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Abstract
We provide a probabilistic analysis of the second-order term that arises in path-following
algorithms for linear programming. We use this result to show that two specific such methods, a
perfectly-centered algorithm of Sonnevend, Stoer and Zhao and a natural predictor-corrector algorithm,

. .. . . . 1/4
both require an “anticipated” number of iterations that is O(n / L).



1. Introduction

The aim of this paper is to try to explain the excellent practical behavior of interior-point
algorithms for linear programming, as documented for instance in [1, 11, 12, 13, 17]. The best
theoretical worst-case bound on the number of iterations is O(@ L), for both path-following (e.g.,
Renegar [20], Gonzaga [5], Vaidya [24], Kojima, Mizuno and Yoshise [9], Monteiro and Adler [18, 19]
and Mizuno [15]) and potential-reduction (e.g. Ye [26], Freund [4], and Kojima, Mizuno and Yoshise
[10]) algorithms. Here n is the number of variables in a standard-form problem and L the size of
the input, assumed integer. Alternatively, if a fairly central (see, e.g., Megiddo [14], Sonnevend [21],
Bayer and Lagarias [2]) interior point feasible solution is known, L can be regarded as the number of
additional bits of precision in the objective function value required. However, in practice the number
of iterations required appears to grow much slower as a function of n; see in particular Lustig et al.
[12], where a very good fit to a function linear in log n is obtained for a certain class of problems.

In this paper, we study the path-following algorithms in a probabilistic setting. We consider
what we call the “anticipated” behavior of these methods. This notion was also considered in Gonzaga
and Todd [7], where an “anticipated” O(nl/ 4L)~itera~tion algorithm was described. The idea is that,
at each iteration, we make an unrigorous but plausible assumption concerning the data of the problem,
and then address the expected behavior, or, preferably, behavior which occurs with high probability
(converging to 1 as n - c0), at that iteration. The anticipated number of iterations is then defined to
be the number of iterations required if this high-probability behavior actually occurs at each iteration
(or at least once every ten, say, iterations). A similar analysis was performed by Dantzig [3] for the
simplex method. Note that we cannot conclude that the number of iterations is also small, in
expectation or with high probability, when the method is applied to random problems drawn from a
certain probability distribution, since the probabilistic assumptions made at each iteration may not be
consistent with a single distribution on the original problem. Nevertheless, we feel such an analysis
gives insight into the observed behavior of related algorithms.

With slight modifications, most path-following algorithms can be extended to solve positive
semi-definite linear complementarity problems (LCP’s) which include convex quadratic programming

problems for instance; see, e.g., [8, 9, 19]. Here we confine our attention to methods for linear



programming, because there does not appear to be a “natural” probabilistic assumption that will allow
us to analyze the anticipated number of iterations in the case of the LCP.

Section 2 describes one iteration of a generic primal-dual path-following algorithm. Section 3
provides a probabilistic analysis of an important quantity that arises in an iteration of such a method.
Section 4 applies this analysis to a conceptual algorithm where we assume that at the start of each
iteration we have a perfectly centered primal-dual pair. This method was introduced and studied by
Sonnevend, Stoer and Zhao [22], who show that, for certain rather restricted classes of problems, a
worst-case complexity of O(n‘SL), where & is strictly less than 1/2, can be obtained. Section 5
applies the result to a quite natural predictor-corrector method. In both cases, we show that the
algorithms require O(nl/ 4L) anticipated number of iterations.

A companion paper [16] considers primal-dual interior-point algorithms that do not remain

approximately centered as defined in the next section.

