SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
ITHACA, NEW YORK 14853

TECHNICAL REPORT NO. 882

January 1990

ANTICIPATED BEHAVIOR OF LONG-STEP
ALGORITHMS FOR LINEAR PROGRAMMING

By
Shinji Mizuno™ ;

Michael J. Todd
Yinyu Ye

*Research was supported in part by Grant-in-Aid 63490010 for General Scientific Research of the
Ministry of Education, Science and Culture, Japan.

TResearch was supported in part by NSF grant DMS-8904406 and ONR contract N-00014-87-K0212.

Anticipated behavior of long-step algorithms for

linear programming

Shinji MIZUNO *
Department of Industrial Engineering and Management,

Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo 152, Japan

Michael J. TODD 1
School of Operations Research and Industrial Engineering,

Cornell University, Ithaca, New York 14853, USA.

Yinyu YE
Department of Management Sciences,

The University of Iowa, Iowa City, Iowa 52242, USA.

December 1989

Abstract: We provide a probabilistic analysis of the second order term that arises in path-
following algorithms for linear programming. We use this result to show that two such methods,
algorithms generating a sequence of points in a neighborhood of the central path and in its re-
laxation, require a worst-case number of iterations that is O(nL) and an anticipated number of
iterations that is O(log(n)L). The second neighborhood spreads almost all over the feasible region
so that the generated points are close to the boundary rather than the central path. We also

*Research was supported in part by Grant-in-Aid 63490010 for General Scientific Research of the Ministry
of Education, Science and Culture, Japan.

tResearch was supported in part by NSF grant DMS-8904406 and ONR contract N-00014-87-K0212.

0

propose a potential reduction algorithm which requires the same order of number of iterations as

the path-following algorithms.

Key words: Linear Programming, interior point algorithms, path-following algorithms,

potential reduction algorithms.

1 Introduction

We consider linear programs in the following standard form:

T

(P) minimize c'z

subject to Az =1b, z >0,

where ¢ € R*, A € R™" and b € R™ are given, = € R", and T denotes transpose. The
dual to (P) can be written as

(D) maximize by
subject to ATy +s=¢, s2>0,
where y € R™ and s € R". The components of s are called dual slacks. Denote by F the
set of all z and s that are feasible for the primal and dual, respectively. We also denote
the set of points (z,s) > 0 in F by F°. Assume that F° # ¢.
Megiddo [11], Sonnevend [18], and Bayer and Lagarias [2] analyzed the central path

which is expressed as

C:{(m,s)Eﬁ:Xs:igie}

in primal-dual form, where e denotes the vector of ones and X = diag(z) denotes the di-
agonal matrix with diagonal entries equal to the elements of z. Renegar [16], Gonzaga [4],
Vaidya [20], Kojima, Mizuno and Yoshise [7,8], and Monteiro and Adler [14,15] proposed
algorithms that generate a sequence of points in a neighborhood of the central path C
and move in a direction that tries to find a new central point. These are called central
path-following methods. The original primal-dual path-following algorithm presented by
Kojima, Mizuno and Yoshise [7] uses the neighborhood

T
{(:c,s) €F°: Xs > O.S%S-e}.

The algorithm requires at most O(nL) iterations. Then Kojima, Mizuno, and Yoshise [8]
and Monteiro and Adler [14,15] modified the algorithm by using the neighborhood

N(8) = {(2,6) € 725 X5 - el < e where p=z2l

for some B € (0,1) so that it requires at most O(n®®L) iterations theoretically. Here -
without subscript designates the l;-norm.

Recently, Mizuno, Todd and Ye [12] analyzed an anticipated O(n'/*L)-iteration path-
following algorithm which generates a sequence of points moving inside of N(B) for g =
0.5. The notion of “anticipated” behavior was also considered in Gonzaga and Todd [5].
The idea is that, at each iteration, we make an unrigorous but plausible assumption on
the probability distribution of the data of the problem, and then consider the behavior
which occurs with high probability (converging to 1 as n — co) at that iteration. The
anticipated number of iterations is then defined to be the number of iterations required if
this high probability behavior actually occurs at least once every ten, say, iterations.

