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1 Introduction

The aim of this paper is to describe two algorithms for the problem of minimizing
a linear function over the intersection of an affine set and a convex set. Of course,
any convex programming problem can be expressed in this form; if necessary,
add an additional variable to be minimized with the extra constraint that it be
at least as great as the original objective function. The key restriction we make
is that the convex set be the closure of the domain of a strongly self-concordant
barrier function, as defined by Nesterov and Nemirovsky [6, 7]. In fact, this
is not such a great restriction, as Nesterov and Nemirovsky show that many
constraint sets that occur in practice arise in this way. Our algorithms are then
polynomial; that is, given a suitable starting point, the number of iterations
required to attain a certain accuracy € is bounded by a polynomial function
of a certain parameter associated with the barrier function times log(1/¢). All
iterates are feasible and lie in the interior of the convex set; this classifies our
methods as being interior-point algorithms.

We chose this format for our convex programming problem to make it as
close to the standard-form linear programming problem as possible — the only
difference is that a convex set replaces the nonnegative orthant. This makes
it easier to compare our methods, a path-following algorithm and a primal
potential-reduction algorithm, to well-known interior-point methods for linear
programming. However, it disguises the similarity of our algorithms to those
of Nesterov and Nemirovsky [6, 7]. Herzel [5] describes how our path-following
method can be viewed as a special case of their approach, although our analysis
is different. Our approach can also be viewed as an extension of that of Freund
and Todd [2], in which the convex set is defined by simple bounds, to a more
general setting.

In Sections 2, 3, and 4, we define and investigate self-concordant functions
and barriers and their convex conjugates. While the results are similar to
those of Nesterov and Nemirovsky, our notation and development are influ-
enced more by Renegar [8]. We give most of the proofs to make the paper
self-contained. Included are propositions on the existence of minimizers for
strongly self-concordant functions, on quadratic convergence in this case, and
on error bounds for Taylor approximations of such functions and their gradients.

Section 5 describes the convex programming problem we study and its dual,
while Section 6 gives results on projections. Section 7 defines and investigates
the central trajectory. We show that if a primal solution is close to the central
trajectory, then a feasible solution to the dual problem can be constructed and
the associated duality gap suitably bounded. The path-following algorithm
follows this trajectory closely. The potential-reduction method updates its lower
bound on the optimal value only when it gets close to the central trajectory.

Sections 8 and 9 describe these two algorithms. The first is similar to algo-
rithms of Gonzaga [3] and Roos and Vial [10] for linear programming or more
generally Nesterov and Nemirovsky’s path-following method [7], Chapter 3, and



uses the quadratic convergence result. The second extends the primal potential-
reduction method of Gonzaga [4] and Freund [1]; see also Ye [11] and Nesterov
and Nemirovsky [7], Chapter 4. It uses the Taylor approximation of the bar-
rier function and the bound on the duality gap for points close to the central
trajectory.

2 Self-Concordant Functions: the Set S,

In this section we describe a set of functions called S, that is a subset of the set
of self-concordant functions studied by Nesterov and Nemirovsky [6, 7].

First we need to introduce some notation. Given f : £” — R U {oo} , we
denote by D the domain of f, that is

Dy ={xeR": f(z) < oo}.

Let V¥ f(z) be the k-th derivative of f at z. When k < 2 we use the notation
gz and Hy for the gradient (with respect to the standard inner product) and the
Hessian of f at z. We write V¥ f(z)[h1, ha, . .., hg] for the value of the operator
V% f(z) when applied to [hy, ha, ..., hx] € R x R" x ... x R". When k < 2
we use gL h instead of V f(z)[h] and h¥ H, h, instead of V2 f(z)[hy, ha).

The following definition is just a slight modification of the definition of
strongly self-concordant functions given by Nesterov and Nemirovsky [6, 7].

Definition 2.1 (The set S,) The set S,, where a > 0, consisis of the func-
tions f : R — R U {co} such that

o f(z) is a C® function on its domain Dj.
e Dy is a nonempty open conver sel.
e The Hessian matriz H, is positive definite* for all x € D;.

o For allz € Dy and for all h € R™, the following inequality holds:

V3 ()[R, h, b]| < 2a(hT Hph)3/2. (2.1)

o the sets B{ .= {z € Dy : f(z) <t} are closed for allt € R.

If f €8, then, for k > 0,

|V3(kf)(z)[h, h, h]| < %Qa(hT(ka)h)?’”;

INesterov and Nemirovsky ([7], corollary 2.1.1) show that the condition of positive defini-
tiveness of H; is equivalent to requiring strict convexity of f. However, for the sake of a more

self-contained paper, we keep this seemingly less general definition.



therefore, by multiplying f by a suitable constant & we can always assume ¢ = 1.
The condition of closedness of sets Btf for all ¢ € R is equivalent to asking
that f(x;) diverges when {;}{2, is a sequence of points in Dy converging to a
boundary point.
Since the Hessian of f is positive definite everywhere, it can be used to
assoclate a metric on R to each element & € Dy by defining the local inner
product:

<u, v >pi=ul Hyv, u,v € R, x €Dy (2.2)

We denote the norm given by such an inner product by || - ||z. Obviously we
have

[vlle = [1H2" 0], veR", xeDy. (2.3)

Note that with respect to such a local norm, the gradient of f at y € Dy is given
by Hz'g, while the Hessian matrix is given by H; ' H,.