2. A generic path-following algorithm

In this section we justify our interest in the quantity studied in section 3 by describing a

generic primal-dual path-following method. Consider the problem

m}i{n cTx
(P) Ax =b
x>0
with dual
mz:%( bTy
(D) ATy +s=c¢

where A is mxn, b and y are m-vectors, and ¢,s and x are n-vectors. The duality gap,



¢Tx - bTy, is easily seen to be equal to xTs for any feasible pair (x,(y,s)). Thus this pair is optimal

if
Xs =0
Ax =b (1)
ATy+s =¢
x>0, s>0,

where X is the diagonal matrix with the components of x down its diagonal, X = diag(x). If both
(P) and (D) have interior feasible solutions (with x > 0 and s > 0), then, for any p > 0, there will

be a solution (unique if # > 0) to

Xs = pe
Ax =b (2)
ATy+s =¢

x>0, s>0,

If 4 =0, such a solution satisfies (1) and hence is optimal; if x4 > 0, we must have x > 0 and

s> 0 and x and (y,s) solve barrier problems naturally associated with (P) and (D); see, for
example, Megiddo [14] and Bayer and Lagarias [2]. We call a solution to (2) (perfectly) centered. It is
hard to find such a solution; hence one often works with (a-) approximately centered pairs, where the

first equation is relaxed to

[|Xs - pel| < ap (3)

for some 0 < a < 1. Weuse ||-|| for the Euclidean norm in this paper, while |- || is the
{so-norm. An approximately centered pair with p > 0 also has x > 0, s > 0. Note that the

duality gap of such a pair is xTs = e¢"Xs, which lies in |:<1 - % )un, (1 + % )un:l. Hence it is



natural, given an approximately centered pair (x, (y,s)) corresponding to g > 0, to seek a new
; : + ot Tt . +
approximately centered pair (x',(y ' ,s' )) corresponding to a smaller value p' € [0,4).

The Newton step to such a new centered pair is d = (dx,dy,ds), where

Sdxy + Xdg = p+e - Xs,
(4)

Adx =0, ATdy + dg = 0;

1/2

- 2
here S = diag(s). Let r = (XS) 1/2(/[*'e -Xs), p= (X"15)1/~dx, and q = (XS"l) ds. Then (4)

can be rewritten:

pt+q=r

/2 (5)

p € null space(A(XS”l)l/Q), q € row space(A(XS'l) )-

Thus p is the projection of r into this null space, and q the projection of r into the
complementary subspace.
+ + _ + _ . . .
Nowlet x' =x+dg, y' =y + dy and s’ =s + dg. The following result is a slight

extension of lemma 1 of [15]. We include a proof for completeness.

Proposition 1. Let Xt = diag(x+) and P = diag(p), with the notation as above. Then

xtst - u+e = Pqg, and

(X+)TS+ — nu+ (6)

+ +

Moreover, if ||Pq|| < a,u+, then x™ and (y ,s+) are a-approximately centered.
Proof. It is immediate that Ax™ = b and ATy+ +st =c If Dy denotes diag(dy), then

from (4) we get



(X + BDyx)(s + Bdg) = Xs + BSdy + AXds + F°Dyxds
= (1-8)Xs + /BM+‘3 + ,32Dxds

= (1-8)Xs + fu'te + p%Pa.

With £ =1, this gives xTst - ,u+e = Pq as desired, and then multiplying by e gives the second
equation of (6) since eTPq=plq=0.

Now if ||Pg| < a,u+, then ,3,u+e + ,62Pq >0 forall 8 € [0,1]. Since x and (y,s) are
a-approximately centered with g > 0, Xs > 0. Thus (X + 8Dx)(s + fdg) > 0 forall g € [0,1],

with strict inequality if S/ < 1. But then x+, st > 0, for otherwise there would be some g € (0,1)

+ +

with a component of x + Gdy or s + Bdg zero. Hence x  and (y ,s+) are a-approximately

centered if ||Pql| < au+.

Thus the crucial error, which we need to control if we want an approximately centered pair, is
||Pq||; we need to “mind our p’s and q’s.” Note that, from the proof above, Pq is the second-order
term Dyds.

