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1 Introduction

Let Sn denote the space of real symmetric matrices of order n. Our interest is in
interior-point methods for convex quadratic semidefinite programming problems, i.e.,
optimization problems over Sn in which the matrix variable is required to be positive
semidefinite, where now the usual linear objective function is augmented by a quadratic
function of the symmetric matrix variable. Specifically, we consider the following con-
vex quadratic semidefinite program (QSDP)

(QSDP ) minX
1

2
X • Q(X) + C • X

A(X) = b, X � 0,
(1)

where Q : Sn → Sn is a given self-adjoint positive semidefinite operator on Sn and
A : Sn → IRm is a linear map. The notation X � 0 indicates that X is in Sn

+,
the cone of positive semidefinite real symmetric matrices of order n, and U • V de-
notes Tr(UT V ), the usual trace inner product. The adjoint of A with respect to
the standard inner products in Sn and IRm is denoted by AT . Given an integer
n, we let n̄ = n(n + 1)/2. Consider the isometry svec : Sn → IRn̄ defined by
svec(X) = [X11,

√
2X12, X22, . . . ,

√
2X1n, . . .

√
2Xn−1,n, Xnn]. We write the matrix

representation of Q(X) in the standard basis of Sn as svec(Q(X)) = Qsvec(X),
where Q is a positive semidefinite matrix in S n̄; similarly, the matrix representation of
A(X) is written as A(X) = Asvec(X), where A is a matrix in IRm×n̄. The dual of (1)
is given as follows:

(QSDD) maxX,y,Z −1

2
X • Q(X) + bT y

AT (y) −Q(X) + S = C, S � 0.
(2)

Given any square matrices P and Q of order n, P ©∗ Q denotes the symmetrized Kro-
necker product operator on Sn defined by P ©∗ Q(M) = (QMP T + PMQT )/2. For
details on the properties of ©∗ and its relation to the standard Kronecker product, see
the Appendix of [30].

Consider the Cholesky factorization Q = RT R, where R ∈ IRp×n̄, with p being the
rank of Q. (Note that when Q has full rank, p = n̄.) It is readily shown that (1) can
be reformulated as a standard semidefinite-quadratic-linear programming (SQLP) by
introducing an additional p linear constraints and p + 1 variables as follows:

min

{
1

2
t + C • X :

[
A

R

]
svec(X) +

[
0 0

0 −I

] [
t

s

]
=

[
b

0

]
, X � 0, ‖s‖2

2
≤ t

}
, (3)

where the constraint ‖s‖2

2
≤ t can easily be converted into a standard second order

cone constraint. The computational cost required to solve the reformulated problem
(3) grows at least like O((m+p)3) and the memory requirement grows like O((m+p)2).
Thus, unless m+p is small it is extremely expensive to solve (QSDP) by reformulating
it into a standard SQLP. Given that p can be as large as n̄ = Θ(n2), it is safe to say
that an approach based on (3) can comfortably solve only problems with n at most
100 on a high end PC available today.
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Another form of quadratic SDP has been considered in [7], namely, miny{1

2
yT Hy+

bT y : AT y � C, y ∈ IRm}, where H is a given positive semidefinite matrix. In this
case, the Schur complement matrix arising at each interior-point iteration has the form
H + AE−1FAT (with E and F as in Section 3), and the computation presents no
difficulties, being very similar to that for a standard linear SDP. As our interest is in
problems with quadratic terms involving the matrix variables, we shall not consider
this form of quadratic SDP further. In Section 2, we describe some applications leading
to problems of the form (QSDP) and previous work on algorithms for such problems.

In [26], an interior-point algorithm based on reducing a primal-dual potential func-
tion was proposed to solve QSDP problems. The algorithm has an iteration complexity
of O(

√
n ln(1/ε)) for computing an ε-optimal solution. At each iteration, the search

direction needs to be computed from an augmented system of dimension m + n̄. As
the linear system is generally very large, the authors proposed using the conjugate
gradient (CG) method to compute an approximate direction, but no preconditioning
was discussed although it is crucial to do so to ensure that the CG method has a
reasonable convergence rate. Furthermore, the authors do not report any numerical
implementation to test the performance of their proposed method.

In this paper, we propose a primal-dual path-following Mehrotra-type predictor-
corrector method for (1) and (2). For a general self-adjoint positive semidefinite Q,
the search direction at each iteration must be computed from an augmented system of
dimension m+n̄ similar to that appearing in [26]. Our ultimate goal is to investigate the
efficient computation of the search direction by applying a preconditioned symmetric
quasi-minimal residual (PSQMR) method to the augmented system. However, in this
paper, we focus our attention on the efficient computation of the search direction only
for the important special case where Q has the form Q = U ©∗ U , with U being a
given matrix in Sn

+. In this case, the search direction can be computed from a Schur
complement system of dimension m. The cost is comparable to that of computing the
AHO direction [3] for a standard linear SDP. We also discuss the conditioning of this
Schur complement matrix asymptotically.

As the cost of computing the search direction in the special case can still be very
expensive, we propose to use a PSQMR method to solve the governing Schur com-
plement equation. The Schur complement matrix has the form M = A(G1 ©∗ G1 +
G2 ©∗ G2)

−1AT , where G1, G2 are symmetric positive definite matrices. We show that
(G1 ©∗ G1 + G2 ©∗ G2)

−1 admits a semi-analytical expression of the form JDJ T . We
propose two preconditioners for M . The first preconditioner is based on a low rank
approximation of the diagonal operator (with respect to the usual basis) D. The second
preconditioner is constructed by approximating the sum of two Kronecker products by
a single Kronecker product.

It turns out that a Schur complement matrix of the form given in the last paragraph
also arises at each interior-point iteration for a linear SDP with an upper bound. Thus
we also apply our PSQMR method to solve such a problem.

Our interest here is in the efficient computation of the search direction at each
iteration and we do not explicitly address the issue of the computational complexity of
our algorithm. However, it is worth pointing out that for the more general monotone
semidefinite complementarity problem, Kojima, Shindoh, and Hara [19] showed that
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their path-following method using the dual-HKM direction has polynomial complexity.
A similar result would hold for the HKM direction. Our algorithm differs in that we
use the NT direction (which has advantages in computing the search direction) and
also Mehrotra’s predictor-corrector approach.

The rest of this article is organized as follows. As already mentioned, Section
2 focuses on examples of QSDPs and earlier algorithmic studies of these problems.
In Section 3, we describe our primal-dual interior-point algorithm. Sections 4 and 5
contain our main contributions; namely the detailed discussion of the efficient compu-
tation of the search direction for general Q and structured Q, respectively, including
the preconditioners used in the solution of large Schur complement systems. Section 6
discusses the upper-bounded linear SDP and its relation to QSDPs. Finally, in Section
7, we provide numerical results for a variety of QSDP problems discussed in Sections
2 and 6, with matrices of order up to 2000. The results are encouraging.

2 Examples and Existing Work

One of the most common types of QSDPs encountered in the literature is the linearly
constrained semidefinite least squares problem:

(SDLS) min
X

{∥∥∥L(X) − K̂
∥∥∥

F
: A(X) = b, X � 0

}
, (4)

where L : Sn → Sp is a linear map and K̂ is a given symmetric matrix in Sp. Very
often, K̂ = L(K) for some K ∈ Sn, and then the objective function is ‖L(X − K)‖F :
we seek a positive definite X satisfying certain linear restrictions and as close as possible
to K in some suitable weighted sense. However, the EDM problem below uses a more
general K̂ as above.

In finding the nearest correlation matrix to a given data matrix K [16], A(X) = b
represents the constraints that fix the diagonal elements of X to one, and L (with p = n)
typically has the form L(X) = U 1/2XU1/2 with a symmetric positive definite weight
matrix U , or L(X) = U ◦ X, with a symmetric elementwise positive weight matrix U .
Here and below, the notation “◦” means element-wise matrix multiplication. In the
QSDP formulation of these problems, Q takes the form U ©∗ U in the first case and
the element-wise multiplication operator with the matrix U ◦ U in the second case. It
is worth noting that the operator in the second case is positive definite and diagonal.
For these problems, Higham proposes and analyzes a modified alternating projection
solution method.

