sl (3.7)

Note the simple property that, if z € R, and v € R" with l|v]|z < 1, then
z+v € R?,, and similarly for s. To define the Riemannian structure at z =
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(2,y,5) € Z, we first compute j := sTx/n and w = 212572 ¢ = 52712,
and then for any z; = (4, Ui, $;) in the tangent space, i=1,2, we set

(i, 2a), o= (] W2 + 81 T7252), (3.8)
so that
1211 = w21 + 181D, (3.9)

where # =: (&,7, §) (this notation will be implicit from now on). This is not
strictly a norm; it becomes one if we eliminate the free variables y, but they
are convenient to retain.

To motivate the use of w here, let us note that the norm Il - || and its
dual || - ||* arising from the primal solution x are generally unrelated to the
norm || - ||s and its dual || - ||} arising from the dual solution. To effect a

compromise, we use the intermediate vector w. Let us recall the logarithmic
barrier function

() == — Zi: In(z"9), (3.10)

where 20) denotes the jth component of z. Then [[vfl, = (¢" (x)v,v)Y/?
and ||ull®t = (u,[¢"(2)]'u)"/?, and similarly for the norms associated with
s, w, and t. Note that ¢"(w)z = s (and similarly ¢"(t)s = x, with ¢"(t) =
[¢"(w)]™!), so that the norms defined by w and t are dual and are symmetric
between the primal and the dual. In interior-point terminology, methods
based on the norm || - ||, are called primal-scaling methods, those using || - ||s
are called dual-scaling, while those using ||+ ||, are called (symmetric) primal-
dual-scaling methods.

In one important special case, these norms are all related. If z is central,
so that xs = pe, then w = p~Y/2z and (3.9) simplifies to

1201 = (212 + 181" (3.11)

Then ||2||. < 1 implies that |||l and [[||; are less than 1, so that z+2 € Z.
This does not hold in general, but if zs > 6% ue for some 0 € (0,1], it is easy
to see that ||Z]|, < @ implies that z + 2 € Z.

From this local norm, we define the metric as above.
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3.2 The metric on A

Given a metric on Z, we pull it back to get a metric on A as follows. For any
) € A and ) in the tangent space to A at A, we let 2z = z(\) and compute 2
from

Fu(z,N)i+ Fa(z, M)A =0 (3.12)
(this uniquely defines Z from our assumptions below (2.1)). Then we set
Al = 112 (3.13)

we could similarly define (-,-)5, but it is not needed. In this way we get a
Riemannian structure and hence a metric on A.

Let v : [0,1] — A be a smooth path in A, and let ((t) = z(y(t)) define
the corresponding path in Z. Then the implicit function theorem shows that
C(t) is the # corresponding to A = 4(t), and hence from (3.13) that

14 = IO leo-

It follows that
Ca() = £2(0), (3.14)
and hence
da(No, M) = d'y(2(Xa), 2(A1))- (3.15)
From this we obtain the result which justifies our interest in this metric.

Theorem 3.1 Given Hypothesis 3.1, there is a path-following method which,
from a good approzimation to zy = z(Xo), obtains a good approzimation to
z = 2(A1), and requires

O(da(No, A1) (3.16)

Newton steps.

Proof. Let ~ be a path in A from A to A; of length at most 2da (Ao, A1),
and let C(t) := z(7(t)), so that the length of ( is also at most 2d (Ao, A1). Now
divide ¢ into intervals zo = Z(0), Z(1) - - > 2(k) = 1 with d%(Zu-1), Za)) < €
and Z;y = 2(A@y) for 1 <7 < k. Then k< 2da(Xg, M) /e = O(dp(Xo, A1)). We
suppose we have an n-approximation z() to Zo) = 2o In general, assuming
that we have an n-approximation zg1) t0 Zi-1), we can obtain according to
Hypothesis 3.1 an n-approximation zg to Zg) by taking a single Newton step
for F(+, A\) = 0 from z(;—1). Hence, by induction, in & Newton steps we will
obtain an n-approximation zg) to Zx) = z1. U
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4 The metric on parameter space for linear
programming