The sizes of p and q depend on that of r = (XS)‘I/Q(pe - Xs - (p-u+)e); hence if u—,u+
is kept suitably small, we can guarantee that the new pair is approximately centered. By (6) however,
the new duality gap is proportional to ;4+, which we therefore want to be as small as possible.

Hence studying the behavior of |[Pq|| may allow us to decrease u+, and thus the duality
gap, faster.

Many papers (e.g. [8, 9, 18, 19]) describe how to modify (P) and (D) so that an initial

. . O(L
approximately centered pair with xTs <2 (L)

can easily be obtained. Moreover, if such a pair with
xTs < 921 is known, exact solutions to (P) and (D) can be obtained in O(n3) arithmetic operations,

as described in [9,19]. Hence if we can guarantee (or anticipate) that

H+S(1'f—(1n—))li



for some function f, we will have an algorithm requiring O(f(n)L) iterations in the worst-case (or
anticipated case). Indeed, if we can guarantee (or anticipate) that this inequality holds at least once in
every fixed number of iterations with ,u+ < u at the other iterations, then the conclusion remains
valid.

Finally we consider the asymptotic behavior of ||Pq|| if x and (y,s) converge to
nondegenerate optimal solutions. Then, if we suppose that the first m components of the optimal x
/2

. 21,1 .
are positive, the null space of A(XS 1) converges to the space spanned by the last n-m unit

vectors, and its row space to that spanned by the first m unit vectors. Hence ||Pq||/ ||r[|2 converges

to zero in this case.

3. Probabilistic Analysis of Pq

Let A be mxn andlet U C R™ be the null space of A. For a given r € R%, let p
denote the projection of r into U and q its projection into the orthogonal complement of U, so
that p+q =r. Our interest is in the norm of Pq, where P = diag(p). As we have seen in section 2,
this is the size of the second-order term in several path-following methods.

Mizuno [15] established (see also [9,19] for related results)

Proposition 2. With the notation above
2
IPall < 32 )2 ™

This bound cannot be improved by much in the worst case, since it is possible to have



in which case [|Pq|| = }—1 J—I—l_(_n——l') Thus to obtain a tighter bound than (7) it is necessary to move to a
probabilistic setting.

We will take r fixed, but assume that U is a random subspace of dimension d := n-m.
This means that the distribution of U is invariant under orthogonal transformations. For instance,
we can assume each entry of A is independently drawn from a standard normal distribution. See

[23]. We assume throughout that n > 4. Our aim is to prove:

Theorem 1. Let r € R™ be fixed, and let U be a random d-subspace of R, Let p and g
be the projections of r on U and vt respectively, and let P denote diag(p). Then if
p = lIrll oo/ lIxll;

2
E(IPal)) < HE (52 + 3/m)'/ ()

and for any ¢ > 0,
P
1/2
pr{iipall < B 2,2 + G+eym'/?) — 1 0)

as n - o0,

We will generally use this result when p = ||r]| /Il = O(nul/g); then it states that ||Pq]|
is 0(11“1/2)]{rﬂ2 in expectation and with high probability.

We divide the proof of the theorem into several lemmas. First we obtain the distribution of p.
Because p and q are homogeneous of degree 1 in ||r]|, we assume henceforth without loss of

generality that r is scaled so that
t:=1/2 satisfies |t|| =1, [|t]l, = p- (10)

Let [t,Y] be an orthogonal nxn matrix.



Lemma 1. We can write

p=(1+ p)t+ vYz, (11)
where
H_é__u has a beta distribution with parameters % and % ;
v= l-uz; and

z is uniformly distributed on the unit sphere in RrO-L,

Proof. Since p and q are orthogonal with p4+q =1, p lies on the sphere of center r/2 =t
and radius ||t|] = 1. Thus p can be written in the form (11), with v = W and |z]] = 1. We
need to establish that g and z have the given distributions.