For the special case of the unweighted nearest correlation matrix problem for which
L(X) = X (and the corresponding operator Q in (1) is the identity), Anjos et al.
[6] proposed a feasible primal-dual interior-exterior algorithm for (1) based on inexact
Gauss-Newton directions computed from overdetermined systems each with n2 equa-
tions and n̄ unknowns. Preconditioned CG methods with diagonal and block diagonal
incomplete Cholesky preconditioning are used to compute the inexact directions. Un-
fortunately, preliminary numerical results obtained by the inexact Gauss-Newton ap-
proach do not show that it is numerically more efficient than the standard formulation
(3).
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In [23], Malick proposed a partial Lagrangian dual algorithm for solving the nearest
correlation matrix problem by dualizing the linear constraints. A quasi-Newton method
is used to solve the dual problem max{bT y − ‖P(AT y −C)‖2

F : y ∈ IRm}, where P(U)
is the projection of U onto Sn

+. According to the numerical results reported in [23], this
method performs very well on the nearest correlation matrix problem. More recently,
Boyd and Xiao [8], apparently unaware of the work in [23], also proposed a Lagrangian
dual approach combined with a projected sub-gradient method to solve the nearest
correlation matrix problem.

In [27], Qi and Sun proposed a non-smooth Newton method for the same problem.
Based on recent results on strongly semismooth matrix valued functions, they were
able to establish quadratic convergence of their method. Numerical experiments in
[27] show that the non-smooth Newton method is highly effective.

SDLS also arises from the problem of finding the nearest Euclidean distance matrix
for a given weighted graph G = (V,E, ω) on p nodes [4]. Let K̂G be a p × p matrix
whose elements are given by kij = ωij if (i, j) ∈ E, and kij = 0 if (i, j) 6∈ E. We seek
points q1, q2, . . . , qp in Rn for n = p−1 such that ‖qi−qj‖2 is close to kij for (i, j) ∈ E.
Then the optimization problem (see [4]) is the following:

(EDM) minX{
∥∥∥L(X) − K̂G

∥∥∥
F

: A(X) = b, X � 0}, (5)

where now L(X) = Σ ◦ (diag(V XV T ) eT + ediag(V XV T )T − 2V XV T ). Here Σ is the
adjacency matrix of the graph G, and V is a p × n matrix such that V T e = 0 and
V T V = In. If we factor the solution X as RRT , then the q’s can be taken to be the
columns of RT V T .

For semidefinite least squares problems (4) arising from the nearest Euclidean dis-
tance matrix problem Alfakih et al. [4] proposed a primal-dual interior-point algorithm
based on the Gauss-Newton approach to solve the perturbed optimality conditions. Un-
fortunately, the linear system that needs to be solved at each iteration has dimension
about n2. Consequently, only small problems with n ≤ 50 can be comfortably solved
on a standard PC.

3 A primal-dual path-following interior-point

algorithm

We propose to solve the primal-dual pair (1) and (2) using primal-dual path-following
methods based on their perturbed KKT conditions:

−Q(X) + AT (y) + S = C, S � 0

A(X) = b, X � 0

XS = νI,

(6)

where ν > 0 is a positive parameter. Given the current iterate (X, y, S) with X and S
positive definite, the search direction (∆X,∆y,∆S) at each interior-point iteration is
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the solution of the following symmetrized Newton system:

−Q(∆X) + AT (∆y) + ∆S = Rd := C − S −ATy + Q(X)

A(∆X) = rp := b −A(X)

E(∆X) + F(∆S) = Rc := σµI − HP (XS),

(7)

where E and F are linear operators on Sn that depend on the symmetrization scheme
HP (·) chosen, with P being the symmetrization matrix; for more details, see for ex-
ample [30]. Here, µ = X • S/n, and σ ∈ (0, 1) is the centering parameter.

We start with an initial iterate (X0, y0, S0) with X0, S0 � 0, and step-length param-
eter τ0 = 0.9. The details of an iteration of our primal-dual path-following algorithm
are explained below. In this description we denote the current and the next iterates by
(X, y, S) and (X+, y+, S+), and the current and the next step-length parameters by τ
and τ+, respectively.

Algorithm IP-QSDP.

• Set µ = X • S/n.

• (Convergence test)

Stop the iteration if the accuracy measure φ is sufficiently small, where

φ = max

{
X • S

1 + |pobj| + |dobj| ,
‖rp‖2

1 + ‖b‖
2

,
‖Rd‖F

1 + ‖C‖F

}
(8)

with rp, Rd defined as in (7), pobj = 1

2
X • Q(X) + C • X, and dobj = − 1

2
X •

Q(X) + bT y.

• (Predictor step)

Compute the predictor search direction (δX, δy, δS) from (7) by choosing σ = 0.

• (Predictor step-length)

Compute

αp = min (1, τ α) . (9)

Here α is the maximum step length that can be taken so that X + αδX and
S + αδS remain positive definite.

• (Centering rule)

Set σ = (X + αpδX) • (S + αpδS)/X • S.

• (Corrector step)

Compute the search direction (∆X,∆y,∆S) from (7), with Rc replaced by

R′
c = σµI − HP (XS + δXδS).

• (Corrector step-length)

Compute αc as in (9) but with (δX, δS) replaced by (∆X,∆S).
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• Update (X, y, S) to (X+, y+, S+) by

X+ = X + αc ∆X, y+ = y + αc ∆y, S+ = S + αc ∆S. (10)

• Update the step-length parameter by τ+ = 0.9 + 0.08αc.

4 Computation of search direction: general Q

The linear system of equations (7) is a non-symmetric system of dimension m+n(n+1).
This is generally a very large system even for a moderate n, say, n = 200. Thus it
is extremely expensive to solve the system directly. By eliminating ∆S, we get the
following augmented equation with dimension m + n̄:

[ −H AT

A 0

]

︸ ︷︷ ︸
B

[
∆X

∆y

]
=

[
Rd −F−1Rc

rp

]
, (11)

where

H = F−1E + Q. (12)

Note that under the assumptions that A is a surjective map and X,S � 0, the matrix
B is nonsingular when the scaling matrix P is chosen to be in the Monteiro-Zhang
family described in [25]. Specific members of the family include the Nesterov-Todd
scaling [30] and the HKM scaling, independently proposed by Helmberg et al. [15] and
Kojima et al. [19], and later rederived from a different viewpoint by Monteiro [24].
For the NT scaling, we have F−1E = W−1 ©∗ W−1, where W is the unique matrix
in Sn

+ satisfying WSW = X. For the HKM scaling, we have E−1F = X ©∗ S−1, but
unfortunately, F−1E does not have such a simple analytical expression. For the dual
HKM scaling, we do not have a simple expression for E−1F , but F−1E = S ©∗ X−1.

By further eliminating ∆X, we get the Schur complement equation of dimension
m below:

AH−1AT
︸ ︷︷ ︸

M

∆y = h := rp + AH−1
(
Rd −F−1Rc

)
. (13)

For a general Q, even for the simple case where Q is a diagonal operator, H cannot be
inverted with moderate cost, so the computation of the Schur complement matrix M
is extremely expensive. Thus unlike the case of linear SDP, computing the direction
based on (13) is computationally not feasible with the possible exception of the case
when Q is of the form U ©∗ U . The best alternative seems to be to compute the
direction based on the augmented equation (11). Using (11) instead of (13), we avoid
the costly construction of the matrix M . However, the coefficient matrix B in (11)
is typically very large and the matrix H in its (1, 1) block is typically dense. As a
result, solving (11) by a direct method such as the LDLT factorization method is out
of consideration. It is necessary to use an iterative solver such as the preconditioned
symmetric quasi-minimal residual (PSQMR) method [10] to solve (11).
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We will discuss in the next section the special case where Q = U ©∗ U for which
H−1 has an analytical expression, and the computational cost of the Schur complement
matrix is more moderate.

Remark 4.1 To avoid the need to handle the sum F−1E +Q whose inverse is expen-
sive to compute, we explore another route starting from the augmented system (11).
Consider the Cholesky factorization Q = RTR, where the matrix representation of R
is a matrix in IRp×n̄. Let ∆Z = −R∆X. Then the augmented system can be rewritten
as follows:




−F−1E AT RT

A 0 0

R 0 I







∆X

∆y

∆Z


 =




Rd −F−1Rc

rp

0


 . (14)

The introduction of the auxiliary variable ∆Z is motivated by the paper [21] for convex
quadratic programming in IRn. Upon eliminating ∆X from (14), we get the following
linear system of dimension m + p:

[
MAA MT

RA

MRA I + MRR

] [
∆y

∆Z

]
=

[
hy

hZ

]
(15)

where MAA = AE−1FAT , MRA = RE−1FAT , MRR = RE−1FRT , and

hy = rp + AE−1FRd −AE−1Rc, hZ = RE−1FRd −RE−1Rc.