Let us first consider the general infeasible-interior-point target-following
method, so that A = (b,¢,v). The corresponding solution is z = (z,y,5) =
z()), at which the local norm is defined by (3.9). Let us denote

H=W"1=X"8,
so that (3.9) can be written
2], = p~ 2@ Ha + 5T H'8)'V2 (4.1)

Suppose we are given a displacement A = (b,¢,7) in parameter space. We
then compute the corresponding displacement % via (3.12), which becomes

Ai = b
ATy + 5§ = ¢ (4.2)
Si + Xs = 2w,

or equivalently
Ad = b
ATy + ¢ (4.3)
Hi + & = 2W™o,

I

For later use, we find the solution # to (4.3) where 2W 14 is replaced with

g.
Let us define

J=(AH1AT!, Q:=ATJA, P=H'-H'QH.  (44)
Then it is easy to check that

J, P and @ are symmetric;

AP =0, AH™'Q= A

PQ=0, QP=0 (4.5)
HP+QH—-1 — Hl/ZPHl/Q +H~1/2QH—1/2 — 1;

PHP =P, QH™'Q=Q.

13



From these properties, it is straightforward to confirm that the solution to
(4.3) (with its third right-hand side replaced by ¢) is

&= P(j— &)+ H AT,
y=—JAH ' (g—¢)+Jb, (4.6)
§=HPé+QH 'g— AT Jb.
From this we calculate, using (4.5) again,
iTHi+$TH Y = (G—6)P(g—e)+bT7b
+ TPe+ gTH'QH 'g+b"Jb— 2T JAH 1 g.
(4.7)
We simplify this expression using the new variable
pi=c—QH e+ AT Jb. (4.8)

Note that AH 'p = b. Moreover, if we replace ¢ in (4.3) by p (which differs
by a vector in the range of AT), the only change in the solution occurs in .
Thus the quantity in (4.7) remains unchanged. Let us therefore replace b by
AH~'p and ¢ by p in (4.7), to get
PTHi+ 3 TH s = (§-p) PG—p)+5 H 'QH™p

+p  Pp+g H'QH g

+Z‘)TH——1QH-1P - ZpTH~1QH~]g

(§-p)T(P+H'QH™)(§—p)+p (P+H 'QH )P

(G—p) H (g—p)+p H 'p.
We conclude that

IE[P p V(@ THE + $TH$)Y?
= w2 ((g—-p)TH (G —p)+p H P

The expression (4.9) is useful in the general case of conic programming,

but for linear programming it can be further simplified. Note that p :=
sTa/n=e" XSe/n = ||v||3/n. Also, H"'/*§ = 20. Thus we obtain

H

(4.9)

I2ll = T (120 = dll5 + 14l13)"*, (4.10)

/2
llvll2

where ¢ := H™'/?p.
We have therefore proved
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Theorem 4.1 For the case of linear programming with parameter space A=
{(b,¢,v)}, the local norm (8.18) defining the metric on A is given by
7. s nl/2 . =112 112 1/2
[1(b; & D)l p.e0y = m(ll% —dllz + ll4ll2) ™" (4.11)
where z = (2,7, 8) = z(b,c,v) and
= (I — H'2AT(AH ' AT P AH V) H e+ HY2AT(AH AT,
with H := X~'S. O

Let us consider various special cases.

First we suppose we have feasible solutions so that we are addressing
feasible-interior-point target-following methods. Then b and ¢ remain fixed
as b; and ¢, and the natural parameter space is A = {v} =R, ,. Wecan
identify this with {(b;,c1,v)} = {b1} x {1} xR, 2 subset of the parameter
space considered above. To obtain the corresponding metric, we only need
to set b and ¢ to zero in (4.11). Thus ¢ is zero and we find

9]l = o2 el (4.12)
[[vll2
We will determine shortest path geodesics corresponding to the metric cor-
responding to (4.12) in the next section.

Second, let us return to the infeasible case but suppose that we are con-
cerned with infeasible-interior-point central-path-following methods. Then
the natural parameter space is A := {(b, ¢, u)} but we can identify this with
the subset {(b,c, u'/%e)} of our space {(b,c,v)} above. Corresponding to
a displacement A = (b,¢, /1) in A we have the displacement (b, ¢, ) where
D= %u“l/ 2. We thus obtain the appropriate metric from the local norm
given by .