The following theorem states that local norms of close points are close; it is
due to Nesterov and Nemirovsky. Before stating it let’s define the set

Ey ={yeR":||ly—z|s < 1}; (2.4)
this is the open ellipsoid (ball in the local norm) of radius 1 centered at x.
Theorem 2.1 Given f € 81,z € Dy, then
E, CDy.

Moreover, for each y € E, and for each v € R™ the following relation holds:

lelly, o _lly =zl 03

—lly—=lle < < :
" vl 1= |ly —z|l-

Proof. See Nesterov and Nemirovsky [7] Theorem 2.1.1. O

Equation (2.5) is similar to a Lipschitz condition on the gradient of f: the
next results show how it affects the Newton method when applied to search for
a minimizer. We use the symbol n, to denote the Newton step at z, i.e.

Ng = —H;lgw.

Before proving a proposition that shows a property closely related to quadratic
convergence, we need to state a lemma, due to Renegar [8], that will be very
useful in what follows.

Lemma 2.1 If f € S; and z,y € Dy, then

101y

1—
lI]l2

=1 = H7 ' Hyll (2.6)

sup
vZ0




where the norm on the right hand side is the operator norm induced by || - ||z
Moreover, if y € E, then

_1 1
= Hy Hy|le < T y—2lL? L. (2.7)
Proof. For any v € ", v # 0,
lolly | llellz =1l
‘ EE [lv]IZ
I <v I =H7 Hyv >, |
a [lv]|Z '

Equation (2.6) then follows by observing that the operator I — H ' H, is self ad-
joint with respect to the local inner product <, >,. Equation (2.7) immediately
follows from Theorem 2.1 and some easy algebra. O

Proposition 2.1 Let f € 81 have a minimizer z € Dy. If x € Dy is such that

Iz = all, < 1
and if y is given by
Y =2+ Ng,
then | ||2
z—x
||Z - ny < —" (2.8)
L=z — 2.
Proof. Define v := z — z. Then
Iz =yl = llv+ Hylgalle

1
= [v— H;l/ Hyyepvdt||y  (since g, = 0)
0

1
= 0 [ = ol
0

IN

1
/0 1 — Hy Hyg ool dt

||v||a:/01 (W - 1) i,

where the last inequality follows froma Lemma 2.1.
The result then follows by observing that

| (o= 1) =i (29)
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and substituting this in the previous inequality. O

Now we want to find an upper bound, in terms of the local norm, on the sec-
ond order approximation: in order to do this we adapt an argument of Renegar

8.

Proposition 2.2 If f € S1, € Dy and y € Iy, then

1 —z|3
‘f(y) - I:f(vr)— <Ng,Yy— % >p _”y - Il|x:| 5% (210)

Proof. Let’s set v := y — x and observe that

1
ﬂw—ﬂm::A<mev>ﬁ

1
<gx,v>+/ / < vy Hpqspv > dsdt
0o Jo

1 1 1
< g,V > +§||v||i +/ / < U, [Hepgso — Hp]v > dsdt.
o Jo

Therefore
1 1 1
‘f(y) - |:f(17)_ <Nz, UV >g +§||UI|3;:| < / / | <, [Hx+sv - Hx]v > |d5dt
o Jo
1t
< / / | < v, [Hy 'Hyyoo — Iv >, |dsdt
< :1:/ / < 1) dsdt
Il T

where the last inequality follows from Lemma 2.1. From equation (2.9) we get

3 ! tz
[ p——
“'ll—mwx
3 1
ol /t%t
T oll,

1 lE
= 31—l

IN

0= [0 < nevv e + 31012

from which the result follows. O

In what follows we show that, if the Newton step is not too big, then f has
a minimizer.

Proposition 2.3 If f € Si, z € Dy, and

lInelle < (2.11)

1
9 )



then f has a minimizer z € Dy and
Iz = zlle < 3l|ne|l-

Proof. If ||ng||; = 0 then # is the minimizer and the statement is true.
Let’s suppose ||ng||z > 0. For a € (0,1/||n¢||z) and any y such that

ly = zlle = aflnels, (2.12)
we have
L L ly—=|2

Fly)—f®) > —<ngy—z>, +-|ly—z|? — - —>—5 (2.13
=1 v =2le =3 T~ 319

1 1 o®||ng|[3
> —a||ng|2 + za?||ngl]2 — 5 — i 2.14
Z elinellet 3o lnelle = 3T o o, 1 (219
Iz ||z =507l|ns|ls + a(6lns|l: +3) — 6] (2.15)

6(1 — aflng|x)

where (2.13) follows from Proposition 2.2 and (2.14) from the Cauchy-Schwartz
inequality, while (2.15) is just easy algebra.

