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Another Interpretation/Implementation of the Ellipsoid

Method

This section is based on the paper “The ellipsoid method generates dual variables” (found on
the course webpage) by Burrell and Todd (1985).

Suppose we want to find x ∈ P := {x ∈ Rn : A>x ≤ b,−e ≤ x ≤ e}. We have three issues
to deal with regarding the implementation of the ellipsoid method for linear programming:

(i) If A is sparse, can we get a sparse implementation?

(ii) Can we “certify” at every iteration that P ⊆ Ek? That is, we need to check that round-off
errors did not affect too much our implementation.

(iii) If the half-space generated completely misses Ek, can we find a certificate of infeasibility?

In the following, we will address the above three problems.
Solution to (i): At every iteration,

Bk = δ

(
Bk − σ

Bkaka
>
k Bk

a>k Bkak

)
,

where ak is a column of Ā := (A, I) (note that we do not need to consider columns of −I since
the above term is quadratic in ak). So,

B−1k+1 = δ−1
(
B−1k +

σ

1− σ
aka

>
k

a>k Bkak

)
.

Note: B−10 = nI. So at every iteration, B−1k = ĀDkĀ
> for some diagonal positive semidefinite

Dk. This is exactly the form of the matrix appearing in interior-point methods, and is often
sparse. But if we store and update B−1k , we need to solve a system to get Bkak (Bkak is the

solution of B−1k z = ak) !!
But we can update a Cholesky factorization of B−1k = µkLkL

>
k in O(n2) work only. Here, µk is

a scalar, and Lk is a lower triangular matrix, so that the system can be solved efficiently.

Solution to (ii): Note that P = {x ∈ Rn : ` ≤ Ā>x ≤ u} (we can lower bound Ā>x since x
is bounded).
So Ā>x− ` ≥ 0, and Ā>x− u ≤ 0. Thus (Ā>x− `)>(Ā>x− u) ≤ 0. More generally, for every
positive semidefinite diagonal D, x ∈ P ⇒ (Ā>x− `)>D(Ā>x− u) ≤ 0, or
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(x − y)>ĀDĀ>(x − y) ≤ β, with y := (ĀDĀ>)−1ĀD `+u
2

, and β := y>(ĀDĀ>)y − `>Du (as
long as ĀDĀ> is positive definite).
Note that y solves the weighted least-squares problem:

D1/2Ā>y ≈ D1/2 `+ u

2
.

In fact, the initial ellipsoid E0 is of this form:

E0 = Ê(D, `) := {x ∈ Rn : (Ā>x− `)>D(Ā>x− u) ≤ 0},

for ` =

[
...
−e

]
, and D =

[
0 0
0 I

]
.

At iteration k, we have Ek = Ê(Dk, `k): quit if xk ∈ P , otherwise generate a violated inequality
a>x ≤ υ. Note: a lower bound on a>x comes from Ek (see lecture 15).
Ek is certified by Dk and `k. So can we get a lower bound directly certified by P?
So improve the lower bound if necessary, and then do a two-sided cut (see Figure 1) to get
Ek+1 = Ê(Dk+1, `k+1). Also, the lower bounds `k are always certified by duality.

Figure 1: Illustration of the two-sided cut: the top line corresponds to the improved lower
bound, the line below corresponds to the violated constraint, and the red ellipse is then Ek+1.

Solution to (iii): If at any iteration, we generate λ ≥ υ (λ from duality always cuts the
current ellipsoid), then we can generate a certificate of infeasibility. See Figure 2.

Equivalence of Separation and Optimization

This topic is thoroughly discussed in Grotschel, Lovasz, and Schrijver’s book: Geometric Algo-
rithms and Combinatorial Optimization, Springer 1988.
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Figure 2: The generated half-space completely misses Ek.

Suppose we have a convex body G ⊆ Rn with B(0, r) ⊆ G ⊆ B(0, R), with R/r ≥ 2. We
call such a body well-rounded.
Consider:

Strong separation problem: Given x ∈ Rn, either state x ∈ G or produce v ∈ Rn with

max{v>z : z ∈ G} ≤ 1 but v>x > 1.

Weak optimization problem: Given ε > 0 and c ∈ Rn, ‖c‖ = 1, find x ∈ G with

c>x ≥ max{c>z : z ∈ G} − ε.

Theorem 1 If we can solve the strong separation problem in time polynomial in n, ln 1
r
, and

lnR, then we can solve the weak optimization problem in time polynomial in n, ln 1
r
, lnR, and

ln 1
ε
.

Proof: Apply the (original) ellipsoid method, starting with E0 = B(0, R). At each iteration,
we have the center xk and in place of calling the oracle, we solve the strong separation problem
with x = xk. If xk ∈ G, set ak = −c, and if not, set ak = v. Within 2n(n+ 1) ln

(
R
εr

)
iterations,

the volume of the ellipsoid is decreased below that of a ball of radius εr. But then
ε(zk,−c>·, G) ≤ ε.
Since each iteration is polynomial in n, ln 1

r
, and lnR, we get the desired conclusion. �

Next time, we’ll relate the following two problems:
Strong optimization problem: Given c ∈ Rn, ‖c‖ = 1, find x ∈ G with c>x = max{c>z : z ∈ G}.

Weak separation problem: Given x ∈ Rn, 1
2
≥ η > 0, either state x ∈ G or produce v ∈ Rn

with
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Figure 3: Illustration of the weak separation problem.

max{v>z : z ∈ G} ≤ 1 and v>x > 1− η.

Define the polar of a convex set:

Given convex G, define its polar G∗ by G∗ = {y ∈ Rn : x>y ≤ 1 ∀x ∈ G}.
Examples:

(1) If G is a cube (which is the L∞ ball), then G∗ is the cross-polytope, i.e., the L1 ball.

(2) If G is the L2 ball, then G∗ = G. More generally,

(3) If G is the ellipsoid {x ∈ Rn : xTB−1x ≤ 1}, then G∗ is the ellipsoid {x ∈ Rn : xTBx ≤ 1}.
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