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As promised in the last lecture, we now give the proof for Proposition 3:

Proof. Let a = a√
aTBa

, so by Lemma 1,

−1 ≤ aT (x− y) ≤ +1 for x ∈ E. (1)

Now suppose x ∈ Eα; then
(x− y)TB−1(x− y) ≤ 1. (2)

Also since
−1 ≤ aT (x− y) ≤ −α by equation (1) and the definition of Eα, (3)

we have
(aT (x− y) + α)(aT (x− y) + 1) ≤ 0, or

(x− y)TaaT (x− y) + (1 + α)aT (x− y) ≤ −α. (4)

From (2)× (1− σ) + (4)× σ, we get, for any 0 ≤ σ ≤ 1,

(x− y)T
(
(1− σ)B−1 + σaaT

)
(x− y) + (1 + α)σaT (x− y) ≤ 1− σ − σα,

⇒(x− y +
(1 + α)σ

2
Ba)T ((1− σ)B−1 + σaaT )(x− y +

(1 + α)σ

2
Ba) ≤ 1− σ − σα +

(1 + α)2σ2

4
.

If we set y+ := y − (1+α)σ
2

Ba and

B−1+ =
1

1− σ − σα + (1+α)2σ2

4

((1− σ)B−1 + σaaT )

=
1− σ

1− σ − σα + (1+α)2σ2

4

(
B−1 +

σ

1− σ
aaT
)

=
1− σ

1− σ − σα + (1+α)2σ2

4

(
B −

σ
1−σBaa

TB

1 + σ
1−σa

TBa

)−1
by the Sherman-Morrison-Woodbury formula,

or

B+ =
1− σ − σα + (1+α)2σ2

4

1− σ
(B − σBaaTB),

this is (x− y+)TB−1+ (x− y+) ≤ 1. Now plug in

σ =
2(1 + nα)

(1 + n)(1 + α)
≥ 0

with

1− σ =
n− 1

n+ 1
· 1− α

1 + α
≥ 0.
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Then
(1 + α)σ

2
=

1 + nα

1 + n
= τ,

and after some algebra,

1− σ − σα + (1+α)2σ2

4

1− σ
=

(1− α2)n2

n2 − 1
= δ.

So B+ = δ(B − σBaaTB) and y+ = y − τBa as in the statement of the proposition.
Hence Eα ⊆ E+. Also, its volume is

vol(E+) =
√

detB+ · vol(unit ball)

=
√
δn · detB · (1− σaTBB−1Ba) · vol(unit ball) (by Lemma 2)

= vol(E)

[
(

n2

n2 − 1
)(1− α2)

]n
2
(
n− 1

n+ 1
· 1− α

1 + α

) 1
2

= vol(E)

(
n2

n2 − 1

)n−1
2

(1− α2)
n−1
2

n

n+ 1
(1− α).

If α ≥ 0, then

vol(E+)

vol(E)
≤
(

1 +
1

n2 − 1

)n−1
2
(

1− 1

n+ 1

)
≤ [exp

(
1

n2 − 1

)
]
n−1
2 · exp

(
− 1

n+ 1

)
= exp

(
1

2(n+ 1)

)
· exp

(
− 1

n+ 1

)
= exp

(
− 1

2(n+ 1)

)
.

Here is a sketch of the proof that this is the minimum-volume ellipsoid, in the case y =
0, B = I, a = −e1.

Suppose we consider an arbitrary ellipsoid Ê := {x : ||Mx− r|| ≤ 1} with volume
1

detM
· vol(unit ball). Choose β =

√
1− α2, and consider the points

αe1 ± βej, j = 2, . . . , n
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and e1, all in Eα. So, if the columns ofM arem1, . . . ,mn, ||m1−r|| ≤ 1 and ||±βmj+αm1−r|| ≤
1. So ||αm1 − r|| =: γ ≤ 1, and then we can bound ||m1|| and each ||mj|| in terms of γ. But
detM ≤ ||m1|| · ||m2|| . . . ||mn||, so we get an upper bound on detM ; optimize over γ to get a
universal bound, which shows E+ has the minimum volume. ut

Theorem 1. If the ellipsoid method is applied to (f,G) where G = ∅ or vol(G) ≥ δn, then if

zk = ∗ after 2n(n + 1) ln 2
√
n
δ

steps, G = ∅, and otherwise, we get zk with ε(zk, f, G) ≤ ε in

2n(n+ 1) ln 2
√
n

εδ
steps.

Proof. We know each (Ek, zk) is a localizer. Also, E0 = B(nI, 0) = {x : ||x|| ≤
√
n} with

vol(E0) ≤ (2
√
n)n. By Proposition 3, every 2(n+ 1) steps, the volume of Ek is cut by e.

To get from volume (2
√
n)n to δn, then, takes

2n(n+ 1) ln(
2
√
n

δ
) steps.

Similarly, we get the volume smaller than (δε)n within 2n(n+ 1) ln(2
√
n

δε
) steps. ut

Comments

• If G = C = [−1, 1]n, then we can get an ε-approximation solution in 2n(n+1) ln(1
ε
) steps.

Exercise (use the fact that E0 is the minimum-volume ellipsoid containing C).

• The ellipsoid method is much more general: it shows that “separation ≡ optimization.”
We will return to this.

• Forgetting about the details of the scalars, then at each step, the algorithm moves in the
direction −Bkak (if feasible, ak = g(xk)). This looks like

– a steepest-descent step (Bk = I); or more like

– a Newton step (Bk = [∇2f(xk)]
−1); or even more like

– a quasi-Newton step (Bk ≈ [∇2f(xk)]
−1, update at each iteration) with a rank-one

update.

This was the viewpoint of N. Shor.

• Proposition 3 can be used to show that every convex body (compact, non-empty interior)
in Rn can be “n-rounded”. There exist B, y such that

E(n−2B, y) ⊆ C ⊆ E(B, y).

Note that the left-hand side is a copy of the right-hand side, shrunk by a factor of n around its
center. This ratio is best possible: let C be a simplex in Rn.
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