Note that the vectors y satisfying (2.12) are on the boundary of the ellipsoid
of center z and radius «||ng||z; we want to determine a value of & € (0, 1/||ng||z)
such that the quantity on the right hand side of (2.15) is positive. The convexity
of f would then imply the existence of a minimizer z inside the ellipsoid.

Let’s observe that, for a € (0,1/||ng||s), the right hand side of (2.15) is
positive if and only if

— 5a%||ngle + a(6||ng||s +3) — 6 > 0. (2.16)
There exists some « satisfying (2.16) only if
A = (34 6[|ng||)? — 120(|ng||z > 0,

which holds when |[|ng||; < 1/9.
Therefore (2.16) holds for any « € (0, 1/||ng||z) such that

<a< .

2.17
AR 10][n2]la (2.17)

Since A > (3 — 24||ng||z)? > 0 for ||ng||s < 1/9,

@:=3

satisfies (2.17) and & € (0, 1/||nz||z); thus the proof is complete. O

Next we see another interesting property of the set 8.



Proposition 2.4 If f € 81 is bounded below, then it has a minimizer z € Dy.

Proof. We want to show that there exists € Dy such that ||ng||, < 1/9; the
result then follows from Proposition 2.3.
From (2.10) we know that, for all y € E,

1 o 1 lly— 2|2
<ng,y—x >, ——|ly—z||z — - ————— < f(z) —
< — inf . 2.18
<) - jaf S 19
Let’s set
T Al
Obviously y € E; and
1
ly = 2lle = 3
using this in (2.18) we get
lIne|le , 11
< — inf -4 —. 2.19
e < g - ng )+ g g (219)

Let H be the subset of Dy

. 1
H = {a: €Dy : fla) _wlengf flw) < ﬂ}’

note that it is nonempty because f is bounded below; moreover from (2.19) it
follows that, for x € H,

1
Inalle < +

11 1
—12 4 6 2

Therefore, when o € H, we can set y := « + n, and substitute into (2.18) to
get

1 2_5 3
2”“410”_1: Hni||||:x||x < f(l‘) . wiengf f(w) (2.20)

Let’s now consider a sequence z; € H such that
lim f(z) = inf f(w).
ki»oof( k) wIE’Df f( )

Then, since

1
Ieslles < 5 < =

Ot W



from (2.20) it follows that
lim [z, 1o, = 0
and then, when £ is big enough,
||nﬂ€k||xk < 1/9:

completing the proof. O

Observe that, from the previous result, the barrier f(z) := 1/z doesn’t
belong to the set S, for any a.
In the next section we investigate the properties of a subset of & which we

call §1(K).

3 Self-Concordant Barriers: the Set S;(K)

We now give a definition, similar to that of a self-concordant barrierin Nesterov
and Nemirovsky, of a subset of &; characterized by having the local norm of
the Newton step uniformly bounded. Note that our K below corresponds to
the square root of Nesterov and Nemirovsky’s parameter 6. In applications, K
is usually the square root of the dimension n or of the number of constraints
defining the closure of Dy; see [7].

Definition 3.1 The function f belongs to S1(K), where K > 0, if
o fES,
o |grh| < K(hTH h)'/?, Yz € Dy, heR".
The following proposition gives an interpretation of the Definition 3.1;

Proposition 3.1 Let f € 8y; then f € S1(K) if and only if ||ng||s < K for all
LS Df.

Proof. For the sufficiency note that

|ggh| = |<nx;h>x|
< Inelle|lA]le-

For the necessity, setting h := H; lg,, we get

K hile > gz h = [In|]3.

nglle = K|

The proof is complete. O

The next proposition, due to Renegar [8], will be useful in what follows.



Proposition 3.2 If f € $1(K) and z,y € Dy then
9 (y— ) < K*.
Proof. Let’s consider the functional ¢(¢) defined, for t € R, by
8(t) 1= F((1 — )z + ty);
its domain is given by
Dy={teR:(1—-t)x+tyeDs}.
We want to show that ¢/(0) < K2. We can assume that ¢’(0) > 0; therefore,

by convexity of ¢, ¢'(¢t) > 0 for any ¢ € [0, 1].
Since f € S§1(K), it follows that

Now we define
K2¢/(0)

t) = ———F7~.
0= B g0)
It’s easy to check that 4(0) = ¢’(0) and

) K2
(t) = 1) t — .
o=(%).  weig)
It follows that y(¢) < ¢'(t) for any ¢ € Dy such that 0 <t < K?/¢/(0).
Since y(t) — co when t — K?/¢'(0), we see that K?/¢'(0) does not belong

to D¢.
But since 1 € Dy , then ¢’(0) < K2, which is what we wanted to show. O

From this result it follows that
Corollary 3.1 If f € S$1(K) then Dy doesn’t contain any line.

