Data Classification, Machine Learning

Suppose we have training data $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}$ together with labels $y_{1}, \ldots, y_{n} \in\{ \pm 1\}$. We want to use this to construct a rule to predict the label of future instances \boldsymbol{x}.

We restrict ourselves to linear rules:

$$
y=\operatorname{sgn}\left(w^{T} x+\beta\right)
$$

for some $w \in \mathbb{R}^{d}, \beta \in \mathbf{R}$. This is not as restrictive as it looks; e.g. a quadratic rule is a linear rule in $\phi(x)=\left(x^{(1)}, \ldots, x^{(d)},\left(x^{(1)}\right)^{2}, x^{(1)} x^{(2)}, \ldots,\left(x^{(d)}\right)^{2}\right) \in \mathbb{R}^{d(d+3) / 2}$.

$$
w^{T} x+\beta=0
$$

Choose w and β so that the rule works well on the training data. We want $x_{i}^{T} w+\beta$ to be positive if $y_{i}=1$, and negative if $y_{i}=-1$.

Define $X=\left[x_{1}, \ldots, x_{n}\right] \in \mathbf{R}^{d \times n}, y \in \mathbf{R}^{n}, Y=\operatorname{diag}\left(y_{1}, \ldots, y_{n}\right)$, so we want

$$
Y X^{T} w+\beta y
$$

to have positive components, and all "big".
We need to normalize: we will choose $\|w\|_{2} \leq 1$.
The data may not be separable, so we allow a perturbation vector $\xi \in \mathbf{R}_{+}^{n}$ which we penalize.
So set

$$
r=Y X^{T} w+\beta y+\xi
$$

the "signed distance" to the hyperplane $\left\{x: w^{T} x+\beta=0\right\}+$ perturbations.

We will choose w and β to maximize the smallest r_{i}, or minimize the largest $\frac{1}{r_{i}}$, together with a penalty $C>0$ on each ξ_{i}. So we get

$$
\left\{\begin{aligned}
\min & C e^{T} \xi+\frac{1}{p} \\
& Y X^{T} w+\beta y+\xi-p e \geq 0 \\
& \|w\|_{2} \leq 1 \\
& w \in \mathbf{R}^{d}, \beta \in \mathbb{R}, \xi \geq 0(p>0)
\end{aligned}\right.
$$

This is roughly equivalent to the Support Vector Machine.
First: replace $\frac{1}{p}$ by q, and add $p q \geq 1(p>0, q>0)$.
Next: write $p=\rho-\sigma, q=\rho+\sigma$, and we get:

$$
\begin{array}{r}
p q \geq 1 \\
p>0, q>0
\end{array} \Leftrightarrow \quad \begin{array}{r}
\rho^{2}-\sigma^{2} \geq 1 \\
\rho-\sigma>0 \\
\rho+\sigma>0
\end{array} \Leftrightarrow \rho \geq\left\|\binom{\sigma}{1}\right\|_{2} .
$$

Thus we get the conic programming problem:

$$
\left\{\begin{aligned}
& \min _{\omega, w, \beta, \xi, \rho, \sigma, \tau, \eta} C e^{T} \xi+\rho+\sigma \\
& Y X^{T} w+\beta y+\xi-\rho e+\sigma e-\eta=0 \\
& \omega=1 \\
& \tau=1
\end{aligned}\right\} \begin{aligned}
& \\
\binom{\omega}{w} \in K_{2}^{1+d}, \beta \in \mathbf{R}, \xi \geq 0,\left(\begin{array}{c}
\rho \\
\sigma \\
\tau
\end{array}\right) \in K_{2}^{1+2}, & \eta \geq 0
\end{aligned}
$$

Its dual is

$$
\begin{aligned}
& \binom{v}{u} \in K_{2}^{1+d}, \chi \geq 0,\left(\begin{array}{c}
\lambda \\
\mu \\
\nu
\end{array}\right) \in K_{2}^{1+2}, \pi \geq 0 .
\end{aligned}
$$

We have $\psi=-v \leq-\|X Y \alpha\|_{2}$, so eliminate ψ and put $-\|X Y \alpha\|_{2}$ in the objective. Next,

$$
\begin{gathered}
0 \leq \alpha \leq C e \\
\lambda=1+e^{T} \alpha, \mu=1-e^{T} \alpha, \nu=-\theta
\end{gathered} \begin{gathered}
\\
\Rightarrow 4 e^{T} \alpha \geq e^{T}
\end{gathered}
$$