(b, &, il ey = 172Nl fse = 113 + 114113)"?, (4.13)
where ¢ is defined below (4.11).

Finally, we combine these two cases to consider feasible-interior-point
central-path-following methods. Either by replacing v and v in (4.12) as
in the previous paragraph, or by setting ¢ = 0 in (4.13), we find that for
A = {pu} := R, the appropriate metric comes from the local norm

lell,e = 020l (4.14)
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Again, the next section gives the corresponding distances and shortest path
geodesics for this case.

We note that only in the feasible cases are the local norms given in closed
form in terms of the parameters alone, as in (4.12) and (4.14). In the more
general cases, the local norm also involves ¢, which is a function of the param-
eter changes b and ¢, but uses projections depending on the corresponding
solution vector z. It is for this reason that determining the corresponding dis-
tances and shortest path geodesics is in general intractable for the infeasible
case, and we can only obtain insight from very special cases.

5 Shortest paths and examples

This section calculates some shortest path geodesics for the metrics derived
in the previous section.

We start with the simplest case: feasible-interior-point central-path-following
methods, where A = {u} := R4 4. In this case the metric is given by the local
norm

il = 22
by (4.14). Consider the mapping p — n'/21np from A to R. We see that
this is an isometry between A with the metric given above and R with the
usual Euclidean metric. It follows that the shortest path geodesic between
1o and g1 < po in A is just the segment [u1, tto] and, less trivially, that

da(po, p1) = n1/2] In(po/ 1)l (5.1)
Thus as long as Hypothesis 3.1 is true, Theorem 3.1 shows that
O In(po/ 1)) (5.2)

iterations are sufficient to move from an approximate center corresponding
to the parameter ji to that corresponding to ui. This agrees with the com-
plexity bounds in the usual analyses; see Monteiro-Adler [13] and Kojima-
Mizuno-Yoshise [9].

Now we turn to feasible target-following methods. Thus A = {v} := R%
and the metric comes from the local norm given by

il = 2 12121l '
[[ollo = 2n ol (5.3)
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according to (4.12). Again we seek an isometry to a subset of Euclidean
space. Consider the mapping v — (p, ) := (In|jv]],v/||v]l2) € xS, where
sro={ue Ry, lulls = 1}. We find v = exp(p)u, so v = exp(p)[pu + 4.
Since uTu = 1 implies u @ = 0, we have ||0]]> = exp(p)[|(p, w)||2, 8O

o], = 2n'/2((5, @)l (5.4)

Shortest path geodesics then correspond in (p, u)-space to moving at uniform
speed from py to p; and at uniform speed along the great circle from wug to
uy. We find

T 1/2
Uy V1 2

lTeoll
[[vollzlvi 2

ol (5:5)

da (v, v1) = 2n*? |(In )% + (arccos|
For example, the shortest path geodesic from vy € A to some point v; with
||| = € is the straight line segment from v to vy = evo/||vollz.  This
corresponds to following a weighted path, see, e.g., Ding and Li [3].

Let us observe that these geodesics differ from the paths recommended in
Jansen-Roos-Terlaky-Vial [5, 6]; their paths always become more centered,
while v; = evg/||vo||2 implies that ours maintain the same degree of centrality.
The main reason for this discrepancy is that Hypothesis 3.1 does not hold
generally in this case. It is necessary to restrict A to triples (b, c,v) where
v > 0% = O||v|l;n~"/2e for some fixed 6 € (0,1], and then the hypothesis
holds with 7 and ¢ depending strongly on 6.