Unfortunately, the system (15) has exactly the same dimension and structure as the
Schur complement matrix arising at each interior-point iteration for the standard SQLP
(3). In particular, note that the matrices MAA,MRA,MRR are typically all dense, even
if R is a diagonal operator. Thus, unless m + p is small, the approach based on (15)
would not offer any computational advantage over the augmented system (11). As such,
we shall not consider this approach any further in this paper.

When using an iterative method to solve (11), it is necessary to know how accurately
one must solve the equation. For this purpose, we will construct a stopping condition
based on the residual norm of the computed search direction with respect to (7).

Proposition 4.1 (a) Suppose (∆X,∆y) is computed from (11) with residual vector
given by (η1 , η2). Suppose that ∆S is computed exactly from

∆S = Rd −AT ∆y + Q(∆X).

Then the residual vector associated with the direction (∆X,∆y,∆S) for (7) is given by
(0, η2,−F(η1)).

(b) Suppose ∆y is computed from (13) with residual vector given by ξ. Suppose that
∆X and ∆S are computed exactly as follows:

∆X = H−1
(
AT ∆y − (Rd −F−1Rc)

)
, ∆S = Rd −AT ∆y + Q(∆X).

Then the residual vector associated with the direction (∆X,∆y,∆S) for (7) is given by
(0, ξ, 0).
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Proof. We omit the proof since it is straightforward.

We deem the computed (∆X,∆y) from (11) to be sufficiently accurate if the fol-
lowing relative stopping condition is satisfied:

‖(η2 , −F(η1))‖ ≤ κ ‖(rp , Rd , Rc)‖ ,

where κ ∈ (0, 1) is an accuracy parameter. Similarly, we deem the computed ∆y from
(13) to be sufficiently accurate if ‖ξ‖ ≤ κ ‖(rp , Rd , Rc)‖. In the numerical experiments
in Section 7, we take κ = 10−3.

4.1 Conditioning of M

The convergence rate of a Krylov subspace method such as the SQMR method depends
heavily on the condition number of the coefficient matrix of the linear system being
solved. Thus it is of interest to analyze the conditioning of the coefficient matrix M in
(13). For simplicity, we assume in this subsection that the NT scaling is used, that is,

H = W−1 ©∗ W−1 + Q. (16)

This assumption is without loss of generality: for points on the central path, which
we consider below, the NT scaling, HKM scaling, and dual HKM scaling coincide. We
further assume here that Q is positive definite. We will show that, under suitable
additional assumptions, the condition number of M remains bounded on the central
path of (1) and (2).

It is easy to prove the following proposition.

Proposition 4.2 Suppose that Q is positive definite. Then ‖M‖ ≤
∥∥∥AQ−1AT

∥∥∥.

Proof. The result follows from the fact that H � Q � 0.

Assume that the problems (1) and (2) are strictly feasible, and that A is surjec-
tive. These are necessary and sufficient conditions for the existence and uniqueness
of solutions (Xν , yν , Sν) of the central path equations (6). Also, these solutions con-
verge to some (X∗, y∗, S∗) as ν tends to zero; see Halicka, de Klerk, and Roos [13],
and Luo, Sturm, and Zhang [22]. Both papers additionally contain many results on
the behavior of Xν and Sν . We further assume that X∗ is primal nondegenerate and
that strict complementarity holds in the sense of Alizadeh, Haeberly, and Overton [2].
Thus (y∗, S∗) is the unique optimal dual solution, and the ranks of X∗ and S∗ sum to
n. We will show that, under these conditions, the condition number of Mν , the Schur
complement matrix in (13) corresponding to (Xν , yν , Sν), remains bounded as ν tends
to zero.

Let us suppose not, and choose a monotonically decreasing sequence {νk} such that

limk→∞ νk = 0 and limk→∞ ‖Mνk
‖
2

∥∥∥M−1
νk

∥∥∥
2

= ∞. For simplicity of notation, we write

Mk, Xk, Sk, etc., for Mνk
, Xνk

, Sνk
, and so on. Since Xk and Sk commute, there is an

orthogonal matrix Pk that simultaneously diagonalizes Xk and Sk so that

Xk = PkΛkP
T
k , Sk = PkΣkP

T
k ,
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where the eigenvalue matrices

Λk = Diag(λk
1 , . . . , λ

k
n), Σk = Diag(σk

1 , . . . , σk
n)

satisfy λk
i σ

k
i = νk, and the eigenvalues are ordered such that

λk
1 ≥ . . . ≥ λk

n > 0, 0 < σk
1 ≤ . . . ≤ σk

n.

Let P∗ be a limit point of the set {Pk}. We refine the sequence if necessary so that {Pk}
converges to P∗. Then P∗ is an orthogonal matrix that simultaneously diagonalizes X∗

and S∗ with

X∗ = P∗Λ∗P
T
∗ , S∗ = P∗Σ∗P

T
∗ , (17)

where

Λ∗ = Diag(λ∗
1, . . . , λ

∗
n), Σ∗ = Diag(σ∗

1 , . . . , σ
∗
n)

satisfy λ∗
i σ

∗
i = 0, and

λ∗
1 ≥ . . . ≥ λ∗

r > λ∗
r+1 = . . . = λ∗

n = 0, 0 = σ∗
1 = . . . = σ∗

n−s < σ∗
n−s+1 ≤ . . . ≤ σ∗

n,

where r and s are the ranks of X∗ and S∗, respectively.
By the strict complementarity assumption, r + s = n. For k sufficiently large, the

NT scaling matrix associated with (Xk, Sk), given by Wk = PkD−1

k P T
k with Dk =

Λ
−1/2

k Σ
1/2

k , has r and s eigenvalues of the order Θ(1/
√

νk) and Θ(
√

νk), respectively.
This implies that W−1

k ©∗ W−1

k has r̄, rs, and s̄ eigenvalues of the order Θ(νk), Θ(1),
and Θ(1/νk), respectively.

Recall that Mk denotes the Schur complement matrix in (13) corresponding to
(Xk, yk, Sk). We observe that

Mk = APk

(
Dk ©∗ Dk + Q̃k

)−1

PT
k AT ,

where Pk = Pk ©∗ Pk, and Q̃k = PT
k QPk. Assume that the eigenvalues of W−1

k ©∗ W−1

k

are sorted in increasing order. Consider the following partition

Dk ©∗ Dk + Q̃k =


 Dk

1 + Q̃k
11 Q̃k

12

Q̃k
21 Q̃k

22 + Dk
2


 ,

where Dk
1 and Dk

2 correspond to diagonal matrices whose diagonal elements consist of
the first r̄ + rs, and the last s̄ eigenvalues of W −1

k ©∗ W−1

k , respectively. Note that∥∥∥Dk
1

∥∥∥ = O(1), and that the diagonal entries of the matrix corresponding to Dk
2 are all

Θ(1/νk). Note also that Q̃k
11 and Q̃k

22 are positive definite since Q is assumed to be
positive definite in this subsection. By using the formula for the inverse of a 2×2 block
matrix in [28, p.389], one can show that

(
Dk ©∗ Dk + Q̃k

)−1

=

[
(Dk

1 + Q̃k
11)

−1 0

0 0

]
+ O(νk). (18)
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Thus

Mk = APk,1

(
Dk

1 + Q̃k
11

)−1

PT
k,1AT + O(νk),

where Pk,1 is the submatrix obtained from Pk by extracting its first r̄ + rs columns.
Similarly, let P∗,1 be the submatrix obtained from P∗ := P∗ ©∗ P∗ by extracting its

first r̄ + rs columns, and Q̃∗ = PT
∗ QP∗, with Q̃∗

11 its part corresponding to Q̃k
11.

The discussion above leads to the following conclusion:

Theorem 4.1 Suppose that Q is positive definite, that the problems (1) and (2) are
strictly feasible, and that primal nondegeneracy and strict complementarity hold for
the optimal solution (X∗, y∗, S∗). Then there exists a positive constant c such that

lim supk→∞

∥∥∥M−1

k

∥∥∥
2
≤ c

∥∥M−1
∗

∥∥
2

< ∞, where M∗ = AP∗,1(Q̃∗
11)

−1PT
∗,1AT .

Proof. Since limk→∞ Q̃k
11 = Q̃∗

11 (which is positive definite) and {
∥∥∥Dk

1

∥∥∥} is bounded,

there is a constant c > 0 such that for sufficiently large k, we have cQ̃∗
11 � Dk

1 + Q̃k
11.