Proof. Let’s suppose instead that there exist # € Dy and nonzero v € R” such
that
r+tveD;, VieR

Then, setting y; := = +tv in Proposition 3.2 we get tg2 v < K2, which holds for
all t € R if and only if g7 v = 0. By proceeding in the same way for x := z 4 v
we can show that ggﬂv = 0; but since f is convex this would imply that

H:c+tv =0, te (Oa 1)7

contradicting the hypothesis of positive definiteness of the Hessian. O



Later we show how to modify the definitions given for 8§, and for & (K) in
order to allow more general domains.

Another implication of Proposition 3.2 is that the derivative of f in the
direction of a half line contained in D; tends to zero in the limit along such a

half line.
Corollary 3.2 If f € §1(K) and

x +tv € Dy, vt >0
where x € Dy and v € N”, then

. T _
tllEloo gx-HUv =0

Proof. From Proposition 3.2 it follows that
gl v = gy (z + 2ty — (z + tv)) < K? vt >0,

therefore

limsup g7, v < 0. (3.1)
t— 400
But, again because of Proposition 3.2,

—tgg_Hv'v = gg_Hv(x —(z+tv)) < K? vt >0,

which implies the same inequality as (3.1) for —gg_l_m'v and thus the result. O

4 Conjugate Functions

In this section we define the convex conjugate function of f € &; and study some
of its properties. The definition is the same as that given in Rockafellar [9].

Definition 4.1
f*(s) = sup s’z — f(x). (4.1)
xE’Df

First we want to identify the domain of f*.

Proposition 4.1 If f € 8 and f* is its conjugate function, then the domain
of f* is the range of the gradient of f, that is

Dy« = g(Dy),

where
9(Dy) :={y € X" : Jz € Dy such that g, = y}.

10



Proof. Let’s define
Fy(z) = f(z) —sTa.

Note that F belongs to &; since f does. Observe that
D :={s: f*(s) < o0} = {5 sinf Fy(z) > —oo}.
Then, if s = g, for some z € Dy, it follows that

Fy(z) = f(z) —gi

is a convex function whose gradient vanishes at z := z and which is therefore
bounded below. This proves the inclusion

9(Ds) € Dy~

To prove the opposite inclusion let’s note that if F belongs to &; and is
bounded below, then, from Proposition 2.4, it follows that

there exists z € Dy such that VF,(z) =0,

that is, s = g,, concluding the proof. O

We observe that D« is an open convex set.
Nesterov and Nemirovsky proved the following important result:

Theorem 4.1 If f € & then f* € S1.

Proof. See Nesterov and Nemirovsky [7], Theorem 2.4.1. O

From this theorem it follows that the Hessian of f* is positive definite ev-
erywhere, so that for any s € Dy« we can define a local norm as follows:

olly := (o7 Hzv) 2 (4.2)

where HY is the Hessian of f* computed at s. Since Dy« = g(Dy), we find it
convenient to use the notation

[[ollz = ol

where s = g,.
To investigate the relationship between the two local norms, we recall (see

Rockafellar [9] theorem 26.5) that

* -1
Hi = H;'

T

Therefore
lollz? = o7 . (4.3)

This equality will be frequently used in what follows.

11



Remark 4.1 Observe that, for f € Si1(K), |9z = |Inzl|le, so that, from
Proposition 3.1,
llg=|lz < K.

Proposition 4.2 Let f € S and © € Dy. Then, for all h € R,

N hTw
[|Allz = sup : (4.4)
w0 [[0]|z
Proof. From relation (4.3) we get

IRl = [1H; A,
o 11|
= sup———.

oo [lvll2

Setting w := H;l/zv in the previous formula we get the result. O

Proposition 4.2 states that || - [|% is the operator norm induced by [| - ||; such
a dual norm turns out to be useful for measuring the gradient of f; see, e.g.,
Remark 4.1. The following proposition provides an upper bound on the error
in a first order approximation of the gradient.

Proposition 4.3 Given z,y € Dy, where f € S1, let’s define
vizE—y.
If |lv|ly < 1, then
o — 9y — Hyoll; < e
T (L= lvlly)?

Proof. The result follows from the following chain of inequalities:

I [ Gy el

(by definition of v)

[ 01—
(using the triangle inequality)
1 T
h v — '
_ / sup (Hy4t y)”dt
0 h#0 1]l
(by Proposition 4.2)

192 = 9y — Hyllz

INA

12



dt

sup
h£0 17l

(by definition of <,>,)

/1 < (H;'Hygoo — v, h >,
0

¢ [ s WU st Dl
= Jo n#o 1Al
(from Cauchy-Schwartz)
1 ! 1
< il [ (g - 1) o
L—lofly " Jo \(1 = t[Ju]ly)?