Jansen et al. define a distance §(v,?) which, for infinitesimally close
points, corresponds to the local norm

ool

HUHW e min(v)’ (56)
where min(v) := min(v®), the smallest component of v. The same norm is
implicit in the second neighborhood used by Mizuno [11]. This differs by at
most a multiplicative constant from ||0], in (5.3) as long as v > 9t/ %e, but
the constant depends strongly on #. Section 2 of [11] and Section 3 of each of
[5, 6] show the appropriateness of the measure (5.6); roughly, if v is moved by
a small (respectively moderate) distance according to this measure, a single

Newton step (bounded number of steps) will yield a good approximation.
The local norm (5.6) “corresponds” to the local norm in solution space
that differs from (3.9) in that '/ is replaced by (min(v))~", where v :=
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£1/251/2 The reason for the quotes above, and the reason we did not use this
local norm, is that it is not smooth, but only piecewise smooth, so that we
do not obtain Riemannian metrics. However, it is quite possible, based on
the results of Jansen et al., that this is a more appropriate, if less smooth,
metric for the target-following case. Note that the metrics coincide on the
central path, corresponding to choosing # = 1 so that min(v) = pt2.

Finally, we consider an infeasible case. Here we only address a particular
instance.

Example 5.1 Let A = [[,0] € ®™", and similarly partition the vectors
¢ = (cf;cu)y @ = (Tg;20), and s = (553 5,), 80 that our problems are

min cfxy + €T

(LP) l‘f = b
xy, z, > 0,
and
max b'y
(LD) y + Sy = Cy
Su = Cy
sf, su = 0.

(For the primal, subscript “f” denotes fixed, while “4” denotes unconstrained.)
We will just consider central-path-following methods, so that our parame-

ter space is A = {(b,c, )} = RT, X (R™ x REZ™) x Ryp. We find, for

A= (b,c, ) €A, z(A) = (2,9, 5) where

rf=0b, 1, = pert, y=cp— b, sp = pb7l, sy = cy.

Thus H = Diag(ub2, p~'c2), J = Diag(ub~?), Q = Diag(ub~?%,0), and P =
Diag(0, uc;?). Thus

N R ,ub‘% _ ub“Ql}
= (1) (0) o (%7) = ("
1/23—1j

'uz'b_l.b ) Now we use (4.13) to obtain

P2ty
S p s — bt 2 )
H(b’ ¢, /’J)H(b,C,u) = + 1
) cile,

and ¢ = (

—1 - 1
M "€y — Cu Cy

o 1/2
2)
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(Note again that this is not strictly a metric, since ¢y is not involved, as we
should expect; c; only affects the free variable y. It is a metric when we
restrict to the subvector (b, ¢y, it).)

Now consider the map (b, ¢, ) — (Ind,In ¢, In 1) (componentwise). Then
our metric above is induced by a fixed ellipsoidal metric in the log-space.
Hence shortest path geodesics in A correspond to straight lines in (In b, In ¢y, In p)-
space, and

In(po/p)es — 1n(bobf11)
In ey — In(CouCly
dA((bOaC(h/JJO)»(blvclalM)) = (Mo/ﬂg(boblq)( 0uL )
ln(couc;ul> 9

We remark that these geodesics are quite different from straight lines
in (b, c, u)-space, as used by most infeasible-interior-point methods. One
consequernce is that we can obtain better complexity bounds: if

2"Lef <b; < 2Lef and 27 Fe, < ciu < ole,
for i = 0,1, then
da((bo, co, to), (b, €1, p1)) = O(\/‘ﬁ[lﬂ(ﬂo/lﬁl) + L]),

and the number of iterations of a central-path following method is of the
same order, whereas many infeasible-interior-point methods replace the /n
with n® for @ > 1. We hasten to add that this is just one instance, which
is trivial to solve directly: but it may suggest the value of trying to obtain
geodesics for more general problems.

Finally, consider the extremely trivial case with m = n = 1, so that
b is one-dimensional and ¢, disappears. Then shortest path geodesics are
straight lines in (Inb,1n 41) space. If b moves through a smaller multiplicative
range than y, these geodesics have the property that feasibility is attained
at a slower rate than optimality, in strong contradiction to the conventional
wisdom that the reverse should be the case.

6 Justification of the metric

Here we will discuss Hypothesis 3.1 for linear programming and also consider
two other aspects of our approach: how to recognize good approximations
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and whether good approximations yield acceptable solutions to the original
problems. Almost all proofs will be omitted, and we concentrate on central-
path-following methods.

We will use the second condition for n-approximations, i.e.,

|z =zl <n (6.1)

from (3.4), in confirming Hypothesis 3.1. This raises the natural question:
given only z € Z and A € A, how can we check (6.1) for zZ = 2(A)? In fact,
for the case A = y or A = (b, ¢, ;1) this is straightforward. Suppose Az = b,
ATy +s=c, and = s x/n. Then for Z = z(}) it can be shown that

xs |7 — . <36 |5 —slls <30
|=— — ells < 6 < .1 implies |z — ||z < 96/2, ||s — sl <96/2  (6.2)
' |z — 2|l < 76.

Note that the condition on the left-hand side can easily be checked, and that
if it holds for § < min{#n/7,.1} we know that (6.1) holds.

Next we address whether having a good approximation z to an acceptable
solution z suffices. Since we are using a Newton step at each iteration, linear
constraints will be satisfied exactly, so that if AZ = b; and ATg+35 = ¢,
the same will be true for = and (y, s). Also, (6.1) will assure that z > 0 and
s > 0 for sufficiently small 5, so feasibility is assured. The only remaining
concern is the duality gap s'z. We find

s = [g+(s=3)]'[F+ (- T)
|

< 5@ +s —slplzle + 1515l — 2o + s = slialle = 2lls,

where @ := z'/25-1/2. But (6.1) ensures that ||z — Z||z and ||s — 3||; are
at most pu1/2y, where y := 5 %/n, and it is not hard to show that ||Z]ls =
|5]1%, = pt/?n!/2, so that

s'e <135z (6.3)
as long as n < .1.

The fundamental reason that Hypothesis 3.1 holds is the quadratic con-
vergence of Newton’s method, but we need explicit constants and also many
applications of the fact that norms evaluated at neighboring points are close.
The basic property here is that

2 — zll, < 6 < 1 implies [|v]ls, < (1= 6)7"[Jvll. (6.4)
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for any x, x4 € R, and v € R". This is trivial to show directly, since
[ollay = NXEXOX )]l < X Xl X 0lls.

Note that from (6.4) the second line of implications in (6.2) follows from the
first, since (1 — 38)7136 < (.7)7!36 < 96/2. (The third line then follows
directly from the definition (3.11).)

Finally, let us state two results which are key ingredients in establishing
Hypothesis 3.1.

Lemma 6.1 Let z,z, € R%, with 6 := |lz; —zl|. <1. Then

=2t +a7 = X @y —2)lle S (6.5)

O

Note that the norm on the left-hand side can also be written in terms of the
logarithmic barrier function ¢ defined in (3.10): it becomes

¢/ (z4) — &' () = ¢" (@) (24 — 2)[[2-

This makes it clear that the lemma is bounding the error in the first-order
Taylor approximation to ¢'(zy).

The next result refers to the points appearing in Hypothesis 3.1, and
assumes a central-path-following method, so that A =y or A = (b,c, ).

Lemma 6.2 If z,%,, and zy are as in Hypothesis 3.1, with Z, = z(py) or
z(b, ¢, puy), and H = W2 with w = z/2s71/2 then

s = 2|2+ llss — 540122 = g (=25 +27) = H@ = o)l (6.6)
O

Note that the left-hand side of (6.6) is closely related to ||z — 21|z, (except
that the norm is wrong), while its right-hand side is closely related to the
quantity bounded in (6.5) (except that the norm is wrong and H /4 replaces
X~?). Putting all these pieces together enables one to prove

Theorem 6.1 For (feasible or infeasible) central-path-following methods (with
A= or A= (b,c,p)), Hypothesis 3.1 holds with e =1 = .04. O
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We briefly mention, as we have hinted above, that in the case of target-
following methods it is necessary to restrict v so that v > 8)|v||an 1/ %e, where
6 € (0,1] is a constant. Thus A = {v} :=={v e R}, 1v 2> f||v]|an—1/%e} or
A={(bc,0)} = AR ) x (AT(R™) + R, ) x{v e R}, v 2 8||v|jn="/2e}.
With this restriction, Hypothesis 3.1 holds with e = 7 = .040; note the
unpleasant dependence on 0.
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