This implies that (Q̃∗
11)

−1 � c(Dk
1 + Q̃k

11)
−1, and

APk,1(Q̃∗
11)

−1PT
k,1AT � c(Mk + O(νk)). (19)

Now we show that the matrix on the left-hand side is positive definite for sufficiently
large k, which follows if M∗ is. But this holds as long as AP∗,1 is surjective. Suppose
the symmetric matrices Ai are defined by AT y =

∑
i yiAi. The surjectivity condition

is equivalent to saying that the matrices P T
∗ AiP∗, when their trailing s×s submatrices

are replaced by zeroes (this operation corresponds to considering only the first r̄ + rs
columns of P∗), are linearly independent. But by Theorem 6 of [2], this is equivalent
to the primal nondegeneracy of X∗. Now, by considering the smallest eigenvalues of
the matrices on both sides of (19) and taking the limit infimum, we get λmin(M∗) ≤
c lim infk→∞ λmin(Mk). The required result follows by noting that the 2-norm of the
inverse of a symmetric positive definite matrix is equal to the reciprocal of its smallest
eigenvalue.

Corollary 4.1 Under the assumptions of the theorem, the condition number of Mν

remains bounded as ν tends to zero.

Proof. The result follows straightforwardly from Proposition 4.2 and Theorem 4.1.
Indeed, we have shown that assumption that

∥∥M−1
ν

∥∥
2

is unbounded leads to a contra-
diction.

Motivated by a result in the paper [27], we can show that X ∗ is primal nondegen-
erate when A is the diagonal map and b > 0.

Proposition 4.3 Consider the linear map A : Sn → IRn defined by A(X) = diag(X),
and assume that b > 0. Then X∗ is primal nondegenerate.

11



Proof. We note that the adjoint AT : IRn → Sn is given by AT (y) = Diag(y).
Suppose P∗ and Λ∗ are defined as in (17). Since b = A(X∗) = diag(P∗Λ∗P

T
∗ ), we have

b = diag(
∑r

i=1 λ∗
i P∗,iP

T
∗,i), where P∗,i denotes the ith column of P∗ and again r is the

rank of X∗.
Consider the linear system (P T

∗ Diag(y)P∗)ij = 0 for all 1 ≤ i ≤ r, 1 ≤ j ≤ n; or
equivalently, P T

∗,iDiag(y)P∗ = 0 for all 1 ≤ i ≤ r. We want to show that y must be

zero, so that by the results of [2] X∗ is primal nondegenerate. We have P T
∗,iDiag(y) = 0

for all 1 ≤ i ≤ r since P∗ is nonsingular. Taking the transpose yields Diag(y)P∗,i = 0
for all 1 ≤ i ≤ r. Multiply this equation on the right by λ∗

i P
T
∗,1 and sum over i to

get Diag(y)(
∑r

i=1 λ∗
i P∗,iP

T
∗,i) = 0. Taking the diagonal of this matrix gives Diag(y)b =

0. The assumption made on b implies that we have y = 0, and thus X ∗ is primal
nondegenerate.

5 Computation of search direction when Q =

U ©∗ U

For the special case where Q = U ©∗ U with U � 0, it is possible to compute the
inverse of the mapping H given in (12) with a more moderate cost if the NT direction
is used. The motivation for choosing the NT scaling instead of other scalings in the
Monteiro-Zhang family will become clear after we have presented Lemma 5.1 below.
Note that for such a choice of Q and scaling, we have

X • Q(X) =
∥∥∥U1/2XU1/2

∥∥∥
2

F
,

and H has the form

H = U ©∗ U + W−1 ©∗ W−1. (20)

The inverse of such an H can be computed via one of the two procedures described in
the following lemma.

Lemma 5.1 Let H be as in (20). Then

H−1 = (P ©∗ P )
(
I + D ©∗ D

)−1

(P ©∗ P )T , (21)

where I is the identity operator on Sn and P and the diagonal matrix D are computed
in one of the two following ways.

a) Suppose the Cholesky-like factorization W = RTR and the eigenvalue decomposi-
tion RURT = QDQT are computed. Then set P = RTQ.

b) Assume that U is positive definite. Suppose the Cholesky factorization U = LT L
and the eigenvalue decomposition LWLT = QD̂QT are computed. Then set P =
L−1Q and D = D̂−1.

12



Proof.

a) Given any V ∈ Sn, HY = V implies that

UY U + W−1Y W−1 = V.

Thus

(RURT )(R−T Y R−1)(RURT ) + R−T Y R−1 = RV RT .

Let Ỹ = R−TY R−1. Then we have

(RURT )Ỹ (RURT ) + Ỹ = (RV RT ).

With the above identity and the eigenvalue decomposition of RURT , it is readily
shown that

Y = (RT Q ©∗ RT Q)
(
I + D ©∗ D

)−1

(RT Q ©∗ RT Q)T V,

and the required result is shown.

b) We first note that W−1 = LT QDQT L. H can be written as follows (see also the
multiplication formulas for ©∗ provided in the Appendix of [30]):

H = W−1 ©∗ W−1 + U ©∗ U = LT QDQTL ©∗ LT QDQTL + LT L ©∗ LT L

=
(
LT Q ©∗ LTQ

)
(D ©∗ D + I ©∗ I)

(
LT Q ©∗ LT Q

)T
.

Now, since (G ©∗ G)−1 = G−1 ©∗ G−1 for an invertible G and P = (LT Q)−T , (21)
follows easily.

Since a Cholesky-like factorization, W = RT R, is typically performed in the process
of computing W (see [30]), the additional work required for the first method in Lemma
5.1 is only the computation of the matrix RURT , its eigenvalue decomposition, and
the matrix product P = RT Q. In contrast, for the second method, one needs to
compute (but only once) an additional Cholesky factorization of the U matrix, the
matrix product LWLT and its eigenvalue decomposition as in the first method, and
P = L−1Q, which takes comparable work to the product RT Q in the first method. Thus
the work required in the two methods is comparable. An important exception is the
case when U is the identity matrix. Then, the first method requires the computation of
the dense matrix products RRT and RT Q in addition to the eigenvalue decomposition
required for both methods. In any case, the differences between the flop counts required
for these two methods will be relatively insignificant given the more expensive parts of
the iteration, such as the computation of the M matrix.

Using (21), the Schur complement matrix M in (13) becomes:

M := AH−1AT = A(P ©∗ P )
(
I + D ©∗ D

)−1

(P ©∗ P )TAT , (22)

13



where the term I + D ©∗ D is a positive definite diagonal operator. The complexity of
computing M is 4 1

3
mn3 + 1

2
m2n2 floating point operations if sparsity in A is totally

ignored; see [33]. But even if sparsity in A is exploited, the structural formula in (22)
makes it non-conducive for one to apply the techniques presented in [11] to exploit
the sparsity; thus the computational complexity is generally not much lower, and a
savings of at most 50% is typical. (The problem is that, if Ai denotes AT times a unit
vector, it appears necessary to compute all entries of P T AiP rather than just those
corresponding to a nonzero in some Ah, as in linear SDP.) Note that when m ≈ n, the
computational complexity grows like O(n4).

Remark 5.1 (a) Our ability to compute H−1 via the semi-analytical formulas pre-
sented in Lemma 5.1 depend critically on H having the form H = U ©∗ U + G ©∗ G.
Even for a slight change to the form H = U ©∗ U + G ©∗ K, the technique used in the
proof of Lemma 5.1 would fail, and we are not aware of the existence of an analogous
semi-analytical formula. This is the reason for our focus on the special case Q = U ©∗ U
as well as the use of the Nesterov-Todd scaling in the computation of the search direc-
tions.

(b) The matrix of the form given in (22) also arises from the Schur complement equa-
tion when solving a standard linear SDP by primal-dual interior point methods using
the AHO direction. The Schur complement matrix in that case has the form

A(P ©∗ P )
(
I ©∗ D

)−1

(P ©∗ P )TBT , (23)

where B = A(I ©∗ X), P is orthogonal, and D is diagonal. Thus, the cost of comput-
ing M in (22) is comparable to that of (23) for the AHO direction associated with a
standard linear SDP.

(c) When the search direction is computed from (22) at each interior-point iteration,
the full eigenvalue decompositions of two n × n dense matrices are required: one for
computing the NT scaling matrix and the other for obtaining the semi-analytical for-
mula of H−1. Each of these eigenvalue decompositions has a computational complexity
of 26/3n3 [9]. This can easily become the dominant computational cost when n is large
because it is difficult to exploit sparsity in computing a full eigenvalue decomposition.
For the machine that we use to conduct the numerical experiments in Section 7, the
computation of such a decomposition for a dense 2000 × 2000 matrix takes about 56.7
seconds.