In this paper, we show that, for each 8 € (0,1), a central path-following algorithm

generating a sequence of points in either

NoolB) = {(w,s) € FO: | Xs — pefloo < B where pu= 56_’_’_3_}

n

or

Nc;(ﬂ)={(%S)Gf{’:IIXS—ueH—ooSﬂﬂ where =22}

n

requires an anticipated number of iterations that is O(log(n)L) and a worst-case number

of iterations that is O(nL). Here || - || designates the {-norm and
|2]| =00 = — min{z1, 22,. .., 2,0} for each z € R".

Note that || - || oo is not a norm. The neighborhood used by Kojima, Mizuno, and Yoshise
[7] equals NZ(B) for B = 0.5 and the worst-case number of iterations in our algorithm is

of the same order as theirs. We easily see that
C C N(B) C Nu(B) C Nz(B) C F° for each 5 € (0,1).

Our result indicates that when we use a wider neighborhood of the central path, although
the worst-case number of iterations grows, the anticipated number of iterations falls.
An interesting result of our algorithm is that both the worst-case and anticipated

numbers of iterations are obtained for each constant 8 € (0,1) independent of n. So the

3

algorithm can generate a sequence of points in a large area of the feasible region. Note

that we have

NZ(1) = F°.

So when 3 is close to 1, the set NZ(8) spreads almost all over the feasible region F. Hence
the points generated at each iteration of the algorithm are close to the boundary rather
than the central path. Moreover the search direction of our algorithm approaches that of
the original primal-dual affine scaling algorithm (Monteiro, Adler, and Resende [13]) if 3
goes to 1.

We also describe a potential reduction algorithm. Although the search direction of the
potential reduction algorithm is the same as that of the path-following algorithm, the step
size is determined as the minimum point of the potential function in the neighborhood
NZ(B). The primal-dual potential function introduced by Todd and Ye [19] is

¥(z,s) = plog(z’s) — glog(ijj)a (1)

=
where p > n. Using this, Ye [21], Freund [3], Anstreicher and Bosch [1}], and Kojima,
Mizuno and Yoshise [6] have developed O(n®%5L)-iteration potential reduction algorithms
with the choice of p = n + 6(n%%). However, practical experiments indicate that a big p
is much better (McShane et al. [10] and Lustig et al. [9]). We show that if we set p =
n + §(n?), the potential reduction algorithm requires an anticipated number of iterations

that is O(log(rn)L) and a worst-case number of iterations that is O(nL).

2 A primal-dual path-following algorithm
Let N be a subset of R?" such that
CCN ’c FO.

Assume that we have initial feasible points z° of (P) and (y°, s°) of (D) such that (z°,s°) €
N and (2°)7s® < 2L, where L denotes the size of (P). Let v be a constant in (0,1). Given

a pair (¥, s¥) € A and p* = (z*)Ts*/n, we generate the search direction using the primal-

dual scaling method (Kojima et al. {7])

SkAz + XFAs = ypke — XS,
AAz = 0, (2)
ATAy+ As = 0.

Let
() = z*+0Axz,

y(0) = y*+0Ay,
s(8) = s*+0As.

We determine the step parameter
8 = max {6 : (z(6),s(8)) e N'}. (3)

Then compute the next points z*+! = z(8), y**' = y(8), and s*+1 = s(f).

Thus we propose the following path-following algorithm based on 7 and N.
Algorithm 1 Given (2°,5°) € N and (2°)7s® < 2%; set k = 0;
while (z*)Ts* > 2L do
begin

compute Az, Ay, and As using (2);
compute 8 using (3);
set 21 = z(@), y**! = y(8), and s*** = s(9);

k::k+1,‘
end.

Note that, if v = 0, the direction of this algorithm equals that of the original primal-
dual affine scaling algorithm. So we can set the direction almost equal to that of the affine

scaling algorithm by choosing 7 close to 0.

