Equivalence of separation and optimization

 $G \subseteq \mathbb{R}^n$, convex body: $B(0,r) \subseteq G \subseteq B(0,R)$ ("well-rounded").

(i) Strong separation \Rightarrow weak optimization (proved last time).

Application Network synthesis problem.

We want to build capacity on the edges of an undirected graph G = (V, E) to satisfy flow requirements: we need to sustain a flow of r_{ij} from *i* to *j* for all i, j. There are costs d_{ij} to build each unit of capacity on edge ij.

Formulation

$$\min \sum_{ij \in E} d_{ij} x_{ij},$$
$$\sum_{k \in I, l \in V \setminus I} x_{kl} \ge r_{ij} \text{ for all } I \subseteq V, i \in I, j \notin I,$$

 $x_{ij} \ge 0$ for all $ij \in E$.

Here each x_{ij} is the amount of capacity installed on edge ij. The constraints assure that the requirements can be met by making sure each minimum cut has the required capacity.

We have |E| variables, but (at least) $2^n - 2$ constraints.

However, given $x \in \mathbb{R}^n$, we can either find x is feasible or obtain a violated constraint (= strong separation) by solving about $\frac{n^2}{2}$ max-flow problems (n = |V|). If the flow is not sufficient for a particular i, j, the algorithm will give a min-cut with capacity smaller than r_{ij} , hence a violated constraint. Therefore we have a polynomial-time algorithm for weak optimization.

[Another LP formulation has polynomial size, by using extra variables f_{kl}^{ij} = flow on edge $kl \in E$ in a flow from i to j of size r_{ij} , but then we have $O(n^4)$ variables.]

(ii) Strong optimization \Rightarrow weak separation.

Strong optimization: Given $c \in \mathbb{R}^n$, solve $\max\{c^T x : x \in G\}$.

Weak Separation: Given $x \in \mathbb{R}^n$ and $0 < \eta \le 1/2$, either determine $x \in G$ or find $v \in \mathbb{R}^n$ with $v^T z \le 1$ for all $z \in G$ but $v^T x \ge 1 - \eta$.

We use the polar $G^* := \{y : x^T y \leq 1 \text{ for all } x \in G\}$. Note that if $G \subseteq H$, then $H^* \subseteq G^*$. Hence, if $B(0,r) \subseteq G \subseteq B(0.R)$, $B(0,\frac{1}{R}) \subseteq G^* \subseteq B(0,\frac{1}{r})$. Also, if G is closed and convex and contains 0, then $G^{**} = G$. This can be proved using separating hyperplanes.

Theorem 1 If there is an algorithm for strong optimization polynomial in n, $\ln \frac{1}{r}$, and $\ln R$, then there is an algorithm for weak separation, polynomial in n, $\ln \frac{1}{r}$, $\ln R$, and $\ln \frac{1}{n}$.

Proof: We use the previous theorem for G^* . Given $x \in \mathbb{R}^n$, if x = 0, declare $x \in G$, and if ||x|| > R, return $v = \frac{x}{||x||^2}$. So assume $0 < ||x|| \le R$.

Now we solve the weak optimization problem for G^* , with $c = \frac{x}{\|x\|}$, $\varepsilon = \frac{\eta}{R}$. If we can do this, we get $\max\{\frac{x}{\|x\|}^T v : v \in G^*\}$ within $\varepsilon = \frac{\eta}{R}$.

If the maximum is at most $\frac{1}{\|x\|}$, then $\max\{x^T v : v \in G^*\} \leq 1$, so $x \in G^{**}$. But this is G if G is closed and convex and contains 0.

Otherwise, we have a near optimal solution $v \in G^*$ with $\frac{x}{\|x\|}^T v \ge \frac{1}{\|x\|} - \frac{\eta}{R}$, so $v^T x \ge 1 - \eta \frac{\|x\|}{R} \ge 1 - \eta$, and since $v \in G^*$, $v^T z \le 1$ for all $z \in Z$. So we have solved the weak separation problem.

So we are done if we can solve the strong separation problem for G^* in time polynomial in n, $\ln \frac{1}{r}$, and $\ln R$.

To do this, we solve the strong optimization problem for G.

Given $x \in \mathbb{R}^n$, find z with $x^T z = \max\{x^T y : y \in G\}$.

If the maximum is at most 1, then $x \in G^*$. If the maximum is more than 1, then we have $z \in G$ with $x^T z > 1 \ge y^T z$ for all $y \in G^{**}$ since $z \in G^*$. Thus we have solved the strong separation problem for G^* , completing the proof. \Box

We still don't have symmetry between separation and optimization: we need to show that weak separation allows us to do weak optimization.

Theorem 2 If there is an algorithm for the weak separation problem for G, polynomial in n, $\ln \frac{1}{r}$, $\ln R$, and $\ln \frac{1}{\eta}$, then there is an algorithm for the weak optimization problem for G, polynomial in n, $\ln \frac{1}{r}$, $\ln R$ and $\ln \frac{1}{\epsilon}$. **Proof:** We use the ellipsoid method, now with shallow cuts.

At each iteration, we have x_k . If $x_k = 0$, declare $x_k \in G$ and use $a_k = -c$ as usual. If $||x_k|| > R$, we can easily find a suitable v_k . Otherwise we solve the weak separation problem for x_k , with $\eta = \frac{\varepsilon r}{6(n+1)R} < \frac{1}{2}$. This either states $x_k \in G$ and then we use $a_k = -c$ as usual, or gives v with $v^T x \leq 1$ for all $x \in G$ and $v^T x_k \geq 1 - \eta$.

If the algorithm hasn't terminated, E_k contains a ball of radius εr , so $\max\{v^T x : x \in E_k\} \ge v^T x_k + \varepsilon r ||v||$. But $||v|| ||x_k|| \ge v^T x_k \ge 1 - \eta \ge \frac{1}{2}$, so $||v|| \ge \frac{1}{2R}$.

Hence, $\max\{v^T x : x \in E_k\} \ge v^T x_k + \frac{\varepsilon r}{2R}$. Thus, $\eta \le \frac{\sqrt{v^T B_k v}}{3(n+1)}$.

So we can find a new ellipsoid E_{k+1} using a cut with $\alpha \geq -\frac{1}{3(n+1)}$. (See Figure 1.)

Figure 1: Illustration of Ellipsoid method with a shallow cut.

Then the volume reduction is at least

$$\left(\frac{n^2}{n^2-1}\right)^{\frac{n-1}{2}} \left(\frac{n}{n+1}\right) \left(1+\frac{1}{3(n+1)}\right)$$
$$\leq \exp\left(\frac{1}{2(n+1)}\right) \exp\left(-\frac{1}{n+1}\right) \exp\left(\frac{1}{3(n+1)}\right) + \exp\left(\frac{1}{3(n+1)}\right) + \exp\left(\frac{1}{3(n+1)}\right)$$

The RHS is equal to $\exp\left(-\frac{1}{6(n+1)}\right)$.

Hence, even though the volume reduction is smaller, as before, we get a polynomial-time algorithm for weak optimization. \Box

We work towards algorithms for large $n \ (n \approx 10^4)$ and moderate $\varepsilon \ (\varepsilon \approx 10^{-2})$. Subgradient algorithms: at each step, move in the direction of the negative of a subgradient. Unfortunately, the negative of a subgradient may not be a descent direction! For example, consider

 $f(x) = \max\{2x^{(1)} - x^{(2)}, -x^{(1)} + 2x^{(2)}, 0\}.$ See Figure 2.

Figure 2: Example: the negative of a subgradient is not a descent direction.