To illustrate part (b) of Remark 5.1 further we examine the calculation of the search
directions using formulas given in Lemma 5.1 in a bit more detail. The similarities with
the calculation of the AHO direction will become apparent. For this purpose, we recall
the nearest correlation matrix problem we discussed in Section 2. To keep things
simple, we do not consider a weighting matrix. Given a n × n symmetric matrix K,
the nearest correlation matrix to K can be found by solving the following problem:

min 1

2
X • X + C • X

s.t. Eii • X = 1, i = 1, . . . , n,
X � 0,

(24)
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where C = −K and Eii is the n × n matrix whose only non-zero entry is a 1 in the
(i, i) position. We now describe the computation of the Schur complement matrix
M = AH−1AT for this problem using (21) and part (b) of the lemma. First, note
that U = I, so we choose L = I. Let QD̂QT = W be the eigenvalue decomposition of
W and D = D̂−1. Observe that (21) simplifies to:

H−1 = (Q ©∗ Q) (I + D ©∗ D)−1
(
QT ©∗ QT

)
.

Next, we observe that (QT ©∗ QT )(Eii) = QT EiiQ = QT
i,:Qi,: where Qi,: denotes the ith

row of Q. Therefore, the ith column of M := AH−1AT can be found as follows:

1. T 1
i = QT

i,:Qi,:.

2.
[
T 2

i

]
jk

=

[
T 1

i

]
jk

1 + djdk
, j, k = 1, . . . , n.

3. T 3
i = QT 2

i QT .

4. M:,i = diag(T 3
i ).

Above, the di’s are the diagonal elements of the matrix D, i.e., the reciprocals of the
eigenvalues of the W matrix and the T j

i ’s for j = 1, 2, 3 are temporary matrices that
can be discarded after Step 4. While the first and second steps of this computation
require Θ(n2) floating point operations (flops), the third step needs Θ(n3) flops and
the overall complexity of computing the Schur complement matrix is Θ(n4).

Since only the main diagonal elements of T 3
i are eventually needed in computing

M:,i, it appears that the Θ(n3) complexity in Step 3 can be reduced by computing
just the diagonal elements of T 3

i . However, the alternative approach of computing the
diagonal elements via the formula Qj,:T

2
i QT

j,:, j = 1, . . . , n, also needs Θ(n3) flops.

5.1 Preconditioners for M , part I

Let Ã = A(P ©∗ P ), and consider the matrix in (22):

M = Ã (I + D ©∗ D)−1ÃT . (25)

Here P and D are computed as in part (a) or part (b) of Lemma 5.1; in the first
case PP T is easily seen to be W , while in the second it is U−1, so in either case
(P ©∗ P )(P ©∗ P )T = PP T ©∗ PP T is easily obtained. The complexity of computing
the matrix in (25) is comparable to that for the AHO direction because sparsity in
A cannot be exploited fully. To lower the computational complexity in solving (13),
an alternative is to use the PSQMR method with an appropriate preconditioner. In
this case, the matrix M need not be constructed explicitly, and only matrix-vector
multiplications of the form My for a given y are required. It is easy to show, based on
the formula for H−1 given in Lemma 5.1, that each matrix-vector product My costs
2mn2 + 14

3
n3 flops if sparsity in A is totally ignored. We observe that a matrix product

of the form PV P T for a symmetric V can be computed at a cost of 7

3
n3 flops by first

computing the Aasen decomposition of V .
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We note that for solving a symmetric positive definite system, the PCG method
is most commonly used, but since PSQMR has very similar convergence behavior and
computational cost as PCG, we will continue to use PSQMR here.

We try to approximate the middle term (I + D ©∗ D)−1 in (25) as the sum of a
small number of terms of the form Λk ©∗ Λk. Specifically, for a fixed positive integer q,
suppose that Λk’s, k = 1, . . . , q, are diagonal matrices such that

q∑

k=1

αkΛk ©∗ Λk ≈ (I + D ©∗ D)−1, (26)

where each αk is a scalar. We will make clear the meaning of “≈” later. Let Vk =
PΛkP

T . Suppose G = (P ©∗ P )(
∑q

k=1
αkΛk ©∗ Λk)(P ©∗ P )T =

∑q
k=1

αkVk ©∗ Vk. Then
G is an approximation to H−1. Thus, it is natural to consider the following precondi-
tioner for M :

M̂ =
q∑

k=1

αkA(Vk ©∗ Vk)AT . (27)

The complexity for computing M̂ is at most q times that of the Schur complement ma-
trix associated with the NT direction for a standard linear SDP. The cost of computing
each term A(Vk ©∗ Vk)AT is 2mn3 + 1

2
m2n2 if sparsity in A is ignored [33]. But we

should emphasize that in (27), sparsity in A can fully be exploited using the techniques
in [11], which is not the case for the matrix M in (25). Thus, the computational cost
of M̂ is potentially much lower than that of M . It is precisely the difference between
(27) and (25) in exploiting sparsity that motivated us to consider the preconditioner
(27).

For the approximation problem (26), one can consider minimizing the 2-norm of the
difference of the two diagonal matrices on both sides of the approximation. We focus
on the vectors consisting of their diagonal elements and then consider the symmetric
matrices obtained from these vectors as follows. The elements of each vector (of length
n̄) are extracted sequentially to fill in the upper-triangular part of an n × n matrix
column-wise, and the lower-triangular part is then filled in to yield a symmetric matrix.
For the right-hand-side matrix in (26), this process yields K := 1./(eeT + ddT ), the
matrix whose entries are the reciprocals of the entries of eeT +ddT , where d = diag(D)
and e is the vector of ones. For the left-hand-side matrix, the corresponding term is∑q

k=1
αkλkλ

T
k where λk = diag(Λk). Now, minimizing the 2-norm of the difference of

the two diagonal matrices in (26) is equivalent solving the problem: min{maxij |(K −∑a
k=1 αkλkλ

T
k )ij | : λk ∈ IRn, αk ∈ IR, k = 1, . . . , q}. Unfortunately, this problem

cannot be solved easily. However, the variant that is based on minimizing the upper

bound
∥∥∥K −∑q

k=1
αkλkλ

T
k

∥∥∥
2

on its objective function can easily be solved. That is,

we consider the following approximation problem for (26):

min
αk∈IR,λk∈IRn,k=1,...,q

∥∥∥∥∥K −
q∑

k=1

αkλkλ
T
k

∥∥∥∥∥
2

, (28)
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The matrix 2-norm is chosen because this problem admits an analytical solution given
by

αk = σk, λk = uk, k = 1, . . . , q, (29)

where σk is the kth largest eigenvalue (in absolute value) of the matrix K and uk is
the corresponding unit eigenvector vector.

Theorem 5.1 For the preconditioner M̂ given in (27) with the αk’s and λk’s given by
(29), we have

∥∥∥M − M̂
∥∥∥
2
≤
∥∥∥Ã
∥∥∥
2

2
|σq+1|,

where σq+1 is the q + 1-st largest eigenvalue of the matrix K. In case P and D were

computed by part (a) of Lemma 5.1,
∥∥∥Ã
∥∥∥
2

2
=
∥∥∥A(W ©∗ W )AT

∥∥∥
2
, while if part (b) was

used,
∥∥∥Ã
∥∥∥
2

2
=
∥∥∥A(U−1 ©∗ U−1)AT

∥∥∥
2
.

Proof. It is readily shown that

∥∥∥M − M̂
∥∥∥
2

=

∥∥∥∥∥Ã
(

(I + D ©∗ D)−1 −
q∑

k=1

σkDiag(uk) ©∗ Diag(uk)

)
ÃT

∥∥∥∥∥
2

≤
∥∥∥Ã
∥∥∥
2

2

∥∥∥∥∥(I + D ©∗ D)−1 −
q∑

k=1

σkDiag(uk) ©∗ Diag(uk)

∥∥∥∥∥
2

≤
∥∥∥Ã
∥∥∥
2

2

∥∥∥∥∥K −
q∑

k=1

σkuku
T
k

∥∥∥∥∥
2

.

Since
∑q

k=1
σkuku

T
k is the best rank q approximation of K, the second norm in the last

line above is given by σq+1; see [12]. The last part follows since
∥∥∥Ã
∥∥∥
2

2
=
∥∥∥ÃÃT

∥∥∥
2

=∥∥∥A(PP T ©∗ PP T )AT
∥∥∥
2
, using the form of PP T given at the beginning of the subsec-

tion.

Remark 5.2 (a) While the Schur complement matrix (22) is positive definite, the
matrix M̂ may not be positive definite.

(b) For the numerical experiments in Section 7, we take q in Theorem 5.1 as follows:

q = min
{
15,min{k : |σk+1| ≤ 10−8|σ1|}

}
.