(from Theorem 2.1 and Lemma 2.1)
llll;

(1= 1vlly)*
The last equality follows from (2.9). O

The results of this and of the previous sections can be extended in a straight-
forward way to the case when f is no longer a strictly convex but just a convex
function, i.e., when the assumption that the Hessian of f is positive definite ev-
erywhere is relaxed. Indeed, we observe that, in this case, the null space of the
Hessian matrix doesn’t depend on the point where it is computed (cf. Nesterov,
Nemirovsky [7], corollary 2.1.1) and in fact coincides with the lineality space of
D;. Taking the quotient with respect to this lineality space allows us to recover
all the previous results. For further details see Herzel [5].

5 The Convex Programming Problem

We apply the theory studied so far to the constructions of algorithms to solve
the following convex programming problem:

T

(P) min ctz
Axr =b
z e,

where C'is the closure of the domain of a function f € 81(K). Then Dy coincides
with int C'; we normally use the former notation because we are interested in
the behavior of f and its derivatives at points in this set.

We assume that A is a full row rank matrix of dimension m by n and that
the vectors «, b, ¢ have conforming dimensions.

We denote by A the set of feasible points of (P) and by .A° the set {z €
Dy : Az = b}, which we assume nonempty. Moreover, we assume that the set
of optimal solutions of (P) is nonempty and bounded.

The dual problem of (P) is given by (see Rockafellar [9], section 30)

13



maxnéi(ljl{cTa: — yT(Aa: -bh} = maX{bTy — 6*(ATy —c)}
y = y

= max{by—5"(=s)},

where s := ¢ — ATy and 6*(v) := sup, ¢ v7 2.
Therefore the problem dual to (P) is given by

(D) max by — 6%(—s)
Y,s

s=c— ATy.

We denote the feasible region of problem (D) by A*, and we say that the
pair (y, s) is feasible for problem (D) if and only if it satisfies

s=c—Aly (5.1)
§*(—s) < ©

Let’s observe that, for z and (y, s) feasible, the duality gap is given by
e — by +6%(—s) = al's + 6% (—s). (5.3)

It is well known (Rockafellar [9], theorem 30.3, 30.4), that, under our hy-
pothesis of boundedness and nonemptiness for the set of optimal solutions, the
duality gap is equal to zero if and only if z is optimal for (P) and (y, s) is optimal
for (D).

6 Projections in the Local Norms

We use the local metrics defined above to perform projections on the linear space
ker A. This approach was used in Freund and Todd [2] and we refer to them for
the following results. (In [2], H, was diagonal as well as positive definite, but
the proofs only require the latter property.)

The projection in the Euclidean norm of a vector v € R" on ker A is the
unique solution of

max v'd — 1||d|?
d
Ad = 0.
Analogously, using the local norm || - ||z, we get the following

14



Proposition 6.1 If x € D; then there is a unique solution d of the problem

max vld —
d

1

9 T

6.1

Ad = 0. (6-1)

Moreover d is the first component of the solution (c], y) of the system of linear

equations
(o)) - () 02

and it satisfies

]I = v"d; (6.3)
ldlle = [lv — ATgll3; (6.4)
lldlle < llv]l5- (6.5)

Proof. See Freund and Todd [2], Theorem 2.1. O

An analogue of the previous result for the dual space is given by
Proposition 6.2 If x € D; then there is a unique solution y to the problem

min v — ATy[3%. (6.6)

Moreover y is the second component of the solution (d,y) of (6.2).

Proof. See Freund and Todd [2], Theorem 2.2. O
Observe that (6.1) and (6.6) are dual problems with the same optimal value.

7 The Central Trajectory

The central trajectory for (P) is defined as the set of solutions, for g > 0, of the
following problems :

mxin 'z + puf(z) (1)
Az = b '

The following result shows that for any ¢ > 0 (7.1) has a unique solution, i.e.,
the central trajectory exists.

15



Proposition 7.1 For any p > 0, the problem (7.1) has a unique optimal solu-
tion.

Proof. Since the objective function of (7.1) is convex, it is sufficient to show
that if OF(Dy) is the recession cone of D; (equal to that of C') and

v € ker(A) N O+ (Dy),

then
o(t) =T (x +tv) + pf(x + tv)
is increasing for any ¢ sufficiently big.
We have
¢'(t) =clo+ /igg+m'”~
From the assumptions on (P) it follows that ¢Zv > 0 (otherwise the set of
optimal points cannot be nonempty and bounded); moreover from corollary 3.2
we get

Therefore there exists T' € R such that

Vi >T, ¢'(t)>0
and the proof is complete. O
The first consequence of Proposition 7.1 is that the Karush-Kuhn-Tucker
conditions are necessary and sufficient for optimality in (7.1); therefore the

central trajectory for (P) is the set of z-components of the unique solutions for
u>0to

Az = b (7.2)
ATy+s = ¢ (7.3)
ugr +s = 0. (7.4)

Observe that everything is linear except for (7.4). We denote the unique
solution by (z(u),y(p), s(1t)) and call the set of such triples the primal-dual
central trajectory. We try to trace the central trajectory by allowing s/u to be
just an approximation of —g,. The following result states that if the approxi-
mation is good enough in the dual norm, then it is possible to derive an upper
bound for the duality gap.