Note that [|p||2 = (1—}-/1)2 +2 = 2(1+p). However, we can obtain the distribution of le]z
directly. The invariance under orthogonal transformations implies that we can alternatively take U
as a fixed d-subspace, say {x € R": x dt1 = =X = 0}, and r uniformly distributed on a sphere

of radius 2. Then r can be generated as

where A ~ N(0,J) in R™ (i.e., the components of A are independent normal random variables with
mean 0 and variance 1). But then
2 2X
p=(

=9 0..0)7,
Y R | DY )

and ||pl[2 = 4(/\% + . + )\‘3)/()\% + o+ )\%) This has the distribution of four times a beta random
variable with parameters % and % (see, e.g., Wilks [25]), which confirms the distribution of .

Now let W be an orthogonal matrix with Wt = t. W can be viewed as rotating the sphere

with center t around its diameter from 0 to 2t = r. The fact that p is the projection of r onto



U = {x: Ax =0} isequivalentto Ap=0, r-p= ATy for some v. But then (AWT)Wp = 0 and
r-Wp=Wr-Wp=(AWT)Tv, sothat Wp is the projection of r onto U = {x: (AWT)x = 0}.
If A has independent standard normal entries, so does AWT, so U’ is also a random d-subspace.
Thus Wp has the same distribution as p. But writing W as YV YT + tt7, where V isan
arbitrary orthogonal matrix of order n-1, we see that z has the same distribtion as Vz. Since

llz]] = 1, z is uniformly distributed on the unit sphere in r*L o
From (10) we have

q = (1l-p)t - vYz, so that

Pq= V22 2pvTYz - I/Q(YZ)Q. (12)

where T := diag(t) and t2, (Yz)2 denote the vectors whose components are the squares of those of
t, Yz respectively.

Suppose for the moment that t is the first unit vector. Then we can take for Y the last n-1
columns of the identity matrix, so that TYz is zero and (Yz)2 is zero in its first component. Hence
liPq|l > »2 in this case. But from the distribution of [t it is easily shown (cf. [24]) that, if d =m
= n/2, 2 has expectation n/(n+2). Thus we cannot hope to have E(]|Pql|) = 0(11’1/2)]{1'”2 for
general r.

Returning to the general case, we find

IPall? = v* X tf + v T ((Ya)p* + 42TVl - 204 TY ]| (13)

AP T t;j3(Yz)j MEDS tj((Yz)j)3.

The first term is at most v4p22 tj2 = 1/4,02, by recalling that maxltj| = [|t|lo = p- The third and
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fourth terms combine to give
202(3u2 - D|ITY2||% < 2v%max{0, 342 - 1152,

since ]]TYZH2 < |lt||go HYZH2 = l[t||go = p2. Hence, if u2 < %, the first, third and fourth terms

are at most p2. If /12 > —:l,;, they are at most p2u2(1/2 + 2(3;12 D)= p21/2(4-51/2) =

p2(% - 5(1/2 - %)2) < p2. Hence, in either case,

the first, third and fourth terms in (13) are at most p2. (14)

Next, note that the fifth and sixth terms are odd functions of z. Since z has a symmetric

distribution about 0 by Lemma 1,

the fifth and sixth terms in (13) have expectation 0. (15)

We therefore have to consider Z((Yz)j)4.

7= L((Y))* (16)
Then
3(n-2
D cmy <. an
n“-1
T . . . 2,1/2
Proof. Let ¥ denote the jth row of Y. Since [t,Y] is orthogonal, HyJH = (l-tj) =Ty
Then

Ey =¥ EGjo)* = T r{E@Tyy/lly;ID*.