(c) Note that to solve (28), the easiest (though not necessarily the cheapest) mean is
to compute the full eigenvalue decomposition of the n× n symmetric matrix K. If one
is interested only in approximating K by the sum of a few rank-one matrices, then one
can use variants of the Lanczos method to compute a partial eigenvalue decomposition
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of K.

(d) The construction of M̂ can be made more efficient than computing each constituent
term A(Vk ©∗ Vk)AT separately. For example, the inner product with Ai in M̂ij =
Ai • (

∑q
k=1

αkVkAjVk) need only be done once instead of q times. However, in the
interest of keeping our implementation simple, we did not optimize the computational
efficiency of M̂ in Section 7.

5.2 Preconditioners for M , part II

For the special convex quadratic SDP with Q = U ©∗ U , the middle operator in the
Schur complement matrix M involves inverting an operator of the form H = G1 ©∗ G1+
G2 ©∗ G2, where G1, G2 are given symmetric positive definite matrices. Given that
it is easy to invert an operator of the form V ©∗ V , it is natural for us to consider
approximating a sum of symmetrized Kronecker products by a single term. Recall
that a symmetrized Kronecker product U ©∗ U is an operator on Sn, but it has a
matrix representation using the operation svec. Let Mat(U ©∗ U) in S n̄ be defined by
Mat(U ©∗ U)svec(V ) = svec(U ©∗ U(V )). Then our problem is

min
V ∈Sn

∥∥∥∥∥∥

2∑

j=1

Mat(Gj ©∗ Gj) − Mat(V ©∗ V )

∥∥∥∥∥∥

2

F

. (30)

The above problem can be replaced by a simpler one which we will derive next. By not-
ing that a symmetrized Kronecker product matrix Mat(G ©∗ G) is related to a standard
Kronecker product by the formula Mat(G ©∗ G) = ΠT (G ⊗ G)Π, where the constant

matrix Π ∈ IRn2×n̄ has orthonormal columns (see the Appendix of [30]), we have

∥∥∥∥∥∥

2∑

j=1

Mat(Gj ©∗ Gj) − Mat(V ©∗ V )

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
ΠT




2∑

j=1

Gj ⊗ Gj − V ⊗ V


Π

∥∥∥∥∥∥
F

≤ ‖Π‖2

2

∥∥∥∥∥∥

2∑

j=1

Gj ⊗ Gj − V ⊗ V

∥∥∥∥∥∥
F

.

Note that ‖Π‖
2

= 1. Thus instead of (30), we can consider solving the following
problem:

min
V ∈Sn

∥∥∥∥∥∥

2∑

j=1

Gj ⊗ Gj − V ⊗ V

∥∥∥∥∥∥

2

F

. (31)

The problem (31) is a special case of a more general problem studied in [20] for ap-
proximating a sum of Kronecker products by a single Kronecker product, namely,

min
U,V ∈IRn×n

∥∥∥∥∥∥

q∑

j=1

Gj ⊗ Kj − U ⊗ V

∥∥∥∥∥∥

2

F

, (32)
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where Gj ,Kj are n × n matrices (not necessarily symmetric positive definite). It is
shown in [20] that the optimal solution of (32) takes the form U =

∑q
j=1

αjGj and
V =

∑q
j=1

βjKj, with the coefficients αj , βj being the optimal solution of the following
equivalent non-convex minimization problem:

min
α,β∈IRq

f(α, β) := Tr(GK) − 2αT
GKβ + (αT

Gα)(βT
Kβ), (33)

where G,K ∈ Sq
+ are defined by Gij = Tr(GT

i Gj), K ij = Tr(KT
i Kj). For simplicity,

we assume that {G1, . . . , Gq} and {K1, . . . ,Kq} are linearly independent sets. Under
this assumption, G and K are positive definite.

In [20], the optimal coefficients α and β in (32) are found by using an optimization
software such as multilevel coordinate search. Here we show that the optimal solution
can instead be found analytically.

Proposition 5.1 The optimal objective value of (32) is given by

f(α∗, β∗) = Tr(GK) − λmax(GK),

where λmax(GK) is the largest eigenvalue of GK; (α∗, β∗) is a corresponding left and
right eigenvector pair of GK. Let R =

∑q
j=1

Gj⊗Kj. We have the following inequality
for the relative error:

f(α∗, β∗)

‖R‖F

= 1 − λmax(GK)

Tr(GK)
≤ 1 − 1

q
.

Proof. We observe that f is coercive (so it has a minimizer) and that

∇f = 2

[
(βT

Kβ)Gα − GKβ

(αT
Gα)Kβ − KGα

]
.

Thus the critical points of f(α, β) are given by the solutions of the following equations:

Kβ = (βT
Kβ)α

Gα = (αT
Gα)β,

after making use of the fact that G and K are nonsingular. Now it is easy to see from
the above equations that

KGα = (αT
Gα)(βT

Kβ)α (34)

GKβ = (αT
Gα)(βT

Kβ)β. (35)

This shows that the critical points (ᾱ, β̄) are the left and right eigenvector pairs of
GK. The corresponding objective value can be shown to be given by

f(ᾱ, β̄) = Tr(GK) − (ᾱT
Gᾱ)(β̄T

Kβ̄),

where the term (ᾱT
Gᾱ)(β̄T

Kβ̄) is an eigenvalue of GK. Since the eigenvalues of GK

are all real and non-negative, to minimize the objective function in (33), it is clear
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that the left and right eigenvector pair of GK corresponding to the largest eigenvalue
λmax(GK) must be chosen.

To prove the second statement, note that ‖R‖F = Tr(GK) =
∥∥∥G1/2

K
1/2
∥∥∥
2

F
. We

also have λmax(GK) =
∥∥∥G1/2

K
1/2
∥∥∥
2

2
. Thus by a standard inequality between the

matrix 2-norm and Frobenius norm, the required inequality is established.

Although it seems plausible that the optimal solution of (32) could very well also
be the optimal solution of (30), we note that simple examples demonstrate that this is
not necessarily true.

Proposition 5.2 Suppose Gj and Kj are symmetric positive definite for j = 1, . . . , q.
Then the optimal solution pair U ∗ and V ∗ in (32) are also symmetric positive definite.

Proof. Since Gj ,Kj , j = 1, . . . , q are positive definite, G and K are non-negative
matrices. This implies that GK is a non-negative matrix. By the Perron-Frobenius
Theorem [17, p. 500], λmax(GK) is algebraically simple and there exists a correspond-
ing left and right eigenvector pair α∗, β∗ for which the vectors are non-negative. In this
case, the matrices U ∗ =

∑q
j=1

α∗
jGj , V ∗ =

∑q
j=1

βjKj are symmetric positive definite.

For the problem (31), the optimal solution is given by V ∗ =
∑

2
j=1 α∗

jGj , with α∗

being a unit eigenvector corresponding to the largest eigenvalue of G
2. Note that by

Proposition 5.2, V ∗ is symmetric positive definite. Since V ∗ ©∗ V ∗ is an approximation
of H, we can naturally precondition the Schur complement matrix in (22) using the
following matrix:

M̂ = A[(V ∗)−1 ©∗ (V ∗)−1]AT . (36)

While the preconditioner we have constructed in (27) may not be positive definite, the
above preconditioner is guaranteed to be positive definite.

6 Linear semidefinite programming with a sim-

ple upper bound

Consider the following semidefinite program with a simple upper bound:

minX C • X

A(X) = b, 0 � X � U, (37)

where U � 0 is a given matrix. An example of (37) comes from minimizing the sum of
the largest q eigenvalues of an affine function of symmetric matrices, namely,

min

{ q∑

k=1

λk(AT y − C) : y ∈ IRm

}
. (38)
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In [1, (4.7)], it is shown that (38) is equivalent to a linear SDP with a simple upper
bound:

min {C • X : A(X) = 0, I • X = q, 0 � X � I} . (39)

To derive the KKT conditions for (37), it is convenient to express (37) in the
following standard form:

min
X

{
C • X :

[
A
−I

]
X +

[
0

−I

]
V =

[
b

−U

]
, X, V � 0

}
. (40)

We see that converting the problem (37) to the standard form introduces n̄ extra
equality constraints in the primal problem. Thus it is extremely expensive to solve
(37) by treating it as a standard linear SDP.

The dual problem corresponding to (40) is given by

max
{
bT y − U • Z : ATy − Z + S = C, S, Z � 0

}
. (41)

The perturbed KKT conditions for (40) and (41) are given by

AX = b

X + V = U

AT y − Z + S = C (42)

XS = νI

V Z = νI.

