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Data Classification, Machine Learning

Suppose we have training data x1, . . . ,xn ∈ IRd together with labels y1, . . . , yn ∈ {±1}. We
want to use this to construct a rule to predict the label of future instances x.

We restrict ourselves to linear rules:

y = sgn(wTx+ β)

for some w ∈ IRd, β ∈ IR. This is not as restrictive as it looks; e.g. a quadratic rule is a linear
rule in φ(x) = (x(1), . . . , x(d), (x(1))2, x(1)x(2), . . . , (x(d))2) ∈ IRd(d+3)/2.

Choose w and β so that the rule works well on the training data.We want xTi w + β to be
positive if yi = 1, and negative if yi = −1.

Define X = [x1, . . . , xn] ∈ IRd×n, y ∈ IRn, Y = diag(y1, . . . , yn), so we want

Y XTw + βy

to have positive components, and all “big”.
We need to normalize: we will choose ||w||2 ≤ 1.
The data may not be separable, so we allow a perturbation vector ξ ∈ IRn

+ which we penalize.
So set

r = Y XTw + βy + ξ,

the “signed distance” to the hyperplane {x : wTx+ β = 0}+ perturbations.
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We will choose w and β to maximize the smallest ri, or minimize the largest 1
ri

, together
with a penalty C > 0 on each ξi. So we get

min CeT ξ + 1
p

Y XTw + βy + ξ − pe ≥ 0

||w||2 ≤ 1

w ∈ IRd, β ∈ IR, ξ ≥ 0(p > 0).

This is roughly equivalent to the Support Vector Machine.
First: replace 1

p
by q, and add pq ≥ 1 (p > 0, q > 0).

Next: write p = ρ− σ, q = ρ+ σ, and we get:

pq ≥ 1

p > 0, q > 0
⇔

ρ2 − σ2 ≥ 1

ρ− σ > 0

ρ+ σ > 0

⇔ ρ ≥
∣∣∣∣∣∣∣∣( σ

1

)∣∣∣∣∣∣∣∣
2

.

Thus we get the conic programming problem:

min
ω,w,β,ξ,ρ,σ,τ,η

CeT ξ + ρ+ σ

Y XTw + βy + ξ − ρe+ σe− η = 0

ω = 1

τ = 1(
ω

w

)
∈ K1+d

2 , β ∈ IR, ξ ≥ 0,

 ρ

σ

τ

 ∈ K1+2
2 , η ≥ 0.

Its dual is 

max ψ + θ = 0

ψ +υ = 0

XY α + u = 0

yTα = 0

α +χ = Ce

− eTα + λ = 1

+ eTα +µ = 1

θ + ν = 0

− α +π = 0(
υ

u

)
∈ K1+d

2 , χ ≥ 0,

 λ

µ

ν

 ∈ K1+2
2 , π ≥ 0.
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We have ψ = −υ ≤ −||XY α||2, so eliminate ψ and put −||XY α||2 in the objective. Next,

0 ≤ α ≤ Ce

λ = 1 + eTα, µ = 1− eTα, ν = −θ ⇒ (1 + eTα)2 ≥ (1− eTα)2 + θ2

⇒ 4eTα ≥ θ2.

So we arrive at the simplified dual
max
α
− ||XY α||2 + 2

√
eTα

yTα = 0

0 ≤ α ≤ Ce.

Let’s assume y = (+1; +1; . . . ; +1;−1; . . . ;−1) and similarly X = [X+, X−], α = (α+;α−), and
e = (e+; e−). Then we get

max
α+,α−

− ||X+α+ −X−α−||2 + 2
√
eT+α+ + eT−α−

eT+α+ = eT−α−

0 ≤ α+ ≤ Ce+, 0 ≤ α− ≤ Ce−.

To simplify further, assume the data is separable, and we eliminate ξ (or make C so large that
ξ = 0 is optimal).

Then we write

α+ = γα+, with γ = 1
eT+α+

α− = γα−, with γ = 1
eT−α−

, (if eT+α+ = eT−α− = 0, set γ = 0, α+, α−

whatever with sums 1).
Then we can rewrite the dual as

max
α+ ≥ 0 α− ≥ 0

eT+α+ = 1 eT−α− = 1

max
γ≥0

− γ||X+α+ −X−α−||2 + 2
√

2
√
γ

The inner maximization is solved by γ = 2
||X+α+−X−α−||22

.

Then we get 
max
α+,α−

2

||X+α+ −X−α−||2
eT+α+ = eT−α− = 1

α+, α− ≥ 0.
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Figure 1: Find the closest points in the convex hulls of the positive points and the negative
points

Key: in either the original or the simplified form, strong duality holds, and so “sTx = 0.”

In particular,

(
ω
w

)(
υ
u

)
=

(
1
w

)T ( ||XY α||
−XY α

)
= 0.

As long as there are both positive and negative instances in the data, α 6= 0 in the dual opt
solution (because of the square root term). So XY α 6= 0 in the separable case, and usually
otherwise; then w is proportional to XY α, so w = XY α

||XY α||2 . Hence we can recover the direction
of the normal to the hyperplane as the difference of two convex combinations coming from the
solution to the dual problem.
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