The neighborhoods AV (8), N (), and N5 () presented in the introduction are defined
by restricting the size of Xs — pe, which expresses a deviation from a center. Hence, in
order to see the size of parameter §, we evaluate the size of X(0)s(6) — p(f)e where

X(6) = diag(z(8)) and p(0) = z(6)7s(6)/n. We easily see that

w(6) = (1—0)u" + 0y, (4)
X(0)s(6) — p(f)e = (1 —0)(X*s*— pke) + 2 AX As, (5)

where AX = diag(Az). So we want to know the size of AXAs. Note that AXAs equals
the error X(8)s(8) — u(8)e when we apply Newton’s method, i.e., 6 = 1. Let

p = (Xk)—O.S(Sk)O.SAx’
g = (Xk)O.S(Sk)-—O.SAS’
ro= (XFSF) 3 (yuFe — Xksk), (6)

and U = {z: AX?557952 = 0}. Then the system (2) can be written as
ptg=r,

peUand g€ U™,

where U+ denotes the complementary subspace of U. Thus p is the projection of r on U,
and ¢ the projection of r on U+. Since AXAs = Pgq, we analyze Pg in the next section,
where P = diag(p).

3 Analysis of Pq

Throughout this section, all symbols except for p, ¢, r, U, and P (= diag(p)) have a local
meaning (for example, @ does not mean diag(g)). For an r € R” and a subspace U of
R", let p and ¢ be the projection of r on U and U™ respectively. Then the analysis of the
vector Pgq is useful to evaluate the step size at each iteration of Algorithm 1. At first we

give a deterministic analysis of Pq and then a probabilistic analysis.

Lemma 1 Letr be a vector in R® and U be a subspace of R™. Let p and q be the projection

of r on U and UL respectively. Then

l|r||? r
1 <pig; < 'i’

Proof. The right inequality easily follows from p; + ¢; = r; for each j. Then the left
inequality follows from

PiG; = Y Pid

pigi<0
= — Y pig; (since p'q=0)

pigi>0

2

> - 3y =+

piqi20 4
Lk
3

Vv

The above lemma implies that

1Pall-ec < IIrl?/4 < mlirlS/4,

1Pall+oe < IIrllSe/4,

where ||z]| 400 = max{z1, 22, . . ., 2s, 0} for each z € R*. Then ||z||o = max{]|z||-c, Izl 400 }-
These bounds cannot be improved by much in the worst case, since we have that || Pg|| oo =

(n —1)|Ir|% /4 and [|Pgl|l+e0 = [|r||3./4 when

r = e = (1,1,...,1)7,

p o= (1/2,1/2,...,1/2,(1+ Vn)/2)",

¢ = (1/2,1/2,...,1/2,(1 = v/n)/2)".
Since the bound of ||Pg||_w is much larger than that of ||Pg|| 10, We shall get a better
bound of || Pg||-« by a probabilistic analysis. In the theorem below, a random d-subspace

means a d-dimensional subspace generated from a distribution that is invariant under

orthogonal transformations. For instance, we can assume that it is the null space of a

7

random matrix of appropriate dimensions, each entry of which has a standard normal

distribution.

Theorem 2 Letr € R" be fized, and let U be a random d-subspace of R*. Let p and q be
the projection of r on U and UL respectively. Then

Pr (|| Pgll-e0 < 3(log(n)/n)||r[|?) = 1 as n — co.

We divide the proof of the theorem into two lemmas. Because p and g are homogeneous

of degree 1 in ||r||, we assume henceforth without loss of generality that r is scaled so that
t = r/2 satisfies ||t]| = 1.

Let Q = [t,Y] be an orthogonal n x n matrix. If we express the vector p using the basis

Q, we get the following lemma.

