
Mathematical Programming II Lecture 19
ORIE 6310 Spring 2014 April 8, 2014
Scribe: Kecheng Xu

Equivalence of separation and optimization
G ⊆ Rn, convex body: B(0, r) ⊆ G ⊆ B(0, R) (“well-rounded”).

(i) Strong separation ⇒ weak optimization (proved last time).

Application Network synthesis problem.
We want to build capacity on the edges of an undirected graph G = (V,E)

to satisfy flow requirements: we need to sustain a flow of rij from i to j for all
i, j. There are costs dij to build each unit of capacity on edge ij.

Formulation
min

∑
ij∈E

dijxij,

∑
k∈I,l∈V \I

xkl ≥ rij for all I ⊆ V, i ∈ I, j /∈ I,

xij ≥ 0 for all ij ∈ E.
Here each xij is the amount of capacity installed on edge ij. The constraints

assure that the requirements can be met by making sure each minimum cut has
the required capacity.

We have |E| variables, but (at least) 2n − 2 constraints.
However, given x ∈ Rn, we can either find x is feasible or obtain a violated

constraint (= strong separation) by solving about n2

2 max-flow problems (n =
|V |). If the flow is not sufficient for a particular i, j, the algorithm will give a
min-cut with capacity smaller than rij, hence a violated constraint. Therefore
we have a polynomial-time algorithm for weak optimization.

[Another LP formulation has polynomial size, by using extra variables f ijkl =
flow on edge kl ∈ E in a flow from i to j of size rij, but then we have O(n4)
variables.]

(ii) Strong optimization ⇒ weak separation.

Strong optimization: Given c ∈ Rn, solve max{cTx : x ∈ G}.

1

Weak Separation: Given x ∈ Rn and 0 < η ≤ 1/2, either determine x ∈ G
or find v ∈ Rn with vTz ≤ 1 for all z ∈ G but vTx ≥ 1− η.

We use the polar G∗ := {y : xTy ≤ 1 for all x ∈ G}. Note that if G ⊆ H, then
H∗ ⊆ G∗. Hence, if B(0, r) ⊆ G ⊆ B(0.R), B(0, 1

R) ⊆ G∗ ⊆ B(0, 1r). Also, if G
is closed and convex and contains 0, then G∗∗ = G. This can be proved using
separating hyperplanes.

Theorem 1 If there is an algorithm for strong optimization polynomial in n,
ln 1

r , and lnR, then there is an algorithm for weak separation, polynomial in n,
ln 1

r , lnR, and ln 1
η .

Proof: We use the previous theorem for G∗. Given x ∈ Rn, if x = 0, declare
x ∈ G, and if ‖x‖ > R, return v = x

‖x‖2 . So assume 0 < ‖x‖ ≤ R.

Now we solve the weak optimization problem for G∗, with c = x
‖x‖ , ε = η

R .

If we can do this, we get max{ x
‖x‖

Tv : v ∈ G∗} within ε = η
R .

If the maximum is at most 1
‖x‖ , then max{xTv : v ∈ G∗} ≤ 1, so x ∈ G∗∗.

But this is G if G is closed and convex and contains 0.
Otherwise, we have a near optimal solution v ∈ G∗ with x

‖x‖
Tv ≥ 1

‖x‖ −
η
R , so

vTx ≥ 1 − η ‖x‖R ≥ 1 − η, and since v ∈ G∗, vTz ≤ 1 for all z ∈ Z. So we have
solved the weak separation problem.

So we are done if we can solve the strong separation problem for G∗ in time
polynomial in n, ln 1

r , and lnR.
To do this, we solve the strong optimization problem for G.
Given x ∈ Rn, find z with xTz = max{xTy : y ∈ G}.
If the maximum is at most 1, then x ∈ G∗. If the maximum is more than 1,

then we have z ∈ G with xTz > 1 ≥ yTz for all y ∈ G∗∗ since z ∈ G∗. Thus we
have solved the strong separation problem for G∗, completing the proof. ut

We still don’t have symmetry between separation and optimization: we need
to show that weak separation allows us to do weak optimization.

Theorem 2 If there is an algorithm for the weak separation problem for G,
polynomial in n, ln 1

r , lnR, and ln 1
η , then there is an algorithm for the weak

optimization problem for G, polynomial in n, ln 1
r , lnR and ln 1

ε .

2

Proof: We use the ellipsoid method, now with shallow cuts.
At each iteration, we have xk. If xk = 0, declare xk ∈ G and use ak = −c

as usual. If ‖xk‖ > R, we can easily find a suitable vk. Otherwise we solve
the weak separation problem for xk, with η = εr

6(n+1)R < 1
2 . This either states

xk ∈ G and then we use ak = −c as usual, or gives v with vTx ≤ 1 for all x ∈ G
and vTxk ≥ 1− η.

If the algorithm hasn’t terminated, Ek contains a ball of radius εr, so
max{vTx : x ∈ Ek} ≥ vTxk + εr‖v‖. But ‖v‖‖̇xk‖ ≥ vTxk ≥ 1 − η ≥ 1

2 ,
so ‖v‖ ≥ 1

2R .

Hence, max{vTx : x ∈ Ek} ≥ vTxk + εr
2R . Thus, η ≤

√
vTBkv

3(n+1) .

So we can find a new ellipsoid Ek+1 using a cut with α ≥ − 1
3(n+1) . (See

Figure 1.)

Figure 1: Illustration of Ellipsoid method with a shallow cut.

3

Then the volume reduction is at least(
n2

n2 − 1

)n−1
2
(

n

n+ 1

)(
1 +

1

3(n+ 1)

)
≤ exp

(
1

2(n+ 1)

)
exp

(
− 1

n+ 1

)
exp

(
1

3(n+ 1)

)
.

The RHS is equal to exp
(
− 1

6(n+1)

)
.

Hence, even though the volume reduction is smaller, as before, we get a
polynomial-time algorithm for weak optimization. ut

We work towards algorithms for large n (n ≈ 104) and moderate ε (ε ≈ 10−2).
Subgradient algorithms: at each step, move in the direction of the negative

of a subgradient. Unfortunately, the negative of a subgradient may not be a
descent direction! For example, consider
f(x) = max{2x(1) − x(2),−x(1) + 2x(2), 0}.
See Figure 2.

Figure 2: Example: the negative of a subgradient is not a descent direction.

4