Now zTyj / HyJH is distributed just like z; (by orthogonal invariance), and zy can be generated as

A/lIAll, where A ~ N(0,I) in R™1. Then z% has a beta distribution with and 9—5—2 degrees of

o
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freedom, and

ed = (3 + 2 (P[RR +2)]

3.1
292 3
Tontlnl 247

5 5 n“-1

where I' is the gamma function. See Wilks [25]. Thus

3 4
Ey= —4— Y,
n2—1 J
~ 3oy
n2—1 J)

=3 -2 +3th
n2-1 J J

=——3'—(n—2+2tf1).
n2-1 J
Since 0 < 3 tjfl < 1, (ii) follows. O

From (13)-(17), we have

2.3

E(IPal)? < p2+ 3, so

B(ipal) < (o2 + )%

and (8) follows. (Recall that we are assuming ||r|| = 2 without loss of generality.)

In order to prove (9), we must make a stronger statement about the odd-degree terms in (13)

and show that v in (16) concentrates around its mean. Suppose we can show that

Pr{'y < ?—)y } -1 (18)
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as n—+oo forany n > 0. Let F be the event that v > (3+7)/n, so that Pr(F) - 0. Now if
(u,2) € F, then the first through fourth terms of (13) are at most p2 + (3 + n)/n. If for any such
(i,2), (13) were greater than 2p2 + (6+27)/n, then for (g, -z), (13) would be negative, a
contradiction. (The even-degree terms stay the same while the odd-degree terms switch sign.) If we
therefore choose 1 = ¢/2, we will have shown (9). It remains to prove (18).

In order to use Chebychev’s inequality (see, e.g., [25]), we need to find the variance of 7.

Lemma 2 gives tight bounds on E<, so we concentrate on E72. Now

Ev?= B(2072*)(2672?)

_ T, 8 T, 4 T, 4
BRI eI ERON (19)

= (T )i/ ® + 2.2 H{ 070070

where Tj2 =1- t;j2 = I[yj||2. The first expectation is that of ,64, where (@ has the beta distribution

with % and g—é-z degrees of freedom. Now

4 % ) g ) % - 5 105
2 109
ES n+5 n+3 n+l n-1 =

([24]). Hence the first term is at most 105/n3.

To estimate the second expectation, which we denote Ty we perform a rotation on z so that

the ith and jth rows of [t,Y] are

b7y 0 0 0
t . .
: I/J HJ 0 0

If T = 0, then y; = 0 and 75 = 0. Otherwise, orthogonality gives v; = —titj / 5 and we find
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2.6 4,4 4 4
= E[(titj)‘*z?] + 6E[(titj)2r§oj 28a3] + Blr{6]212))

4
< (titj)4Ez§ + 6(titj)2E(z(15z%) + E(z‘sz), (20)

where the omitted terms are of odd degree in z; and z, and hence have expectation zero. As above

Ez? < 105/n4. To control the first two terms in (20), we use

Lemma 3. 3 (titj)4 <y (titj)z <}
i<j i<j

P .- . 2
Proof. The first inequality is trivial as (titj)2 < 1. Now the maximum of ) (titj)“ over

1<}
) tj2 =1 is attained at some t, and by Lagrange’s theorem, fj b fﬁ = Xt'j for some A and for
k]
all j. It follows that Ej2 =0 or 1-X forall j, sothat k of the €j2 are % and the rest zero,
2 _k(k1l) 1 1
whence 3 (t:t,) = —5— - %5 < 5. 0O
i<j 1] 2 k2~ 2

The proof of the final lemma we need is technical and deferred to the appendix.
Lemma 4. E(z?z%) < 15/n4 and E(z‘llz%) = 9/[(n2-1)(n+3)(n+5)].

Now putting together (19), (20) and these two lemmas, we arrive at

ot

15 n(n-1)-9
1t (0%-1)(@+3)(n+5)

6 -1
+2:6-5

.1, 105
24

so that, using (17), we find
2 2 1
Var(y) = Ev7 - (E7)° = O =
(n?’)

Finally, Chebychev’s inequality using our estimates of the expectation and variance of v establishes

(18), and this at last completes the proof of the theorem.



