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Equivalence of separation and optimization
G C R", convex body: B(0,7) C G C B(0, R) (“well-rounded”).

(i) Strong separation = weak optimization (proved last time).

Application Network synthesis problem.

We want to build capacity on the edges of an undirected graph G = (V, E)
to satisfy flow requirements: we need to sustain a flow of r;; from ¢ to j for all
i,7. There are costs d;; to build each unit of capacity on edge ;.
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xi; > 0 for all ij € F.

Formulation

Here each z;; is the amount of capacity installed on edge 7j. The constraints
assure that the requirements can be met by making sure each minimum cut has
the required capacity.

We have |F| variables, but (at least) 2" — 2 constraints.

However, given x € R"”, we can either find z is feasible or obtain a violated
constraint (= strong separation) by solving about ”72 max-flow problems (n =
|V]). If the flow is not sufficient for a particular 4, j, the algorithm will give a
min-cut with capacity smaller than r;;, hence a violated constraint. Therefore
we have a polynomial-time algorithm for weak optimization.

[Another LP formulation has polynomial size, by using extra variables f,g =
flow on edge kl € E in a flow from ¢ to j of size r;;, but then we have O(n?)
variables.]

(ii) Strong optimization = weak separation.

Strong optimization: Given ¢ € R", solve max{c’z : z € G}.




Weak Separation: Given z € R" and 0 < n < 1/2, either determine x € G
or find v € R"” with vz <1 for all z € G but vTx21—77.

We use the polar G* := {y : 2Ty < 1 for all z € G} Note that if G C H, then
H* C G*. Hence, if B(0,r) C G C B(0.R), B(0,%) € G* C B(0,1). Also, if G
is closed and convex and contains 0, then G** = G This can be proved using
separating hyperplanes.

Theorem 1 If there is an algorithm for strong optimization polynomaial in n,

Ind ;, and In R, then there is an algorithm for weak separation, polynomial in n,
ln— In R, and ln—

Proof: We use the previous theorem for G*. Given x € R", if x = 0, declare
r € G, and if ||z|| > R, return v = o ” So assume 0 < ||z|| < R.
Xz

Now we solve the weak optimization problem for G*, with ¢ = T €=

If we can do this, we get maX{Hg”;—”Tv v € G*} within e = £.
If the maximum is at most ﬁ, then max{zTv : v € G*} < 1, s0o x € G**.
But this is G if G is closed and convex and contains 0.

Otherwise, we have a near optimal solution v € G* with ”“”HTU > Tl ” 0

%, 8
vl > 1—7]% > 1 —n, and since v € G*, vTz < 1forall z€ Z. So we have
solved the weak separation problem.

So we are done if we can solve the strong separation problem for G* in time
polynomial in n, In %, and In R.

To do this, we solve the strong optimization problem for G.

Given x € R, find 2z with 272 = max{2Ty : y € G}.

If the maximum is at most 1, then z € G*. If the maximum is more than 1,
then we have z € G with 272 > 1 > y7z for all y € G** since z € G*. Thus we
have solved the strong separation problem for G*, completing the proof. O

We still don’t have symmetry between separation and optimization: we need
to show that weak separation allows us to do weak optimization.

Theorem 2 If there is an algorithm for the weak separation problem for G,
polynomial in n, In %, In R, and ln%, then there is an algorithm for the weak

optimization problem for G, polynomial in n, In %, In R and In %



Proof: We use the ellipsoid method, now with shallow cuts.

At each iteration, we have zj. If x;, = 0, declare x;, € G and use a, = —c
as usual. If ||zgx|| > R, we can easily find a suitable v;. Otherwise we solve
the weak separation problem for xj, with n = 6(71‘1—’"1)]% < % This either states
z;, € G and then we use a;, = —c as usual, or gives v with v’z < 1 for all z € G
and vTx, > 1 —n.

If the algorithm hasn’t terminated, E} contains a ball of radius er, so

max{v’z : x € B} > oTayp + erflv]l. But [jo|zi] > 0T > 1—n > L

1
so [[v]l = 35
N
Hence, max{v'z : x € Ey} > v'ay + 55 Thus, n < ‘3(1;+Bll§v'.
So we can find a new ellipsoid Ej,; using a cut with a > —m_ (See

Figure 1.)
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Figure 1: Illustration of Ellipsoid method with a shallow cut.



Then the volume reduction is at least

() 65 ()
e e e )

The RHS is equal to exp ( (n+1))
Hence, even though the volume reduction is smaller, as before, we get a

polynomial-time algorithm for weak optimization. O

We work towards algorithms for large n (n ~ 10*) and moderate ¢ (¢ ~ 1072).

Subgradient algorithms: at each step, move in the direction of the negative
of a subgradient. Unfortunately, the negative of a subgradient may not be a
descent direction! For example, consider

f(z) = max{2zW) — 2@ —z(1) 4 222) 0},

See Figure 2.
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Figure 2: Example: the negative of a subgradient is not a descent direction.