Lemma 3 (Mizuno, Todd and Ye [12]) We can write
p=1+pt+vYz, (7)
where p? + v? = 1 and z is uniformly distributed on the unit sphere in R*1.
From (7) and p + ¢ = 2t, we have
g=(1-p)t—rYz,

so that

~
(L=
I

v — 2uvTY 2 — v} (Y 2)?
= —(Y2)2+ (vt — pYz)?

2 —“YZH;G,

where T' = diag(t), and #2, (Yz)?, and (vt — pY z)? denote the vectors whose components
are the squares of those of ¢, Yz, and vt — pY z respectively. From the above inequality

and the following lemma, we can easily prove Theorem 2.

8

Lemma 4 Let Q = [t,Y] be an orthogonal matriz. If z is uniformly distributed on the unit

/.1)
Pr (]]Yz[[oo <1/3282) 51 asn— 0.
n

Proof. Since z is uniformly distributed on the unit sphere in R*~', z can be generated as

follows: z = A/||A||, where A ~ N(0,I) (the standard normal distribution in R"1). Now

: -1
sphere in R"™*,

IA]|2 is a x2 random variable with n — 1 degrees freedom, so

E(IAIP)
Var(JA2) = 2(n - 1).

n—1,

From Chebychev’s inequality, we have
Pr(IA] > (1 —evn—1 1) > lasn— oo (8)

for any € > 0.

Let)\o be a standard normal variable, and let A" = (Xo,A), also N(0,I) but in R".
Then ||N|lo = max{y; : j = 0,1,2,...,n — 1} where g; = |};| has the positive normal
distribution. Then 1 — F(z) = 2(1 — N(z)) where F is the distribution function of , and
N is the normal distribution function. It now follows from results in extreme value theory

(Resnick [17], pp. 42 and 71) that

Pr (”)‘,Hoo < \/Zlog(2n)) — 1 as n — oo.

Since Q) is also N(0,I),

Pr (HQXHOO < \/210g(2n)) — 1 as n — oo.

Now we have

1Y A loo < 1QN [loo + [Aot |oo-

Since ||t]| =1,
Pr (”,\ot[]w < ey/log n) —1lasn— o0

for any € > 0. From the above relations and (8), we get the result of the lemma. O

9

4 A path-following algorithm based on the { -norm

Based on the deterministic and probabilistic analysis of Pq in the previous section, we
develop a large-step path-following algorithm for linear programming in this section. The

main result of this section is expressed as follows.

Theorem 5 Let N = No(B) and v =1 — 3 for § € (0,1). Then Algorithm 1 requires an
anticipated number of iterations that is O(log(n)L), with a worst-case bound of O(nL).

We shall prove the theorem at the end of this section. From (4) and v =1 — 3, we see
po = (@) = (1 - B9, (9)

where § is the step parameter defined by (3). We remark that § can be calculated by
solving 2n single-variable quadratic equations. Here we bound the parameter § from

below as follows.

Lemma 6 Let 8 € (0,1), v € (0,1), and N' = N (B). Let

Byuk
"I AX Asl|oo

and 8 be the step parameter at the kth iteration of Algorithm 1. Then § > 6;.

#; = min {1

Proof. From (4), (5), and the definition of N(/3), for each 8 € [0, 8]
1X(8)s(8) — n(B)elloo < (1 = O)IX*"s* — p¥efloo + O AX As]leo
< (1 -0)Bu* +0Byu*
= Bu(f).
Since 8 < 1, we see X(8)s(d) > 0 for each § € [0,6;]. From the continuity of z() and
5(8) with respect to 8, z(f) > 0 and s(f) > 0. It is easy to see that Az(f) = b and
ATy(8) + z(8) = c. Hence we have (z(6), s(8)) € No(B) for each 8 € [0,6,] which implies
g>4, O
In order to see the size of 8;, we need to estimate || AXAs|w. As we have shown in

the previous section, |AXAs||e, which is equal to || Pql|«, is measured by the size of r.

So we evaluate the size of r.

10

Lemma 7 Let 8 € (0,1) and v =1 — B. If (z*,5*) € No(B) then

28/
0272~ TTp

for each j,

where r is defined by (6).

Proof. From (6) and v = 1 — 3, each component of r is given by
Ty = '(“1\;%]0 - \/—"c—f_‘%

Since (z*, s¥) € Nw(B), we have

VU = Bk < \Joksk < \J(1+ Bk for each 5. (10)

Obviously, r; is a monotonically decreasing function in terms of \/zksk in the interval of

(10). Thus,
0>r; — J :
=ty /-————?-1 l .

O

An interesting observation from Lemma 7 is that at least one of Az; and As; is less
than zero for all j. Lemma 7 also indicates that
Il < 2L

Proof of Theorem 5. From the above inequality, Lemma 1, and AXAs = Pg,

[AXAslle < Irl*/4

< n(llrfle)?/4
iy
From Lemma 6,
> 6, zmin{LQ%n@l}. (11)

11

This inequality, together with (9), implies that

A< (1 — min {ﬂ, (1+ 5)7}) .

n

Hence the number of iterations of Algorithm 1 is bounded by O(nL).

Let oo = 3. Suppose that we have
|AX As|| - < alog(n)/n)|Ir]? (12)

at the kth iteration of Algorithm 1. Theorem 2 indicates that the above inequality holds
with high probability when U = {z : AX%%S =055 — 0} is considered as a random subspace

and n is sufficiently large. From Lemma 1, Lemma 7, and (12), we have

|AXAs]e < max{a(log(n)/n)rll?, |IrlZ/4}
< alog(n)|rll%
< 4ap?log(n)p
= 1+8
So
3 : (14 8)y
0 291 Zmln{l,m} (13)
and
1 . (1 + ﬂ)’)’
pktt < (1 — min {5, m}) pk

Hence Algorithm 1 will terminate if the inequality (12) actually holds at O(log(n)L)
iterations. Therefore the anticipated number of iterations of Algorithm 1 is O(log(n)L).
a

5 A path-following algorithm in a wide region

In this section, we further relax the neighborhood Neo(B8) to N5(B). As in the original
affine scaling algorithm, this condition mainly prevents the iterative points from going out
of the interior of the feasible region.

The main result of this section is described as follows.

12

Theorem 8 Let 8 € (0,1) and v € (0,1) be constants such that ¥ < 2(1 - B). Let N =
NZ(B). Then Algorithm 1 requires an anticipated number of iterations that is O(log(n)L),
with a worst-case bound of O(nL).

We shall prove Theorem 8 from the following two lemmas.

Lemma 9 Let 8 € (0,1), v € (0,1), and N = N5(B). Let

. Byt
92 = mm{l, m} .

and 8 be the step parameter at kth iteration of Algorithm 1. Then g > 6,.

Proof. From (4) and (5), for each 6 € [0, 6;]

I

X(6)s(6) — p()e (1 — 8)(X*s* — pFe) + PAX As

v

— (1 =) X*s* — pe]| oo + AKX As]| o) €
— (1~)8k — 6871*) €
—Bu(B)e.

Hence, as in the proof of Lemma 7, we have (z(8), s(6)) € Nz () for each 6 € [0, 6,] which
implies § > 6,. O

v

Il

Lemma 10 Let B € (0,1) and v € (0,1) be constants such that v < 2(1—B). If (a%,s%) €
NZ(B) then
Ir|l* < nat,

where r 1s defined by (6).

Proof. We see the result as follows:

n k _ .k k)2

e = 3o
=1 zys;

n

ky2
2l
]),

Il

TS

=1 Ji°7

n(’Yﬂk)z k k : k k k k
< — D C R > .
S e +np* (since 2isj —pu° = —fu’)
< np¥ (since y < 2(1-B)).

13

Proof of Theorem 8. From Lemma 1 and Lemma 10, we have
IAXAs|| oo < [I7]I?/4 < np*/4. (14)
Similarly, if (12) holds at the kth iteration of Algorithm 1, we have
|AXAs||—00 < alog(n)u®. (15)

From these inequalities and Lemma 9, we can prove Theorem 8 in the same way as we

proved Theorem 5. O

6 A potential reduction algorithm

In section 2, we described Algorithm 1 which is a path-following algorithm. Here we
propose a potential reduction algorithm which is almost the same as Algorithm 1, but the
step size 8 is determined as the minimal point of the potential function (1). We show that
if we use the neighborhood N7 () for 8 € (0,1), the algorithm requires the same order of
number of iterations as Algorithm 1.

The primal-dual potential function (1) can be written as

$(2,5) = (p —) log(a"s) ~ Y- log (;"jjn) + nlogn

J=1
The inequality of the geometric and arithmetic means yields

- Z38;
- >
> log (:cT.s/n) >0

i=1

Hence,
(p — n)log(z"s) + nlogn < ¢(, s).

This inequality tells us the exact amount, —(p — n)L + nlogn, to which 1 should be
reduced in order to achieve

zTs < 2-k,

14

We assume that we have initial points z° of (P) and (y°, s°) of (D) such that (2, D eN
and ¥(z°,5%) < O((p — n)L) + nlogn.
Now we propose the following potential reduction algorithm based on N, ~, and ¥(z,s).

Algorithm 2 Change the computational method of G at each iteration in Algorithm 1 as
follows

P(2(8), 5(8)) < ((8),5(8)) for each (x(6), () € V.
Then we have the following result.

Theorem 11 Let 3 € (0,1) and v € (0,1) be constants such that v < 2(1—-0). Leta =3,
N = NZ(B), and

L~ L

Then Algorithm 2 requires an anticipated number of iterations that is O(log(n)L), with a
worst-case bound of O(nL).

Proof. Let 8, be the parameter size defined in Lemma 9. Then we see

p(x(8),5(8)) < h(2(82), s(62))-

Now we have

¥(z(8), s(8)) — (a*, ")

< (2(682), 5(62)) — $(a*,)

:c(92)Ts(92) i ;1;(02)]3(92)J n k k
(p"n)logw—-Zl $(02)Ts(9) +Zl g —2 3 k)TSk

7=1 1=1

_ #(2) & *'5(92)33(02)1 Zy S;c
= (p—n)log Zl (9) +,2—:110g o

< (p—n)log(1l—(1—7)82) - Zlog(l - B)

=1

(from (4) and (z(82),5(62)) € N5(8))

an?d, 1
< - lo —nlog(l — B).

15

If 6, =1 then

$a(B)50) ~ piat,) < — (5o —n) los 1
’ T A\ By 1-8
Now suppose that 6; < 1. From Lemma 9 and (14) we have

0, > 27,
n

If (12) holds, from (15) we have
<l
> —
b2 2 alog(n)

Thus
$(a(B), 5(0) — p(a*,) < (4o~ Drlog 7=,

and, if (12) holds, then

S0, 5) ~ piat,) < - (s =1 e 5

Hence we easily obtain the desired results. O

The interesting point is that the choice of p here is significantly larger than the theoret-
ically best choice of p. This choice is widely used in practical implementations (McShane
et al. [10] and Lustig et al. [9]).

References

11 K. M. Anstreicher and R. A. Bosch, “Long steps in a O(n®L) algorithm for linear
g
programming,” Yale School of Management, (New Haven, CT, 1989).

[2] D. A. Bayer and J. C. Lagarias, “The nonlinear geometry of linear programming:
I. Affine and projective scaling trajectories, II. Legendre transform coordinates and
central trajectories, Transactions of the American Mathematical Society 314 (1989)
499-581.

[3] R. M. Freund, “Polynomial-time algorithms for linear programming based only on
primal scaling and projected gradients of a potential function,” OR 182-88, Sloan

16

School of Management, Massachusetts Institute of Technology (Cambridge, MA,
1988).

[4] C. C. Gonzaga, “An algorithm for solving linear programming programs in O(n*L)
operations,” in: N. Megiddo, ed., Progress in Mathematical Programming, Interior

Point and Related Methods (Springer-Verlag, New York, 1988) 1-28.