14

4. A perfectly-centered path-following algorithm

Here we apply the results of the previous section to a method that is equivalent to Algorithm 1
of Sonnevend, Stoer, and Zhao [22]. In a sense, this is a conceptual algorithm, since it assumes that
each iteration begins and ends with an exactly centered pair. However, Sonnevend, Stoer, and Zhao
argue that if an «-approximately centered pair is available for a suitably small «, then a centered
pair (to within working precision) can be found in a fixed number of iterations of Newton’s method,
depending only on « and the precision required. This follows from the quadratic convergence results
(with explicit constants) that have been obtained -- see, e.g., Gonzaga [6].

Let us assume therefore that a perfectly centered pair (x,(y,s)) for (P) and (D), satisfying
(2), is available. We then solve

Sdy + Xdg = -fpue

Adgy =0, ATdy +dg =0

for d. Note that (4) gives collinear directions d( u+) for any ,u+ when Xs = pe -- we have chosen

pt = (1-0)p (21)

We choose 6 as large as possible ( ,u+ as small as possible) while ensuring that the new iterates are
a-approximately centered for some fixed suitably small a. Then a small number of recentering steps
+

will yield (to working precision) a perfectly centered pair corresponding to 4" .

From Proposition 1, in order that the new iterates are a-approximately centered, we need
IPall < ap™ = a(1-0). (22)

Here p and g are the projections onto the null space of A(XS'l)l/2 and onto its orthogonal

complement of



15

-1/2

r= (X8) /“(uTe- Xs)

Let 8 = ||Pall/|ls]|2 = ||Pall/n6%y; then (22) holds iff
0862 + ab - a < 0,

and we can therefore choose

# = (\ a2+ dnaf - a)/?nﬁ
= 2a/(\ja2+4naﬂ + a).

From Proposition 2, ( is at most a constant in the worst case, so that

o =om /3. (23)
However, since ||r|| ./|lrll = 1/4m, if the probabilistic assumptions of section 3 hold, then with
1/2

probability approaching 1 as n = 00, 8 < % n by Theorem 1, and we have
o =o'/, (24)

From the remarks at the end of section 2, (21), (23) and (24) yield

Theorem 2. The algorithm of this section requires an anticipated number of iterations that is

O(n1/4L), with a worst-case bound of O(n1/2L). 0
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5. A predictor-corrector algorithm

In this section we analyze an algorithm that takes a single “corrector” step to the central path
after each “predictor” step to decrease u. Let N(a) denote the set of pairs that are a-approximately
centered for some pu. We work with (nearly centered) pairs in N(%) and (very nearly centered) pairs
: 1
in N(Z)'

Given a (very nearly centered) pair (x,(y,s)) € N(}I), an iteration proceeds as follows:

Predictor step:

Let d = (dx, dy, ds) solve

de + de = —XS

(25)
Ady =0, ATdy +dg =0
and let
', ¥, s") = (x + 0dx, y + 0dy, s + 6d) (26)
where
0 = max{y € [0,1]: (x+ 7dy, (v + 7dy, s+ 7vds))EN(D)). (27)
Corrector step:
Let d' = (dk, dg,, d}) solve
s'dl + x'dl = pte- X' (28)
Ad =0, ATd}, +df =0,
where
+ _  NT
p'o=(x)"s/n, (29)
and set
oy s =+ dk v+ S+ ) (30)

Lemma 5. The pair (x+, (y+, s+)) lies in N(%)
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Proof. By the choice of 8 in (27), we have ', (y'sh) € N(%) Then applying Proposition 1

to the corrector step, we have
Ix*st - uell = IPd))

!, Now from Proposition 2,

where p’ and q' correspond to the data x',y' and s

1Pl < 32 a2

= 82 sty P ke - o2

which gives the desired result. 0O
Note that (s))Td% + (x/)Td} = 0 from (28), so that (30) implies
(X+)TS+ — nu-f- - (XI)Tsf.
Similarly, using (25) and (26) gives

np+ = (x"Ts! = xTs - 0xTs

= (1-0)np, or
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pt=(1- 0, (31)
so that we again want to find lower bounds on 6.

