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Abstract

We present results on global and polynomial-time convergence of infeasible-interior-point methods
for self-scaled conic programming, which includes linear and semidefinite programming. First, we
establish global convergence for an algorithm using a wide neighborhood. Next, we prove polynomial
complexity for the algorithm with a slightly narrower neighborhood. Both neighborhoods are related
to the wide (minus infinity) neighborhood and are much larger than the 2-norm neighborhood. We
also provide stopping rules giving an indication of infeasibility.

1 Introduction

The first polynomial-time interior-point algorithm for linear programming was presented by Karmarkar
in [3]. Later, the interior-point framework was extended to the general class of conic programming
problems by Nesterov and Nemirovskii in [7]. Conic programming can be defined as minimizing a lin-
ear objective subject to linear equality constraints and a cone membership constraint. Interior-point
algorithms can be broadly classified as either feasible- or infeasible-interior-point methods. In both,
the iterates remain in the interior of the cone. In the former, the iterates stay feasible to the linear
equality constraints, while in the latter, they are not required to satisfy these equations.

Infeasible-interior-point algorithms are appealing in practice as it is not easy in most cases to
find a starting point in the interior of the cone satisfying the linear constraints. In the case of lin-
ear programming, global convergence of an infeasible-interior-point method was first established by
Kojima, Megiddo and Mizuno in [4]. Subsequently, polynomial iteration complexity for variants of
this algorithm was established by Zhang [18], Mizuno [5] and Potra [11, 12]. Later, the results were
extended to semidefinite programming (for instance, in Zhang [19]). For extension in the case of
feasible-interior-point methods see [6, 9, 19].

Nesterov and Todd introduced self-scaled barriers and extended feasible-interior-point methods to
self-scaled conic programs (see [8, 9]). Self-scaled cones are the class of cones that have an associ-
ated self-scaled barrier, and they include the non-negative orthant and the cone of positive semidefinite
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matrices. Recently, feasible-interior-point algorithms were also extended to self-scaled cones using Jor-
dan algebraic techniques (see [15]). In this article, we generalize an infeasible-interior-point method
to self-scaled conic programs and provide a global convergence result using a wide neighborhood and
establish polynomial convergence for the same algorithm using a slightly narrower neighborhood. Both
neighborhoods are comparable to the wide (infinity) neighborhoods used in linear and semidefinite
programming, and are much wider than the 2-norm neighborhoods used in short-step methods.

For infeasible problems, infeasible-interior-point methods can provide some information about the
infeasibility. For general conic programming, using a homogeneous model, Nesterov et al. [10] intro-
duced various measures of infeasibility and obtained complexity estimates for algorithms using them.
For the type of algorithm we consider, in the context of linear programming, Todd and Ye [17] obtained
complexity estimates for some reasonably strong indicators of infeasibility; here we extend these results.

In feasible-interior-point methods the search directions lie in orthogonal spaces, which simplifies
the analysis very much. The main challenge in analyzing infeasible-interior-point methods lies in
getting a handle on the search directions. The global convergence result in this paper is based on
the arguments presented in Kojima et al. [4] for linear programming and the polynomial convergence
argument for the algorithm in Section 4 closely follows the analysis by Zhang in [18]. Our proofs rely
heavily on the self-scaled property of the barriers.

We start by introducing the preliminary concepts in Section 2. Section 3 presents an algorithm
with a wide neighborhood and analyzes its global convergence. In Section 4, we restrict the method
to a smaller neighborhood and obtain a polynomial iteration complexity result for it. We also provide
results pertaining to indicators of infeasibility. The paper concludes with some remarks in Section
5. Some of the proofs are quite detailed and technical. The reader may prefer to omit some of the
derivations at a first reading, for example those from (4.41) to (4.63).

2 Preliminaries

In this section, we describe the self-scaled conic programming problem and its optimality conditions.
We provide an introduction to self-scaled barriers and some of their properties. Then we state the
Newton system that will be used to define the search directions for the algorithms in later sections. The
section concludes with some of the key properties that follow from the definition of the Newton system.

Let E, Y be given finite dimensional real vector spaces, and E∗, Y ∗ be their respective dual spaces.
Let 〈·, ·〉 denote the scalar product on E∗ × E or Y ∗ × Y . The primal and dual self-scaled conic
programs are defined as follows :

(P ) min{〈c, x〉 : Ax = b, x ∈ K}, (2.1)

(D) max{〈b, y〉 : A∗y + s = c, s ∈ K∗}, (2.2)

where A : E 7→ Y ∗ is a linear map, A∗ : Y 7→ E∗ is the adjoint linear map, b ