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Abstract

We are motivated by the problem of constructing a primal-dual barrier function whose
Hessian induces the (theoretically and practically) popular symmetric primal and dual scal-
ings for linear programming problems. Although this goal is impossible to attain, we show
that the primal-dual entropy function may provide a satisfactory alternative. We study
primal-dual interior-point algorithms whose search directions are obtained from a potential
function based on this primal-dual entropy barrier. We provide polynomial iteration bounds
for these interior-point algorithms. Then we illustrate the connections between the barrier
function and a reparametrization of the central path equations. Finally, we consider the
possible effects of more general reparametrizations on infeasible-interior-point algorithms.

Keywords: linear programming, interior-point algorithms, primal-dual, entropy, potential func-
tion.

AMS 1991 Classification: 90C05, 65K05

1 Introduction

Some of the most intriguing concepts involved in the make up of an interior-point algorithm are

scaling, variable metrics and potential functions (see, for instance, Karmarkar’s seminal paper
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[8]). The choice of the search direction is closely tied in with these three fundamental concepts.
Usually, a potential-reduction algorithm uses a scaled projected steepest descent direction which
is related to the Newton direction; see the surveys Gonzaga [5] and [18]. On the other hand, the
choice of the scaling matrix can usually be motivated by considering the Hessian of the barrier
which is implicit in the potential function (although the first use of scaling in the affine-scaling
method of Dikin [2] was developed without reference to potential or barrier functions). Related
to this point, the Hessian of the barrier generally defines the variable metric used (see Bayer
and Lagarias [1], Freund and Todd [6], Nesterov and Nemirovskii [14] and [17], [18]). Even
though the primal (or dual) barriers possess the aforementioned properties, the primal-dual

setting seems more complicated (see Freund and Todd [6] and [17], [18]).

Almost all potential-reduction algorithms use the traditional barrier

K

- _In(z;)
=1

for the nonnegative orthant and its extension (for the primal-dual setting)
n n
=Y ln(z;) - Y _In(s;),
J=1 J=1

where z and s denote a primal and dual strictly feasible solution respectively. In the context of

general optimization one of the most commonly used barrier functions is the entropy function
n
> z;ln(z;).
=1

Tts use has also been suggested for linear programming problems; see, for instance, Erlander [3].

In this paper, we investigate some primal-dual interior-point algorithms motivated by the

barrier
B(z,s) := Z z;s;n(z;s5).
—

The second derivative of B with respect to z variables gives the (symmetric primal-dual) primal
scaling and the second derivative of B with respect to s yields the (symmetric primal-dual) dual
scaling. We also present another motivation for B(z,s) in terms of a reparametrization of the
Karush-Kuhn-Tucker (KKT) conditions for optimality for LP problems. We conclude with a
general study of a family of reparametrizations of KKT conditions and their ramifications for

the underlying infeasible-interior-point algorithms.
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Finally, we remark that the barrier B(z, s) has close ties to Polyak’s work on modified barrier

functions (see [15]).

2 Development of the Method and Related Entities

We will focus our attention on linear programming problems; in particular, we use the following

form of primal and dual problems:

(P) minimize ¢’z
Az = b,
z 2> 0
(D) maximize b7y

where A € R™*", b ¢ R™, and ¢ € R™ We assume A has full row rank. Fo denotes the
set of pairs (z,s) of a primal feasible solution satisfying all inequality constraints with strict
inequality and the s-part of a dual feasible solution satisfying all inequality constraints with
strict inequality; we call such solutions strictly feasible. An initial assumption that there exist
strictly feasible solutions for both problems is relaxed in Section 4. Given a pair of (primal
and dual) feasible solutions ¢ and s, p denotes the duality gap divided by n or the average

.’L'TS
n

complementary slackness, i.e. p = . We use e to denote the vector of ones of appropriate
dimension and e to denote the base of the natural logarithm. For a given vector v, V' denotes
the diagonal matrix diag(v) whose diagonal contains the components of v. Given a function
f : R — R, we write f(v) for the vector defined by (f(v)); = f(v;) and f(V) for the diagonal
matrix diag(f(v)). (It would also be possible to use different scalar functions for each component,
but we do not consider this possibility below.) Finally, the standard KKT conditions defining

the central path are (for p > 0):
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Az = b,z > U
ATy + s = ¢, 8 > 0

Xs = pue.

We propose the following family of potential functions for primal-dual interior-point algo-

rithms, where p is a positive parameter:

o) = o)+ 228 1y (224 (1)
= (p—n)n(p) + z > zjsin(z;s)). (2)
pi

We propose an interior-point algorithm whose development is based on the potential function

obtained by setting p equal to n, yielding

b(e,s) = $a,sin) = %szsjln(szn- (3)
7=1

Note that by focusing on a fixed value of the duality gap, zTs, we can extract the corresponding
barrier and the centering function from the proposed potential function. A measure of centrality

corresponding to (1) is

o 2% (m) , @
=1 H H
We divide this by n and define

§(z,s) = Xn:ﬁﬂln (EE—J—) (5)

j=1 np K
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We conveniently have 0 < &(z,s) < In(n) for all strictly feasible (z,s), with §(z,s) = 0 if and
only if (z,s) is on the central path. Whenever it is clear from the context what (z,s) is, we
will write & for 6(z,s). Note that ¢ can also be expressed as n [In(x) + §]. This shows that, like
other potential functions, v is unbounded below, and that driving ¢ to minus infinity forces p
to zero. However, because 8 is bounded, % can converge to minus infinity along a trajectory
very far from the central path, so an algorithm using ¢ will probably require some neighborhood

condition to avoid approaching the boundary too closely.

Finally, to illustrate a relationship between é and the two-norm centering function, an upper
bound on & can easily be obtained via the weighted-arithmetic-geometric mean inequality (or

directly as below using the concavity of the logarithm and the facts that In(1 + A) < A and

Z?:l%i = 1):

6(z,s) = Z&s—]m(ﬂs—’>

=1 K
< m|by (B (6)
B _n 7=1 K
i 2
= In 1 &——e +1] (7)
Kl 2
2
S _1. .Xj_e . (8)
L 2

Note that potential functions for feasible-interior-point algorithms usually have two parts:
the objective function part and the barrier part. In the primal-dual setting the objective function
part usually is In(zT's) or equivalently In(x). However, we see from (3) that our potential function

4 can be viewed as (barrier part)/(objective function part). So, the corresponding barrier is

B(z,s) := izjsj; In(z;s;). (9)
=1

Note that the objective function part is the duality gap (divided by n), which is always positive
for strictly feasible pairs. Close to optimality, all products z;s; are less than one, so the barrier

part is negative. Hence the potential function is decreased by decreasing the duality gap for
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a fixed value of the barrier or vice versa. Next, while we shall use the term barrier for B, it
does not enjoy the usual property of approaching +oo as its argument approaches a point in the
boundary of the feasible region; however, its gradient tends to infinity along such a sequence,

which has the same repelling effect.

One of the interesting features of this barrier function is the metric induced by its Hessian.

We partition the Hessian of B and study its pieces:

2

?—-—%—%ﬂ = §X1, (10)
2

SR s (1)
0?B(z, ) i

e = WX+l (12)

The second derivative of B with respect to the z variables gives the (symmetric primal-dual)
primal scaling and the second derivative of B with respect to s yields the (symmetric primal-
dual) dual scaling. It is easy to see that the Hessian is positive definite on any subspace contained
in the subset of R?" defined by

{(dz,ds) : dzTds = 0, dzT [In(X §))ds = 0}.

If (z,s) lies on the central path then the set above is the same as
{(dz,ds) : dzTds = 0},
which includes the subspace of all feasible search directions.

Now we use the proposed potential function (3) to derive search directions. Note that the

gradient of ¢ with respect to the z-variables is

Vo(z,s) = —pt (3 - [63 ~ Sln (%)}) ,

while with respect to the s-variables it is the same expression with = and s interchanged. Suppose
we work in scaled space; given (z,s) € Fp we scale vectors in z-space by D~! and vectors in

s-space by D, with

D = XWY2§Y2 - (13)
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This scaling corresponds to the parts of the Hessian of B given in (10) and (11). Note that

under this scaling, our current point (z,s) is transformed to (v, v), where

v o= XY25YZ%, (14)

Then in scaled space, the gradient of the potential function with respect to either the (scaled)
primal variables or the (scaled) dual variables at the current point (v,v) is a positive multiple

of —w, with

w = —v+ [61)—— Vin (Y;—;)] , (15)

(16)

Hence we find that the projected steepest-descent direction for 7 in scaled primal-dual space
(up to a positive scalar multiple) is given by (wg, wg)T, where w, and w, denote the orthogonal
projections of w onto the null space and row space of AD respectively. So in the original spaces,

the primal, dz, and dual, ds, search directions are

dz := Duwy, (17)
ds := D lw,. (18)

We would like to point out that the search direction has two components: affine-scaling and
centering (as is the case for generic interior-point methods). However, the centering direction
proposed here is different from the one given by the logarithmic barrier function. Our centering
direction (in the scaled space) is a projection of §X1/251/2e — X1/2§1/2In (%) whereas the
centering direction usually used in primal-dual algorithms is a projection of X ~1/26-1/2¢. On the
other hand, when the current iterate is close to the central path, § X 1/2§1/2e— x1/261/21n (—)—2—3) is
approximately (6 —1)X1/2§1/2¢ 4 uX ~1/25-1/2¢ (the first order approximation to §X1/281/2¢ 4
In (u(X §)~1) X1/251/2¢), a constant-gap version of the standard centering direction.

We see that if the current iterate is on the central path then we have § = 0 and w =
—X1/261/2¢ (i.e., we obtain the primal-dual affine-scaling directions). Otherwise, as follows
from Lemma 3.1(b), the projections of §X1/2§1/2¢ — X1/261/21p (%) form a constant-gap

centering direction. This fact can also be easily verified by noting that

vT [6v—Vln (%’i)] = 0 (19)
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hence, the two components of w are orthogonal.

Another interpretation for the new search direction can be given via an alternative description
of the central path (for a more general treatment see Section 4 below). Recall the standard KKT

conditions defining the central path:

Az = b,z > 0
ATy + s = ¢, s > 0
Xs = pe.

We can also replace the last vector equation by its equivalent:

In(Xs) = In(ue).

Suppose we apply the Newton method to this new system in order to approximate a point on
the central path corresponding to the parameter pi. Then it is easy to see that the Newton

direction coincides with our search direction if p4 is chosen such that

ln(;—f:) = 1-4(z,s). (20)

So, if (z,s) is on the central path then In (;“:) =1 (i.e. py = p/e); while if (z,s) is less
centered then the search direction is more conservative. We note that p4 may even be larger

than p.

3 Convergence Results

In this section global convergence properties of an algorithm based on the new search direction
are discussed. The search direction is a projected steepest-descent direction for the proposed
potential function, whereas the step size selection rule attempts to keep all the iterates in the

following neighborhood of the central path:
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Zjsj

NEg(B) = {(z,s)efo:%——ﬂ < ln( .

) < l-{—ﬂ, forallj}, (21)

where 3 > 1 is a constant. Note that the neighborhood is compatible with the reparametrization
of the central path given by f(-) = In(-). For small values of § this neighborhood is similar to
the infinity-norm neighborhood while for large values 3 it looks more like the one-sided infinity-
norm (wide) neighborhood, and almost includes the whole feasible region (see, e.g., Mizuno,
Todd, and Ye [11]). We propose to pick the largest step size possible so that the iterates lie on
the boundary of the corresponding neighborhood of the central path.

First, we establish some basic properties of the iterates based on the new search directions.
We define

z(a) := z+ adz, (22)
s(a) = s+ ads. (23)

We have the following identities.

Lemma 3.1 We have
(a) j(e)sj(e) = ;55 {(1 - @) + a [§(z,s) — In (22 ] + o leehlta
(b) z(a)Ts(a) = (1 - a)zTs.

Proof. We simply use the definition of the search directions and orthogonality of w, and w,. O

From Lemma 3.1(b) we see that the length of the search direction is such that the duality
gap decreases exactly as in the primal-dual affine-scaling algorithm [12]. We will show that if we
have a starting solution (z°,s%) in a neighborhood of the central path and at each iteration we
take the largest step that will keep the next iterate in the same neighborhood, we can guarantee

polynomial-time convergence.

Clearly,

max|(wp)j(we)jl < [lwpll2llwall2 < Jlw]3-
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Now we bound ||wl||2, assuming (z, s) lies in a neighborhood of the central path.

Lemma 3.2 Given 8 > %, let C(B):= % + B+ B% Then
(z,s) € Ng(B) implies |w||} < C(B8)np.

Moreover, if (z,s) € Ng(B3) for 8 < % then 6(z,s) < 1.

Proof. Using (15), we find:

2

lwl} = vFo+6%Tv 260"V In o) s lvm (22 (24)
2 p p

(1= 6%)np + HVln (%) Z

= ;;wﬁj{l—62+ [1n (C—EJ‘;—J)]?} (26)

The first equality above is justified by the equality (19). Note that when (z,s) lies in Ng(8),
we easily have [ln (fﬁfﬂ—)] 2 < 14+ B+ B2 for all j. So we conclude that

2

I

(25)

lwll} < C(B)nu.

Now, let us fix a positive value for u and consider maximizing 6(z,s) subject to Ts/n =p
and (z,s) € Ng(B). A relaxation (by ignoring the equality constraints of the underlying linear

program) of this maximization problem is

1 T
—_ t.l t.
max n; ;5 1n(t;)

n
s.t. th = n,

J=1
A< t; < v, forall j,
where A 1= G v := e(z+A) and t; represents z;s;/p. If 3 =1/2 then A = 1 and the unique
solution of the above problem yields an objective value of zero. If 8 > 1/2 then the problem
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is that of maximizing a convex function over a polytope; and, for such problems, we know that
there exists an extreme point solution that is optimal. Thus, we can assume that at least (n — 1)
of the variables t; take values at their bounds, say k at their lower and n — 1 — k at their upper
bounds. One variable might take a value strictly between its bounds. However, since the scalar

function @(7) := TIn(7)/n is convex, for any a € (0,1), if t; = @A + (1 — a)v then

P(t:) < ad(A)+ (1 - a)g(v). (27)

Thus the corresponding objective function value is bounded by & + « times ¢(A) plus n — k — «
times ¢(v). Since all ¢;’s must add up to n, we find that k+a = n(v—1)/(v—A), and substituting
this value gives as an upper bound on the optimal value [(v — 1)¢(A) + (1 — A)p(v)]/(v — A).

Now using the values of A and v above yields

('li + ﬁ)e(%+ﬁ) — 20e — .% - 5)6(%—ﬁ)

§ <
(2,8) < 30 _ G0

(28)

We note that when 8 < %, we get § < 1 as required. In fact, since the problem above becomes

more relaxed as § increases, it suffices to consider the case where g = % O

For the sake of simplicity, we analyze the algorithm only for 8 = %

Lemma 3.3 Let (z,5) € Ng(2) and 0 < a < 1555 Then (z(a),s(a)) € NE(3).

2en”

Proof. Let (z,s) € Ng(3) and fix an index j. Then by Lemma 2, lw||3 < 5np and § < 1.
So,

2
Hwnz S % S 5en.
CC]SJ CCJSJ
Using Lemma 1, we find
zi(@si(a) o ws [, @ [6_1n(wj3j)]_ @ fen (29)
(-au = a | 1-a p /Lo tme )

and

R G IR S
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Now, we can analyze a few cases:
Case 1: 221 € [1/e,1/ /).

In this case,
1 z;8;
3 = —In(1/ve) <§-1In — < 2

The first inequality above uses the fact that § > 0 and the second inequality uses § < 1 (Lemma
3.2). Now, from inequality (29) we see that if o = =— then

12en

zj(a)sila) o wjsi o 1

(I-ap = p = e

Using 6 — In (ﬂfl) < 2, inequality (30) and a = 5= we also find

zj(a)si(a)
o <

Case 2: ai:l € [1/+/e,1).

In this case,

0 < é—In (ﬁ) <3
73 2
So, using inequality (29) for @ = y55- we have

zj(a)s;(a) > _1_<1_. o? Sen) > é.

(1-o)p = e l-a -
Also, using inequality (30) for a = 55— we get
rfe)sia) _ .3 a o :
< — <
(1-a)p ~1+21_a+1_a5en~_e

Estimations for the cases 3 (flﬂﬂ €[1,e)),4 (%42 € e, e*/?]), and 5 (flfl- € [€%/2,e?]) are similar.
Feasibility of the new iterates in the corresponding indices follows from the fact that a < 1 and

that z(«) and s(a) are continuous functions of a. a

Theorem 3.1 Let (2°,5°) € Ng(2) such that aTs < 2' be given. Then the interior-point
algorithm that uses the above search directions and chooses at each iteration the largest possible
step size to stay in the neighborhood Ng(2) finds a solution (z,s) € N, E(2) such that eTs <27t

in O(nt) iterations.
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Proof. 1t follows from Lemma 3.3 and Lemma 3.1 (b) that the duality gap decreases at least

k
. 1 . . .
to the fraction (1 - T%Z) in k iterations. O

Notice that, although the search directions are based on the potential function 1, we do not
prove polynomiality using this function. At each iteration, nln u decreases by at least %5, but
né might increase by n. However, since 0 < § < 1 for all iterates, the potential function does

decrease by a constant per iteration on average.

4 Effects of Different Parametrizations on Infeasible-Interior-
Point Algorithms

In this section we investigate some algorithmic ramifications of different parametrizations of the
KKT conditions. Let’s consider again the KKT conditions in section 2. One of the ways we
motivated the new search directions was by rewriting the last optimality condition as Inz; +

Ins; = In(p) for all j.

Indeed, our main point in suggesting the potential function ¢ (and thus the corresponding
directions) was the fact that its Hessian induced the desired primal-dual scaling in both primal
and dual spaces. On the other hand, the motivation in terms of reparametrization of the KKT
conditions suggests many other possibilities. Aiming for a more general treatment of different
parametrizations, we can consider the set of all continuously differentiable strictly monotone
functions f from R, to R. Recall that f(V) denotes the diagonal matrix whose entries are
f(v;); similarly f/(V) denotes the diagonal matrix whose entries are f’(vj). Then the last
optimality condition becomes:
f(Xs) = f(ue).
Considering the Jacobian (the monotonicity of f and the fact that A has full row rank ensure

that the Jacobian has full rank), we see that the usual equality
Sdz + Xds = ypue— Xs
is replaced by
SF(XS)da + Xf(XS)ds = flyue)— f(Xs).
Since f'(XS) is diagonal and positive definite, we can invert it, to get

Sda+Xds = (f(XS))"(f(rme) - F(Xs)). (31)
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Thus the scaling is always the same, however the right hand side depends on the parametrization.

This includes the directions of Jansen, Roos and Terlaky [7] and Nazareth [13] as special
cases. For instance, we can take f(v;) = —1/v; (the inverted path equations in Nazareth’s note).

Letting ¥ — 0 yields the search direction proposed in [7].

Now we can (at least qualitatively) discuss what kind of functions f would be desirable
for infeasible-interior-point algorithms, as the trade-off between achieving feasibility and com-
plementarity seems to have important effects on the convergence of such algorithms (at least

theoretically).

A family of functions could be f(v;) := v¥, for & > 0, or f(vj) := —vg, for & < 0. In this
case, the right-hand-side of (31) becomes

=[x syt=e - x3]..

So, for positive a, one component of the search direction (corresponding to the term —Xs) is the
same (up to a positive scalar multiple) as the primal-dual affine-scaling direction, whereas the
centering component is new: (yu)*(XS§)!~%. (The new centering component coincides with

the conventional one when (z,s) lies on the central path.)

The following fact is well-known:

Fact 4.1 Suppose A has full row rank and = > 0, s > 0, and let D be given by (13). Then

the following system of linear equations

Adz = p (32)
Aldy+ds = ¢ (33)
Sdx+Xds = r (34)

has the unique solution
de = S7'(r— Xds)

dy = (AD2AT)“1 [p —AS7(r - Xq)]
ds = q— ATdy.
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In particular, defining A := AD, §:= Dq and 7 := X~1Y28-1/2p we have

dz

D [P37 — Pyq+ AT(AAT) ™) (35)

ds = D™'|(I- Py +Psq- AT(AAT)p]. (36)

i

Note that the equations (32) and (33) come from a system of linear equations, while equation
(34) is derived from the quadratic equation X's = pe. Intuitively, to have a balanced solution
(search direction) of (32)—(34) the right-hand-side of (34) could be altered to compensate for
the nonlinearity of the quadratic equation. In this respect, the parametrization f(v;) = v§ for
o = 1/2 is an interesting choice, since it attempts to make the nonlinear (quadratic) equation
Xs = pe look more “linear.” From the same point of view, the parametrization given by
f(vj) = In(v;) seems too aggressive (the duality gap may decrease considerably faster than the
infeasibility).

Now, we try to make the above vague arguments more concrete: In an infeasible-interior-
point algorithm, p is b— Az, the primal infeasibility, and ¢ is the dual infeasibility at the current
iterate. Since A has full row rank, b = AZ for some Z (in fact, for any feasible Z, although our
choice does not have to be feasible), so we can write p = Al. Let us write [ := D~/ so that

p = Al. Then equations (35) and (36) can be rewritten as

dr = D[PAT’-PAQ'-I-(I-—PA)I—] (37)
ds = D7'[(I-Pg)f+ Pz~ (I~ Pyl]. (38)

It is clear from (32)—(33) that a step « in the direction given by dz and ds will multiply
the current primal and dual infeasibility by the factor 1 — a (if @ = 1 does not violate the
nonnegativity constraints then a feasible solution can be reached in just one step). So, if we
would like to achieve complementarity and feasibility in a balanced manner, then one of the

conditions we might want to ensure is to have
(z + ade) (s + ads) ~ (1 - a)ny;

recall nu := zTs. Alternatively, to ensure that infeasibility is reduced at least as fast as com-

plementarity, we would like

(z 4 adz) (s + ads) > (1 - a)np.
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Constraints similar to these can be found in the analyses of Kojima, Megiddo, and Mizuno [9],
Mizuno [10], Potra [16], and Zhang [19] for primal-dual methods and Freund [4] for a primal
method.

Defining z(a) and s(a) as before and denoting the projection of r onto the null space (row
space) of A by r, (ry) etc., we have from (37)—(38)

x(a)Ts(a) = z7ls + a(eT'r) + ol [qg(fp . qp) + ZZ(F(J - Zq)] . (39)

So, we want

efr = —27s (40)
(for balance) or

e'r > —z°s
(for decrease of complementarity no faster than of infeasibility) and

[ (7~ @) + T (7 = )] = 0.
Note that, using the reparametrization with f,
r= (X8 [flvwe = f(Xs)].

So, eTr = —zTs if and only if

z": {f(’)’l‘)‘f(xjsj)} _ T
- . -
j=1 f'(wjs5)

(and similarly for efr > —2Ts). This can be viewed as an equation (or inequality) for . For
example, if f(v;) := v¢ for a > 0 or f(v;) := v} for a > 0, we find the following: for o = 1 —

f is the identity — 7 should be equal to (or at least) 0. Otherwise, v should be equal to (or at

least)
1 (Siasi/m\] T
1-a n )

Using the concavity of ¢(7) := 77 if 8 € (0,1) or its convexity if 8 < 0, we find that for o <1,

~v must be at least (1 — a)'/® (and more if the current iterate is not centered). This value is 1/4

for o = 1/2 (trying to make the quadratic equation look linear) and 1/2 for a = —1 (Nazareth’s
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choice in [13]). For f(v;) := In(v;) it is straightforward to see that y should be equal to (or
at least) e®~1. This corresponds to equation (20) and shows that, if the current iterate is not
well-centered, a large value of 4 must be chosen so that complementarity doesn’t decrease faster

than infeasibility.

The coefficient of a? is zero if, for example,
G (Fp— Gp) =1 (7g = Ig) = 0. (41)

This specifies the projections of 7 along g, and iq, but it is otherwise free. One possibility is
to use a variable parametrization, i.e., to vary the parametrization of equality Xs = pe from

iteration to iteration so that (at least approximately) (40) and (41) hold.

To conclude, we note that the basic idea of reparametrizing the condition Xs = pe can
be applied to other related problems, such as linear complementarity problems or semidefinite
programming problems. For linear complementarity problems, the techniques above can be used
directly. For semidefinite programming problems, the variables X and § are n x n symmetric
positive semidefinite matrices. We could for example reparametrize the usual equation X.5' = ul

as
QT (X 8)diag[(f(MXS)NIQ(XS) = diag[(f(ne));
where QT (X §)diag[A\(X $)]Q(X §) is the spectral decomposition of X .S. Even though this seems

acceptable “in principle”, it may not be as practical (as say in linear programming problems or

linear complementarity problems).
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