Lemma 6. 0 > 7 := min{%, ( 8][1/;(1” )1/2 }, where p and q correspond to the predictor

step.

Proof. For any v > 0,

(X 4 vDx)(s + 7vds) - (1 - 7)pe|l = [[Xs + v(Sdyx + Xdg) + ’YQDxds - (1 - y)pel|

= [I(1 - 7)(Xs - pe) + 7°Dyds]|

AN

La-pu+ 2Pl
For 4 = ¥, this quantity is at most

La- e+ p8 < @- e +1/20- 1)

1
<5 (1-7)p.

Since it is easy to see that (x 4+ ydx)T(s + ydg) = (1 - 7)npg, this shows that 5 gives a pair in

N(@), sothat § > 7. O

-1
Now r = (Xs) / 2(-Xs) in the predictor step, from which }lr[|2 = np follows. Thus

Proposition 2 yields (p/ 8||Pq||)1/ 2 > 8-1/ 4n_l/ 2, and Lemma 6 then implies that

9= Q(n'l/ 2) (32)
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1/2 1/2 -1/2
in the worst-case. However, we can also deduce that |[r||, = Hxs“oc/) < (3p/2) / = O(n / izl

Hence, if the probabilistic assumptions of section 3 hold,

I1Pall/n = O@?)
and

6 = o/ (33)

with probability converging to 1 as n — oo.
As in section 4, we thus obtain from (31)-(33)

1/2

Theorem 3. The predictor-corrector algorithm requires O(n

/4y,

L) iterations in the worst case,

but the anticipated number of iterations is O(n
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Appendix

Here we prove

Lemma 4. If z € Rn'l is uniformly distributed on the unit sphere, then

6 2 15 4.4 g
E(z7z5) < =% and E(z7z;) = .
1727 = 4 17277 (02.1) (0 +3) (n+5)

Proof. We can write z = M|||| where A ~ N(0,I). Then 2@ = A2/(A2 423 + 23+ .. + A2 )),

i=1,2. Let /\% =i Xy, )\% =1 Xo, and )\% + .+ /\3_1 =i Xg, where Xy, Xg and Xg are gamma

random variables with degrees of freedom % , % and (n-3)/2 respectively. Thus

RPF -1/2 -1/2 D5 yoxox x2x2
E(z?zg) = J J J ——l——%———-n_g—- "Xy c Xg ' - x32 ce 17273 _____.1_._2___Z dx;dxodxg.
000 TEITE) (x)+x9+x3)
We now use the change of variables
Xy = sin20 sin2¢ 08 < n/2
1= y <0</
Xg = cos20 sin2¢ N 0< ¢ <n/2
Xg = c052¢ y 0<y.

The Jacobian of the transformation is
. .3 2
4 sin # cos 0 sin“¢ cos ¢ y°,

so recalling that I‘(%) = 7, we find
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o0 n-3
E(Z%Z%) = 1 J. J J 4 sine costd sin9¢ cosn'4¢3 y 2 enydy df dé
0 0

/2 /2

ngln;3) ( J y—Z— e_ydy> ( J sin?g costo d())( J' sin? cos™ 44 d¢>

0 0

H

_ n-1) . 3 384
r 'F( )‘2_56”‘(n-3)(n-1)(n+1)(n+3)(n+5)

_— 9 3
(n2-1)(n+3)(n+5)

as desired.

Using exactly the same transformations,

w/2 /2

0 n-3
E(zﬁzz) =4 y 2 e‘ydy) ( sin%8 cos?0 d9> ( sin9¢ COSn'4<25 d¢>
= e (| | |

- 15 .
(n2-1)(n+3)(n+5)