The symmetrized Newton equation corresponding to the above system is given by

A∆X = rp := b −AX

∆X + ∆V = Ru := U − X − V

AT ∆y − ∆Z + ∆S = Rd := C −AT y + Z − S (43)

E1∆X + F1∆S = Rc
1 := σµI − H1(XS)

E2∆V + F2∆Z = Rc
2 := σµI − H2(V Z),

where E1,F1 and E2,F2 are linear operators in Sn that depend on the symmetrization
schemes chosen for X,S and V,Z, respectively. It is readily shown that the search
direction (∆X,∆V,∆y,∆S,∆Z) corresponding to the Newton equation (43) can be
computed by solving the following linear system:

[ −(F−1
1 E1 + F−1

2 E2) AT

A 0

] [
∆X

∆y

]
=

[
h

rp

]
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where

h = Rd −F−1
1 Rc

1 + F−1
2 Rc

2 −F−1
2 E2R

u.

By eliminating ∆X from the augmented equation above, we get the following Schur
complement equation:

A
(
F−1

1 E1 + F−1
2 E2

)−1

AT∆y = rp + A
(
F−1

1 E1 + F−1
2 E2

)−1

h. (44)

The operator F−1
1 E1 +F−1

2 E2 in (44) is costly to invert in general. Hence constructing
the Schur complement matrix in (44) can be very expensive. The reader may recall
that in contrast, for the case of linear programming, having an upper bound vector
does not add any extra computational cost because the middle matrix in (44) is the
sum of two diagonal matrices.

The middle matrix in (44) has exactly the same structure as that in (20) if the NT
scalings are chosen. In this case, F−1

1 E1 +F−1
2 E2 = W−1

1 ©∗ W−1
1 +W−1

2 ©∗ W−1
2 . Thus

the Schur complement matrix in (44) can be reduced to exactly the same form as the
matrix M in (22), and the preconditioners proposed in the last section can be used
when solving (44) by an iterative solver.

The problem (37) is an example of problems where the decision variables are con-
strained to lie at the intersection of two cones. For such problems, the Schur comple-
ment equation arising from an interior-point iteration will have the form (44). Andersen
studies such structures for the intersection of a linear and a second-order cone [5]. An-
other example appears in [14] where the authors study a problem very similar to (37).
This problem comes from a robust optimization formulation of a convex quadratic pro-
gramming problem and the upper bound is expressed using componentwise inequalities
rather than the semidefinite inequality. In this case, the matrix F−1

2 E2 is diagonal and
the situation is similar to the QSDP problem with a diagonal Q operator.

7 Numerical experiments

To evaluate the performance of our interior-point algorithm, we consider the following
classes of test problems:

E1. Quadratic SDP arising from the nearest correlation matrix matrix problem where
Q(X) = X. We use the linear map A(X) = diag(X), and b is the vector of all
ones; see (24). We generate the matrix −C in the same way as Higham did in [16,
p.340]. It is generated from the Matlab function gallery(’randcorr’,...)

with a random symmetric perturbation of Frobenius norm 10−4 added.

E2. Same as E1 but the matrix C is generated as follows: T = 2*rand(n)-1; C =

-0.5*(T+T’); Such a matrix is considered in the numerical experiments in [23].

E3. Same as E1 but the matrix C is generated as in [23] as follows: T = [ones(n/2),

zeros(n/2); zeros(n/2), eye(n/2)]; C = - T - 1e4*diag(2*rand(n,1)-1);
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E4. Same as E1 but Q(X) = UXU , with U � 0 generated randomly as follows:
[Q,R] = qr(randn(n)); beta = 10^(-4/(n-1)); U = Q*diag(beta.^[0:n-1])*Q’.

The matrix C in E1 is replaced by UCU .

E5. Same as E2 but Q(X) = UXU , with U generated in the same way as in E4. The
matrix C in E2 is replaced by UCU .

E6. Same as E3 but Q(X) = UXU , with U generated in the same way as in E4. The
matrix C in E3 is replaced by UCU .

E7. Linear SDPs with simple upper bounds (39) arising from (38). Here we take q = 5,
the matrix C is generated randomly in Matlab as follows: T = randn(n); T =

0.5*(T+T’); C = T + norm(T,2)*I; the linear map A is chosen to be A(X) =
[A1 • X, . . . , An−1 • X], where Ak = eke

T
k+1

+ ek+1e
T
k for k = 1, . . . , n − 1.

We use 4 variants of Algorithm IP-QSDP to solve each test problem, namely,

A1. Algorithm IP-QSDP with search direction computed via (22) by a direct solver;

A2. Algorithm IP-QSDP with search direction computed via (22) by PSQMR with
no preconditioning.

A3. Algorithm IP-QSDP with search direction computed via (22) by PSQMR with a
hybrid preconditioner chosen as follows: it is taken to be the preconditioner (27)
if it is positive definite; otherwise, it is taken to be the preconditioner (36).

A4. Algorithm IP-QSDP with search direction computed via (22) by PSQMR with
preconditioner (36).

We implemented the algorithms in Matlab (version 7.0) and the experiments were
conducted on a Pentium IV 3.0GHz PC with 2GB of RAM. We stopped the algorithms
when the accuracy measure φ in (8) was less than 10−8, or when the algorithms did
not improve both the duality gap and infeasibilities. We set the maximum number of
PSQMR steps allowed per solve to n.

The initial iterate for all the algorithms was taken to be the default starting point
in [31]. For the problem sets E1–E6, it is given by

X0 =
n√
2
I, y0 = 0, S0 =

√
nI.

The performance results of our algorithms are given in Table 1. The columns
corresponding to “it” give the total number of interior-point iterations required to
solve each problem, whereas the columns “psqmr” give the average number of PSQMR
steps required to solve each of the two linear systems (22) during the computation of
the predictor and corrector directions at each interior-point iteration.

It is worth making some observations we may derive from the performance table.

1. Solving (13) via a direct solver is extremely expensive. For the problem in E1-
1600, it is at least 20 times more expensive than the algorithms using iterative
solvers to solve (13).

2. Based on the stopping criterion we proposed in Section 4, the algorithms that use
an iterative method to solve (13) took about the same number of interior-point
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iterations to converge compared to the algorithm using a direct method. This
indicates that the inexact search directions are computed to sufficient accuracy,
and thus the residual errors do not degrade the outer iterations.

3. The test examples considered in [16] and [23] for the unweighted nearest cor-
relation matrix problem are easy problems that can be solved by an iterative
solver even without preconditioning. As we can observe from the test problems
in E1–E3, the SQMR method takes an average of 2 to 4 steps to solve the Schur
complement equation (13) without any preconditioning. This indicates that the
coefficient matrix M is very well-conditioned throughout the entire course of
interior-point iterations. With such a well-conditioned system, the precondition-
ers proposed in (27) and (36) cannot offer any saving in the computation time
because of the overheads involved in their construction. For these easy problems,
the condition number of M stays bounded even when the duality gap decreases
to zero. This possibility is consistent with Corollary 4.1.

4. The conditioning of the matrix M becomes slightly worse for the weighted near-
est correlation matrix problems considered in E4 and E5. This can be seen from
the slight increase in the average number of SQMR steps required to solve (13).
The preconditioned systems generally take fewer steps to converge, but the reduc-
tion in the number of PSQMR steps is not enough to offset the preconditioning
overhead.

5. The test problems in E6 and E7 truly demonstrate the effectiveness of the pre-
conditioners (27) and (36). For the test problem in E6-2000, the SQMR method
takes an average of 80.4 steps to solve (13) whereas the corresponding numbers
for the system preconditioned by (27) and (36) are 1.0 and 26.8, respectively.

6. The number of interior-point iterations required by our proposed primal-dual
interior-point method grows very modestly with the problem dimension n. In all
the test problems, the number of iterations required is less than 30. In contrast,
for problems similar to those in E3 considered in [23], the number of iterations
required to solve the Lagrangian dual problems exceeded 300.

7. If we compare the CPU time taken by Algorithm A2 to solve the problem E1-
2000 with that in [23], each interior-point iteration of our algorithm is about
7.7 times slower (after taking into account the difference in the speed of the
machines used). There are several reasons to explain such a big discrepancy.
First, the computation in [23] is done in Fortran combined with the LAPACK
library, whereas our computation is done in Matlab. It is a well-known fact that
a speed-up by a factor of 5 or 10 is not uncommon when a Matlab computation is
transplanted to Fortran. Second, each iteration in [23] is a quasi-Newton iteration
which involves only gradient evaluations, whereas each iteration of our algorithm
is a Newton iteration. Third, as we mentioned in Remark 5.1, each iteration
of our algorithm requires 2 eigenvalue decompositions, whereas each iteration of
the algorithm in [23] requires only one. This additional eigenvalue decomposition
accounts for 20% of the time spent per iteration.

