Mathematical Programming II
 ORIE 6310 Spring 2014
 Scribe: Jialei Wang

As promised in the last lecture, we now give the proof for Proposition 3:
Proof. Let $\bar{a}=\frac{a}{\sqrt{a^{T} B a}}$, so by Lemma 1,

$$
\begin{equation*}
-1 \leq \bar{a}^{T}(x-y) \leq+1 \text { for } x \in E \tag{1}
\end{equation*}
$$

Now suppose $x \in E_{\alpha}$; then

$$
\begin{equation*}
(x-y)^{T} B^{-1}(x-y) \leq 1 \tag{2}
\end{equation*}
$$

Also since

$$
\begin{equation*}
-1 \leq \bar{a}^{T}(x-y) \leq-\alpha \text { by equation (1) and the definition of } E_{\alpha}, \tag{3}
\end{equation*}
$$

we have

$$
\begin{gather*}
\left(\bar{a}^{T}(x-y)+\alpha\right)\left(\bar{a}^{T}(x-y)+1\right) \leq 0, \text { or } \\
(x-y)^{T} \overline{a a}^{T}(x-y)+(1+\alpha) \bar{a}^{T}(x-y) \leq-\alpha . \tag{4}
\end{gather*}
$$

From $(2) \times(1-\sigma)+(4) \times \sigma$, we get, for any $0 \leq \sigma \leq 1$,

$$
\begin{aligned}
& (x-y)^{T}\left((1-\sigma) B^{-1}+\sigma \overline{a a}^{T}\right)(x-y)+(1+\alpha) \sigma \bar{a}^{T}(x-y) \leq 1-\sigma-\sigma \alpha \\
\Rightarrow & \left(x-y+\frac{(1+\alpha) \sigma}{2} B \bar{a}\right)^{T}\left((1-\sigma) B^{-1}+\sigma \overline{a a}^{T}\right)\left(x-y+\frac{(1+\alpha) \sigma}{2} B \bar{a}\right) \leq 1-\sigma-\sigma \alpha+\frac{(1+\alpha)^{2} \sigma^{2}}{4} .
\end{aligned}
$$

If we set $y_{+}:=y-\frac{(1+\alpha) \sigma}{2} B \bar{a}$ and

$$
\begin{aligned}
B_{+}^{-1} & =\frac{1}{1-\sigma-\sigma \alpha+\frac{(1+\alpha)^{2} \sigma^{2}}{4}}\left((1-\sigma) B^{-1}+\sigma \overline{a a^{T}}\right) \\
& =\frac{1-\sigma}{1-\sigma-\sigma \alpha+\frac{(1+\alpha)^{2} \sigma^{2}}{4}}\left(B^{-1}+\frac{\sigma}{1-\sigma} \overline{a a}^{T}\right) \\
& =\frac{1-\sigma}{1-\sigma-\sigma \alpha+\frac{(1+\alpha)^{2} \sigma^{2}}{4}}\left(B-\frac{\frac{\sigma}{1-\sigma} B \overline{a a}^{T} B}{1+\frac{\sigma}{1-\sigma} \bar{a}^{T} B \bar{a}}\right)^{-1} \quad \text { by the Sherman-Morrison-Woodbury formula, }
\end{aligned}
$$

or

$$
B_{+}=\frac{1-\sigma-\sigma \alpha+\frac{(1+\alpha)^{2} \sigma^{2}}{4}}{1-\sigma}\left(B-\sigma B \overline{a a}^{T} B\right),
$$

this is $\left(x-y_{+}\right)^{T} B_{+}^{-1}\left(x-y_{+}\right) \leq 1$. Now plug in

$$
\sigma=\frac{2(1+n \alpha)}{(1+n)(1+\alpha)} \geq 0
$$

with

$$
1-\sigma=\frac{n-1}{n+1} \cdot \frac{1-\alpha}{1+\alpha} \geq 0
$$

Then

$$
\frac{(1+\alpha) \sigma}{2}=\frac{1+n \alpha}{1+n}=\tau
$$

and after some algebra,

$$
\frac{1-\sigma-\sigma \alpha+\frac{(1+\alpha)^{2} \sigma^{2}}{4}}{1-\sigma}=\frac{\left(1-\alpha^{2}\right) n^{2}}{n^{2}-1}=\delta .
$$

So $B_{+}=\delta\left(B-\sigma B \overline{a a}^{T} B\right)$ and $y_{+}=y-\tau B \bar{a}$ as in the statement of the proposition. Hence $E_{\alpha} \subseteq E_{+}$. Also, its volume is

$$
\begin{aligned}
\operatorname{vol}\left(E_{+}\right) & =\sqrt{\operatorname{det} B_{+}} \cdot \operatorname{vol}(\text { unit ball }) \\
& =\sqrt{\delta^{n} \cdot \operatorname{det} B \cdot\left(1-\sigma \bar{a}^{T} B B^{-1} B \bar{a}\right)} \cdot \operatorname{vol}(\text { unit ball) (by Lemma 2) } \\
& =\operatorname{vol}(E)\left[\left(\frac{n^{2}}{n^{2}-1}\right)\left(1-\alpha^{2}\right)\right]^{\frac{n}{2}}\left(\frac{n-1}{n+1} \cdot \frac{1-\alpha}{1+\alpha}\right)^{\frac{1}{2}} \\
& =\operatorname{vol}(E)\left(\frac{n^{2}}{n^{2}-1}\right)^{\frac{n-1}{2}}\left(1-\alpha^{2}\right)^{\frac{n-1}{2}} \frac{n}{n+1}(1-\alpha) .
\end{aligned}
$$