[5] C. C. Gonzaga and M. J. Todd, “An O(y/nL)-iteration large-step primal-dual affine
algorithm for linear programming,” Technical Report No. 862, School of Operations
Research and Industrial Engineering, Cornell University, (Ithaca, New York, 1989).

[6] M. Kojima, S. Mizuno, and A. Yoshise, “An O(+/nL) iteration potential reduc-
tion algorithm for linear complementarity problems,” Research Reports on Informa-
tion Sciences B-217, Dept. of Information Sciences, Tokyo Institute of Technology
(Meguro-ku, Tokyo, Japan, 1988).

[7] M. Kojima, S. Mizuno, and A. Yoshise, “A primal-dual interior point algorithm for
linear programming,” in: N. Megiddo, ed., Progress in Mathematical Programming,

Interior Point and Related Methods (Springer-Verlag, New York, 1989) 29-47.

[8] M. Kojima, S. Mizuno and A. Yoshise, “A Polynomial-Time Algorithm for a Class
of Linear Complementarity Problems,” Mathematical Programming 44 (1989) 1-26.

[9] 1. J. Lustig, D. F. Shanno and J. W. Gregory, “The primal-dual interior point method
on the Cray supercomputer,” Department of Civil Engineering and Operations Re-

search, Princeton University (Princeton, NJ, 1989).

[10] K. A. McShane, C. L. Monma, and D. Shanno, “An implementation of a primal-dual
interior point method for linear programming” ORSA Journal on Computing 1 (1989)
70-83.

[11] N. Megiddo, “Pathways to the optimal set in linear programming,” in: N. Megiddo,
ed., Progress in Mathematical Programming, Interior Point and Related Methods
(Springer-Verlag, New York, 1988) 131-158.

17

[12] S. Mizuno, M. J. Todd, and Y. Ye, “Anticipated behavior of path-following algo-
rithms for linear programming,” Technical Report No. 878, School of Operations
Research and Industrial Engineering, Cornell University, (Ithaca, New York, 1989).

[13] R. C. Monteiro, I. Adler, and M. G. C. Resende, “A polynomial time primal-dual
affine scaling algorithm for linear and convex quadratic programming and its power
series extension,” Report ESRC 88-8, Department of Industrial Engineering and
operations Research, University of California, (Berkeley, California, 1988).

[14] R. C. Monteiro and I. Adler, “Interior path following primal-dual algorithms. Part

I: Linear programming,” Mathematical Programming 44 (1989) 27-42.

[15] R. C. Monteiro and I. Adler, “Interior path following primal-dual algorithms. Part
II: Convex quadratic programming,” Mathematical Programming 44 (1989) 43-66.

[16] J. Renegar, “A polynomial-time algorithm based on Newton’s method for linear
programming,” Mathematical Programming 40 (1988) 59-94.

[17] S. I. Resnick, “Extreme values, regular variation, and point processes,” (Springer-

Verlag, New York, 1987).

(18] G. Sonnevend, “An analytical center for polyhedrons and new classes of global algo-
rithms for linear (smooth, convex) programming,” in: Lecture Notes in Control and

Information Sciences 84 (Springer, New York, 1985) 866-876.

[19] M. J. Todd and Y. Ye, “A centered projective algorithm for linear programming,”
Technical Report No. 763, School of Operations Research and Industrial Engineering,
Cornell University (Ithaca, New York, 1987) to appear in Mathematics of Operations

Research.

[20] P. M. Vaidya, “An algorithm for linear programming which requires O(((m +n)n? +
(m + n)1%n)L) arithmetic operations,” AT&T Bell Laboratories (Murray Hill, NJ,

1987) to appear in Mathematical Programming.

18

[21] Y. Ye, “An O(n®L) potential reduction algorithm for linear programming,” Technical
Report, Department of Management Sciences, The University of Iowa (Iowa City, IA,

1989) to appear in Mathematical Programming.

19