8. It is clear from (27) and (36) that the overhead incurred in constructing the first
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preconditioner will be more than that for the second. This is reflected in the CPU
times in Table 1. For example, Algorithm A4 takes less time to solve E5-2000
(similarly for E7-2000) than Algorithm A3, even though the former required more
PSQMR steps per solve. Generally, both preconditioners are quite effective on all
the problem classes considered. However, the first preconditioner is much more
effective than the second for the more difficult problem class E6.

9. If we compare the CPU times taken to solve the three larger problems within
each problem class, we see that the growth rates are at most n2.65, n1.94, and n2.18

(the exponents are crudely estimated from regressions with log10(n) against n),
for Algorithms A2, A3, and A4, respectively. These exponents are much smaller
than the exponent of between 3 to 4 that is expected from the direct-solver based
Algorithm A1.

8 Conclusion and future research

We considered a primal-dual path-following Mehrotra-type predictor-corrector method
for solving convex quadratic SDP problems. For the special case when the derivative
of the quadratic term Q(X) has the form UXU , we suggested computing the search
direction at each iteration based on the Schur complement equation, using the PSQMR
iterative solver with one of two appropriately constructed preconditioners. Numerical
experiments on a variety of QSDPs with matrices of dimension up to 2000 showed that
our methods are quite efficient and robust. We also extended our methods to solving
linear SDP problems with upper bound constraints on the primal matrix variable.

We observed from our computations that the matrix M̂ in (27) is usually an ex-
tremely good approximation to M for the value q selected based on Remark 5.2(b).
An interesting idea that is worth exploring is to use the direction ∆y computed from
M̂∆y = h for each IPM iteration, instead of the direction computed from (13) itself.
In that case, ∆y can be computed from the approximate system straightforwardly by
a direct solver.

As mentioned in the introduction, our ultimate goal is to solve problems with
a general positive semidefinite Q, in which case the search direction at each IPM
iteration has to be computed from the augmented equation (11). Our hope is to
solve this equation efficiently via an iterative solver with appropriately constructed
preconditioners.

Through the years and in the current paper, our interest in the robust and efficient
implementation of interior-point methods for various classes of conic optimization prob-
lems and our continued work on SDPT3 were motivated, and in many cases inspired,
by the friendly but strong competition we received from Jos Sturm. His hugely suc-
cessful software SeDuMi [29] continually raised the bar for us and other developers of
conic optimization software. We dedicate this work to his memory.
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Table 1: Performance of the Algorithms A1–A4 on the problem
sets E1–E7.

A1 A2 A3 A4

n it φ Time (s) it φ Time (s) psqmr it φ Time (s) psqmr it φ Time (s) psqmr

E1 200 14 7.1e-09 36.9 14 6.9e-09 8.6 3.6 14 7.1e-09 11.1 1.0 14 7.2e-09 9.7 3.5

400 15 3.4e-09 327.8 15 3.4e-09 44.7 3.1 15 3.4e-09 54.6 1.0 15 3.3e-09 46.0 3.0

800 15 7.8e-09 3605.4 15 7.8e-09 291.2 2.8 15 7.8e-09 345.2 1.0 15 7.7e-09 300.2 2.8

1600 15 9.4e-09 46546.3 15 9.5e-09 1869.9 2.6 15 9.4e-09 2404.7 1.0 15 9.5e-09 1889.6 2.6

2000 16 2.8e-09 4584.9 2.6 16 2.7e-09 4872.8 1.0 16 2.7e-09 4753.2 2.6

E2 200 10 4.9e-09 25.7 10 4.6e-09 5.8 2.7 10 4.9e-09 7.3 1.8 10 5.1e-09 5.8 2.1

400 11 7.8e-09 235.1 11 7.6e-09 31.4 2.6 11 7.8e-09 40.0 1.7 11 8.0e-09 31.5 2.1

800 11 4.7e-09 2578.8 11 5.1e-09 192.7 2.3 11 4.7e-09 259.2 1.6 11 4.3e-09 195.1 1.9

1600 12 2.6e-09 1411.5 2.2 12 2.2e-09 1961.3 1.7 12 2.0e-09 1424.0 1.8

2000 11 5.9e-09 3073.0 2.0 11 5.4e-09 3396.8 1.4 11 5.6e-09 3147.1 1.7

E3 200 13 5.9e-10 28.9 13 7.9e-10 7.1 1.8 13 5.9e-10 8.4 1.1 13 1.0e-09 7.5 1.6

400 13 3.4e-10 293.6 13 4.9e-09 41.0 1.7 13 3.4e-10 48.5 1.1 13 3.6e-10 42.7 1.7

800 14 2.9e-10 3516.8 14 1.6e-09 291.7 1.7 14 1.1e-09 368.4 1.1 14 3.0e-10 300.0 1.7

1600 14 6.8e-09 1932.0 1.7 14 6.7e-09 2302.3 1.1 14 6.7e-09 1974.7 1.7

2000 15 2.3e-10 3862.6 1.7 15 2.2e-10 4701.5 1.2 15 2.2e-10 4053.4 1.7

E4 200 11 3.7e-09 29.1 11 3.0e-09 8.9 11.3 11 3.7e-09 7.6 1.0 11 6.1e-09 7.5 6.7

400 12 5.0e-09 281.1 12 7.6e-09 50.8 9.0 12 5.0e-09 51.7 2.4 12 6.1e-09 46.6 6.4

800 15 3.6e-09 3922.4 15 4.3e-09 383.8 7.2 15 3.6e-09 431.2 3.4 15 9.1e-09 372.4 5.9

1600 15 5.1e-09 2415.9 5.3 14 5.8e-09 2741.5 1.4 15 3.5e-09 2470.5 5.1

2000 16 2.2e-09 4872.2 5.3 15 1.3e-09 5917.1 3.5 16 6.6e-10 4916.0 5.0

E5 200 13 3.6e-09 35.3 13 4.4e-09 11.7 13.1 13 3.6e-09 9.8 1.5 13 3.7e-09 8.6 5.3

400 14 3.7e-10 328.0 14 3.9e-10 61.6 9.8 14 3.7e-10 61.3 2.5 14 3.7e-10 53.0 5.6

800 14 7.4e-09 3614.8 14 7.0e-09 358.1 7.3 14 7.4e-09 394.8 3.1 14 7.0e-09 326.0 4.7

1600 15 4.9e-09 2460.2 5.6 14 9.8e-09 2702.5 2.8 14 9.1e-09 2383.5 4.2

2000 14 9.6e-09 4180.8 5.0 14 4.6e-09 5377.4 2.9 14 6.0e-09 4156.7 4.3

E6 200 21 1.6e-09 57.0 21 9.6e-09 32.1 32.9 21 1.6e-09 14.4 1.3 21 1.8e-09 21.4 16.7

400 22 1.1e-09 510.8 24 3.3e-09 250.5 44.9 22 1.1e-09 81.2 1.0 22 4.6e-09 128.4 18.5

800 23 4.4e-09 5888.7 26 1.5e-09 2049.9 57.0 23 4.4e-09 551.0 1.0 24 1.5e-09 947.6 20.8
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Table 1: Performance of the Algorithms A1–A4 on the problem
sets E1–E7.

A1 A2 A3 A4

n it φ Time (s) it φ Time (s) psqmr it φ Time (s) psqmr it φ Time (s) psqmr

1600 29 1.5e-09 21704.4 81.6 26 1.4e-09 4422.5 1.0 27 1.5e-09 9293.8 30.6

2000 30 4.2e-09 41537.6 80.4 27 7.7e-10 9014.6 1.0 28 9.3e-09 16608.7 26.8

E7 200 15 5.5e-08 58.9 17 2.9e-08 93.3 90.7 15 5.2e-08 19.9 1.1 16 3.0e-08 82.5 85.2

400 16 3.2e-08 373.7 17 1.1e-08 563.1 149.6 15 4.3e-08 116.2 1.5 16 2.6e-08 545.6 107.9

800 15 6.6e-08 3955.8 15 1.1e-07 4312.7 236.4 15 1.4e-07 508.8 1.3 15 5.0e-08 707.2 18.9

1600 17 2.7e-07 56457.0 17 3.3e-07 62418.6 440.9 17 1.3e-07 5818.5 1.3 17 7.7e-08 3917.3 6.4

2000 18 1.4e-06 136231.9 520.2 17 1.2e-07 9128.1 1.1 18 8.6e-08 7619.3 6.0
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