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As promised in the last lecture, we now give the proof for Proposition 3:

Proof. Let a = Toigo SO by Lemma 1,

—1<a@ (zx—y)<+1 forz € E. (1)
Now suppose = € E,; then
(x—y)'BH(z—-y) <L (2)
Also since
—1 <@’ (r—y) < —a by equation (1) and the definition of F,, (3)
we have

(@ (@—y)+a)@(@-y)+1) <0, or
(z—y)'aa (z —y)+ (1 +a)a’ (z—y) < —o. (4)
From (2) x (1 — o) + (4) x o, we get, for any 0 < o < 1,
(z—y)" (1-0)B ' +oaa") (z—y)+ (1+a)oa’ (z—y) <1—0—oa,
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If we set y, ==y — %B& and
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this is (z — y, )T By (* — y4) < 1. Now plug in
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Then
(14+a)c  1+na

2 1+n
and after some algebra,
1—0—004—1—%_(1—042)73_5
l1-—0o oz —1

So By = §(B — oBaa’ B) and y, =y — 7Ba as in the statement of the proposition.
Hence F, C E,. Also, its volume is

vol(E, ) = y/det By - vol(unit ball)
= \/5” -det B - (1 — oa’” BB~ Ba) - vol(unit ball) (by Lemma 2)

— vol(E) {(nﬁ e _ag)r <n— 11 _a>é
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If « > 0, then
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Here is a sketch of the proof that this is the minimum-volume ellipsoid, in the case y =

0,B=1,a=—e;.

Suppose we consider an arbitrary ellipsoid E := {z : [|Mz — r|| < 1} with volume

57 - vol(unit ball). Choose 8 = v/1 — a2, and consider the points

aey £ fBej,j=2,...,n
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and ey, allin E,. So, if the columns of M are my, ..., my, |[m;—r|| < 1and ||£m,+am;—r|| <
1. So ||amy —r|| =1 v < 1, and then we can bound ||m,|| and each ||m;|| in terms of . But
det M < ||my|| - [|ma2]] - .. ||mn]|, so we get an upper bound on det M; optimize over v to get a
universal bound, which shows F, has the minimum volume. 0O

Theorem 1. If the ellipsoid method is applied to (f,G) where G = () or vol(G) > 0", then if
2 = * after 2n(n + 1) In =% BN gteps, G = 0, and otherwise, we get z, with €(zx, f,G) < € in
2n(n + 1) In 2 =L steps.

Proof. We know each (FE,z;) is a localizer. Also, Ey = B(nl,0) = {x : ||z|] < y/n} with
vol(Ep) < (24/n)"™. By Proposition 3, every 2(n + 1) steps, the volume of Ej, is cut by e.
To get from volume (24/n)™ to 0", then, takes

2n(n + 1) ln(%ﬁ) steps.

Similarly, we get the volume smaller than (de¢)” within 2n(n 4 1) In( ‘F) steps. O

Comments

o If G = C =[-1,1]", then we can get an e-approximation solution in 2n(n+1)In(<) steps.
Exercise (use the fact that Ey is the minimum-volume ellipsoid containing C').

e The ellipsoid method is much more general: it shows that “separation = optimization.”
We will return to this.

e Forgetting about the details of the scalars, then at each step, the algorithm moves in the
direction — Byay, (if feasible, ay = g(xx)). This looks like

— a steepest-descent step (B = I); or more like
— a Newton step (B = [V2f(zx)]™!); or even more like

— a quasi-Newton step (By ~ [V?f(zy)] "', update at each iteration) with a rank-one
update.

This was the viewpoint of N. Shor.

e Proposition 3 can be used to show that every convex body (compact, non-empty interior)
in R™ can be “n-rounded”. There exist B,y such that

E(n™?B,y) C C C E(B,y).

Note that the left-hand side is a copy of the right-hand side, shrunk by a factor of n around its
center. This ratio is best possible: let C' be a simplex in R™.