Theorem 7.1 Given s/pu = —gy + h, where x € A° and h € R", if h satisfies
lIAllz <8< 1/9,

then
K?

1-36

tls 4+ 6% (=s) < p
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Proof. For easier notation we set 7 := s/p.
Since ||h])% < 1, applying Theorem 2.1 to the function f* we get

—7T E Df* .
Therefore it follows from Proposition 4.1 that

there exists £ € Dy such that 7 = —g;.

For an arbitrary # € C, we want to find an upper bound for —gXz + g%z,
This will give an upper bound on z¥7 + §*(—7) and thus the theorem. To do
that consider, for ¢ € [0, 1], the function

o(§) = f(Z + af(z — z)),
where obviously o € R has to be chosen so that the following relation holds:
Yo =2+ (s —z) € Dy. (7.5)

In such a case it is easy to check that ¢ € S;(K).
To determine « satisfying (7.5) let’s define

We =+ a(Z — ),
so that
Yo = Wo + T — 2.
From Theorem 2.1 we know that
{y:lly—=fl. <1} €Dy
Therefore, from the convexity of the set Dy,
{v:lly—walls <1—a} CDy,
so that y, belongs to Dy if the following holds:
o — walle = 17 — all. < 1 - a. (7.6)
To estimate || — z||; we need to define
W) = fy) — 9z (y— &)

It is easy to see that ¢y € &1 and that its minimizer is . Let v, be the Newton
step for ¥ at . Then

ve = —H;'[g:— g3
= _Har_l[7+gx]
= —H 'h

T )
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so that

[velle = 1 Ha2Hy  hllz = [|HZ2R]1 = ||R])5 < 1/9.
From Proposition 2.3 applied to the function i we get

|12 — z[le < 3|lvell. < 38,
Therefore (7.6) holds when

a<1-—305.

Now we can use Proposition 3.2 to show that ¢'(¢)(¢ — &) < K? for ¢,( €
[0, 1]. Then, setting £ := 0 and ¢ := 1, we obtain

K?

T T
—gzxt+gzr < o

Since this holds for any o < 1 — 33 we deduce that

K?
T T -
—g: - < .
92T 0% = 135
Also, since z is arbitrary,
elr46%(-1) = —ggr—ksqugi‘
T
< K?
- 1-38

The proof is complete. O

Observe that when (z,y, s) lies on the primal-dual central trajectory, then
we can set # := (0. From the previous theorem it then follows that the objective
values of points z(u) on the central trajectory of (P) converge to the optimal
value when p approaches zero. Moreover, the theorem shows that this remains
true even if we have approximations to points on the central trajectory as long
as 3 <1/9.

Combining Propositions 6.1 and 6.2 and Theorem 7.1 we can establish a
necessary condition on the projection of the gradient of the objective function
of problem (7.1) to get a constant reduction of the duality gap.

Theorem 7.2 Given & € A° and i > 0, if (CZ, ) is the solution to (6.1) when
v 15 defined as

vi=c+ gz, (7.7)
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and if we set

§:=c— ATy, (7.8)
then A
lldllz = 115 + faga Iz (7.9)
Moreover, if
l1d/alls = 113/ + gall; < B < 1/9, (7.10)
then (y, 8) is feasible for the dual problem (D) and the duality gap satisfies
1
275+ 6% (—3) gﬂf@l_w. (7.11)
Proof. From Proposition 6.1 it follows that
ldlle = llv—A"gll;
= le+ags — ATy[l;
= [|5+ agallz,

which is (7.9).
If (7.10) holds, then (7.11) follows immediately from Theorem 7.1.
Finally, from relations (7.8) and (7.11), the pair (g, §) is feasible for (D). O

When (7.10) holds we say that & is 3-close to z(j).

The next result gives a sufficient condition for & to be S-close to x(j):
Proposition 7.2 Let & € A° and it > 0. If § and § satisfy

(i) ATg+5=c, and

(i) |5/ i+ g2z < 5.
then & is 3-close to x(f1).
Proof. From Propositions 6.1 and 6.2 it follows that y as defined above is the
optimal solution to the problem

min e+ jigs — ATyl
Then, from the definition of s,

15+ fagellz = lle+ g — ATyl
lle + fags — AT gll3,

IN

and therefore, from (i) and (ii),

s + fgzllz < B,
completing the proof. O
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8 An Algorithm for Tracing the Central Tra-
jectory

We approximate the central trajectory by performing steps in the direction of
the gradient of the objective function of (7.1) projected on ker A with respect
to the norm || - ||. This algorithm extends those of Gonzaga [3] and Roos and
Vial [10] for linear programming, and is closely related to the general path-
following method of Nesterov and Nemirovsky [7], Chapter 3.

Let’s assume as given 2 € A°, 1 > 0, and 8 < 1/9, where z is f-close to

2 (7).
Let (d, §) be the solution of the projection problem (6.1), with
vi=cH+ [gs.
From Proposition 6.1 it follows that

ld/alle = 115/ + 9213 < B. (8.1)
Now we set - i
d:=—d/j
and define the next iterate as
r=i+d (8.2)
Proposition 8.1 Let z be given as in (8.2). Then x € A° and

62
z 18 ————-close to z(f).
177 (")
Proof. Since ||d||z < 8 < 1, it follows that z € Dy; moreover, since d €
ker A, we also have Az = b. Therefore z € A°.
The second part of the proof is just an application of Proposition 7.2. In
fact it is enough to show the existence of (y, s) such that

2

Ayts=c and /it gl < 2o

3 (8.3)

We show that (8.3) holds when (y, s) = (9, $).

From Proposition 6.1

Hpd + AT = ¢ + jigs,

so that
i = (c- A9/
= —g: — Hz(—d/j1)
= —gz — H@CZ
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Therefore

s/t +gell; = llgw — 92— Hadl
[t
= =)

where the last inequality is given by Proposition 4.3. From (8.1) it follows that
o . g’
clle < ;
18/t + gl < T
completing the proof. O

The next proposition states how to decrease p in order to stay feasible and
B-close.

Proposition 8.2 Given & € A° and §-close to z(f1) for § < 1/9, if « is defined

© B(1— 38+ 52
(1-8)2(B+K)’

a:=1-—

(8.4)

and
P
then, for x as given in (8.2), it follows that x € A° and x is f-close to x(u).

Proof. From Proposition 8.1 it immediately follows that 2 € .4°. To show that
z is f-close to x(u) observe that

s/u+g=llz = IIs/(aft) + gl
1 /s 1 .
= [[=(=+0)-|=——1) gl
a \ f e
1 3 . (1 .
R e
b o
B 1 .
< — ——1]K
- a(1—5)2+ o *
= B,

where the last inequality is given by (8.3) with s = § and from Remark 4.1,
while the last equality follows from the definition of «. O

IN

From the previous result it follows that, when § :=1/9,

55 1
- <l-—,
649K +1) = 12K

a=1
where the inequality follows from K > 1.
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From these results we can finally construct the following algorithm:

Algorithm A

Step 0:

Set B:=1/9, a:=1—55/(64(9K + 1)), i := 0,

to > 0 and g fB-close to z(ug).
Step 1:

Set v; := ¢+ p;¢s,, and compute

Tiy1 = x; — difp,

where (d;, y;) is the solution to problem (6.1) with v = v;, & = ;.
Step 2:

Set pii41 1= apy
and go to Step 1.

Algorithm A generates a sequence of points z; feasible for (P), as well as
a sequence of points (y;, s;) feasible for (D). Moreover their objective values
converge to the optimal value of (P), as it is proved in the next theorem:

Theorem 8.1 If {(x;,yi,s;)} are generated by Algorithm A, then

(Z) x; € A°, (yi;si) e A*;

(ii) x; is B-close to x(p;);

(iii) the duality gap for x; and (y;, s;) is bounded above by o' W’ K?(1—33)71.
Moreover, for any M > 0, in O(M K log(uoK)) steps, algorithm A finds a point
xz; such that

Tri—cla* <e”

M.

Proof. (i) and (ii) immediately follow from Proposition 8.2, while (iii) is a
consequence of Theorem 7.2.

Moreover, since o < 1 — 1/12K it follows that

Ao —car<(1- ! _
- 12K

Therefore from the inequality log(1 — 1/12K) < —1/12K we get the last state-
ment. O

) nak? - a(8)"

9 A Potential-Reduction Algorithm

In this section we generalize a primal potential-reduction algorithm studied by
Gonzaga [4] and Freund [1]; see also Ye [11] and Freund and Todd [2].
We consider the problem
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n;izn o(x,2) = qlog(c'e —2)+ f(x) (9.1)
st. Az = b (9.2)

z € C (9.3)

z <2 (9.4)

where ¢ is a constant value and z is a lower bound for the unknown optimal
value of (P), z*. We refer to ¢(z, z) as the potential function.

Let’s assume we know 2 € A° and z < z*. The gradient with respect to z
of ¢(x, z) computed at (&, 2) is given by

6:<qu )c—{—g,;. (9.5)

We have the following result:

Proposition 9.1 Let (d,y) be the solution to (6.1) for v := .
If |d||z > 1/9 and o € [0, 1), then

d
z(a) =& — 2L e (9.6)
lldllz
Moreover x(a) satisfies the inequality
Sa(a),5) < 9,2 = 2+ b (67
= ’ 9 2 31-a) '

Proof. From Theorem 2.1 and since & € A°,d € ker A, it immediately
follows that z(«a) € A° .
To get inequality (9.7) we proceed as follows:

Td
o)) = 65,5 = atox (1= o) 4 fla(e) - S(2)
agcld B d -
S P I P A
(by concavity of logarithm function)
< agcld ozg%ci_k a_2 N o’

Cldlls(Ta—2)  ldlle T 2 T 3(1-a)
(from Proposition 2.2)

a T 2 3
I G ST I S
Iz \Ta—z°7 % 2 " 3(1-a)
2 3
« ~T 7 (8 «
= - Ud+ —+ 55—
Id]ls 2 " 3(1-a)
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— O[2 QS
= —alldlls + 5+ i—a)

(from (6.3) of Proposition 6.1)

« 012 QB

< 44—
= gty t3a—ay

which completes the proof. O

The previous result implies that, whenever ||d||z > 1/9 and « is small enough,
it is possible to attain a reduction 7y of the potential function. In particular,
when « := 1/10, we get v > 1/200.

When ||d||z < 1/9 we can get a more accurate lower bound for z* by using
the following definitions:

po= (TE-2)/g (9.8)
Vo= U =c+ figs (9.9)
§o= iy (9.10)
5 = c— ATy (9.11)

Therefore, denoting by P; the projection operator on ker(A) with respect to the
local norm || - ||z, we obtain

d = P;() = iP:(%) = jud,
that is X B
lld/lle = lldllz < 1/9.

Now we can apply Theorem 7.1 to conclude that the duality gap is bounded
above by the quantity

oK
¢ = “T(l/sa) =3uK?/2.

We can define a new lower bound as
zi=c'z (. (9.12)

Next we can prove that we actually get a constant reduction in the potential
function.

Proposition 9.2 Let # € A%, v > 0, and (d,y) be the solution of the prob-
lem (6.1), where v := ¥; moreover let (y,8) , z be defined by (9.10),(9.11),(9.12).
Then, when B
lldllz < 1/9,

z is a lower bound on z*. Moreover, when q > 3K?%/2 4 v, then

o(z,2) < d(2,2) — 7.
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Proof. From the definition of z it follows that

3K
T, _ 2
[ z 5)
_ Te—23K?
= =

Therefore, since

completing the proof. O

The next result follows from the two previous propositions:

Theorem 9.1 There is a positive value of v (for example, v = 1/200) such
that, given ¢ > 3K?/2+ v and & € A°, 2 < 2%, if we set v := ¥ in (9.5),
compute (d,y) from the (6.1), and set §,5 and z using (9.8)-(9.12), then:

(i) when ||d||z > 1/9, it follows that ¢ can be reduced by at least y by taking
a step in the direction —d;

(ii) when ||d||z < 1/9, it follows that ¢ can be reduced by at least y by
substituting z for z.

Proof. Immediate from Propositions 9.1 and 9.2. O

This theorem gives us an idea on how to construct an algorithm for solving
(P). We suppose that we can start from a point zg that is optimal for

min f(2)

.’L‘E’Df
Az =b.

Moreover we assume that we know z < z* as well as the values for & and 74 (one
possibility is o := 1/10, v := 1/200).
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Algorithm B

Step 0:
Set ¢ := 3K?/2+ v and i := 0.
Step 1:
Set & :=x;,2 := z;.
Set v := ¥ as in (9.5).
Compute (d, y) from problem (6.1).
Step 2:
if ||d|z > 1/9:
i =2 — ad/||d|s,
Tiy1 =T, 241 1= Z,
and go to Step 1.
Step 3:

if ||d||f < 1/9 :
compute (g, §, z) from (9.8)-(9.12),
set Tjq41 =&, 2541 1= 2

and go to Step 1.

The next result shows that the objective function values of the sequence
produced by algorithm B converge to the optimal value of (P) and gives an
upper bound on the total number of steps to attain a given accuracy.

Theorem 9.2 Algorithm B constructs a sequence of poinis in A° and, for any
M >0, it determines a point z; such that

after at most

[log(cho —z0)]— (9.13)
iterates, that is the number of iterates is O(M K?).

Proof. All the points in the sequence are feasible by Proposition 9.1. Moreover,
since

qlog(c¥z; — z;) = oz, 2) — f(z)

=71+ ¢(z0, 20) — f(i)
—yi 4 qlog(ctxo — 20) — fx:) + f(x0),

IN

using f(x;) > f(xo) yields

oy — 2 < (Twg — zo)exp(—ﬂ).

26



Therefore

Foi—2¢ < Taj—z
T 7t
< (¢ @o— zp)exp(——)
< M

bl

where the last inequality is verified when ¢ is given by (9.13). D
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