So we arrive at the simplified dual

$$
\left\{\begin{array}{c}
\max _{\alpha}-\|X Y \alpha\|_{2}+2 \sqrt{e^{T} \alpha} \\
y^{T} \alpha=0 \\
0 \leq \alpha \leq C e
\end{array}\right.
$$

Let's assume $y=(+1 ;+1 ; \ldots ;+1 ;-1 ; \ldots ;-1)$ and similarly $X=\left[X_{+}, X_{-}\right], \alpha=\left(\alpha_{+} ; \alpha_{-}\right)$, and $e=\left(e_{+} ; e_{-}\right)$. Then we get

$$
\left\{\begin{array}{c}
\max _{\alpha_{+}, \alpha_{-}}-\left\|X_{+} \alpha_{+}-X_{-} \alpha_{-}\right\|_{2}+2 \sqrt{e_{+}^{T} \alpha_{+}+e_{-}^{T} \alpha_{-}} \\
\\
e_{+}^{T} \alpha_{+}=e_{-}^{T} \alpha_{-} \\
0 \leq \alpha_{+} \leq C e_{+}, 0 \leq \alpha_{-} \leq C e_{-}
\end{array}\right.
$$

To simplify further, assume the data is separable, and we eliminate ξ (or make C so large that $\xi=0$ is optimal).

Then we write $\left\{\begin{array}{l}\alpha_{+}=\gamma \bar{\alpha}_{+}, \text {with } \gamma=\frac{1}{e_{+}^{T} \alpha_{+}} \\ \alpha_{-}=\gamma \bar{\alpha}_{-}, \text {with } \gamma=\frac{1}{e_{-}^{T} \alpha_{-}}\end{array} \quad,\left(\right.\right.$ if $e_{+}^{T} \alpha_{+}=e_{-}^{T} \alpha_{-}=0$, set $\gamma=0, \bar{\alpha}_{+}, \bar{\alpha}_{-}$ whatever with sums 1).

Then we can rewrite the dual as

$$
\begin{aligned}
& \bar{\alpha}_{+} \geq 0 \quad{ }^{\max } \bar{\alpha}_{-} \geq 0 \max _{\gamma \geq 0}-\gamma\left\|X_{+} \bar{\alpha}_{+}-X_{-} \bar{\alpha}_{-}\right\|_{2}+2 \sqrt{2} \sqrt{\gamma} \\
& e_{+}^{T} \bar{\alpha}_{+}=1 \quad e_{-}^{T} \bar{\alpha}_{-}=1
\end{aligned}
$$

The inner maximization is solved by $\gamma=\frac{2}{\left\|X_{+} \bar{\alpha}_{+}-X_{-} \bar{\alpha}_{-}\right\|_{2}^{2}}$.
Then we get

$$
\left\{\begin{aligned}
\max _{\bar{\alpha}_{+}, \bar{\alpha}_{-}} & \frac{2}{\left\|X_{+} \bar{\alpha}_{+}-X_{-} \bar{\alpha}_{-}\right\|_{2}} \\
& e_{+}^{T} \bar{\alpha}_{+}=e_{-}^{T} \bar{\alpha}_{-}=1 \\
& \bar{\alpha}_{+}, \bar{\alpha}_{-} \geq 0
\end{aligned}\right.
$$

Figure 1: Find the closest points in the convex hulls of the positive points and the negative points

Key: in either the original or the simplified form, strong duality holds, and so " $s{ }^{T} x=0$." In particular, $\binom{\omega}{w}\binom{v}{u}=\binom{1}{w}^{T}\binom{\|X Y \alpha\|}{-X Y \alpha}=0$.
As long as there are both positive and negative instances in the data, $\alpha \neq 0$ in the dual opt solution (because of the square root term). So $X Y \alpha \neq 0$ in the separable case, and usually otherwise; then w is proportional to $X Y \alpha$, so $w=\frac{X Y \alpha}{\|X Y \alpha\|_{2}}$. Hence we can recover the direction of the normal to the hyperplane as the difference of two convex combinations coming from the solution to the dual problem.