If $\alpha \geq 0$, then

$$
\begin{aligned}
\frac{\operatorname{vol}\left(E_{+}\right)}{\operatorname{vol}(E)} & \leq\left(1+\frac{1}{n^{2}-1}\right)^{\frac{n-1}{2}}\left(1-\frac{1}{n+1}\right) \\
& \leq\left[\exp \left(\frac{1}{n^{2}-1}\right)\right]^{\frac{n-1}{2}} \cdot \exp \left(-\frac{1}{n+1}\right) \\
& =\exp \left(\frac{1}{2(n+1)}\right) \cdot \exp \left(-\frac{1}{n+1}\right) \\
& =\exp \left(-\frac{1}{2(n+1)}\right)
\end{aligned}
$$

Here is a sketch of the proof that this is the minimum-volume ellipsoid, in the case $y=$ $0, B=I, a=-e_{1}$.

Suppose we consider an arbitrary ellipsoid $\hat{E}:=\{x:\|M x-r\| \leq 1\}$ with volume $\frac{1}{\operatorname{det} M} \cdot \operatorname{vol}\left(\right.$ unit ball). Choose $\beta=\sqrt{1-\alpha^{2}}$, and consider the points

$$
\alpha e_{1} \pm \beta e_{j}, j=2, \ldots, n
$$

and e_{1}, all in E_{α}. So, if the columns of M are $m_{1}, \ldots, m_{n},\left\|m_{1}-r\right\| \leq 1$ and $\left\| \pm \beta m_{j}+\alpha m_{1}-r\right\| \leq$ 1. So $\left\|\alpha m_{1}-r\right\|=: \gamma \leq 1$, and then we can bound $\left\|m_{1}\right\|$ and each $\left\|m_{j}\right\|$ in terms of γ. But $\operatorname{det} M \leq\left\|m_{1}\right\| \cdot\left\|m_{2}\right\| \ldots\left\|m_{n}\right\|$, so we get an upper bound on $\operatorname{det} M$; optimize over γ to get a universal bound, which shows E_{+}has the minimum volume.

Theorem 1. If the ellipsoid method is applied to (f, G) where $G=\emptyset$ or $\operatorname{vol}(G) \geq \delta^{n}$, then if $z_{k}=*$ after $2 n(n+1) \ln \frac{2 \sqrt{n}}{\delta}$ steps, $G=\emptyset$, and otherwise, we get z_{k} with $\epsilon\left(z_{k}, f, G\right) \leq \epsilon$ in $2 n(n+1) \ln \frac{2 \sqrt{n}}{\epsilon \delta}$ steps.

Proof. We know each $\left(E_{k}, z_{k}\right)$ is a localizer. Also, $E_{0}=B(n I, 0)=\{x:\|x\| \leq \sqrt{n}\}$ with $\operatorname{vol}\left(E_{0}\right) \leq(2 \sqrt{n})^{n}$. By Proposition 3, every $2(n+1)$ steps, the volume of E_{k} is cut by e.
To get from volume $(2 \sqrt{n})^{n}$ to δ^{n}, then, takes

$$
2 n(n+1) \ln \left(\frac{2 \sqrt{n}}{\delta}\right) \text { steps. }
$$

Similarly, we get the volume smaller than $(\delta \epsilon)^{n}$ within $2 n(n+1) \ln \left(\frac{2 \sqrt{n}}{\delta \epsilon}\right)$ steps.

Comments

- If $G=C=[-1,1]^{n}$, then we can get an ϵ-approximation solution in $2 n(n+1) \ln \left(\frac{1}{\epsilon}\right)$ steps. Exercise (use the fact that E_{0} is the minimum-volume ellipsoid containing C).
- The ellipsoid method is much more general: it shows that "separation \equiv optimization." We will return to this.
- Forgetting about the details of the scalars, then at each step, the algorithm moves in the direction $-B_{k} a_{k}$ (if feasible, $a_{k}=g\left(x_{k}\right)$). This looks like
- a steepest-descent step $\left(B_{k}=I\right)$; or more like
- a Newton step $\left(B_{k}=\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1}\right)$; or even more like
- a quasi-Newton step $\left(B_{k} \approx\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1}\right.$, update at each iteration) with a rank-one update.

This was the viewpoint of N. Shor.

- Proposition 3 can be used to show that every convex body (compact, non-empty interior) in \mathbb{R}^{n} can be " n-rounded". There exist B, y such that

$$
E\left(n^{-2} B, y\right) \subseteq C \subseteq E(B, y)
$$

Note that the left-hand side is a copy of the right-hand side, shrunk by a factor of n around its center. This ratio is best possible: let C be a simplex in \mathbb{R}^{n}.

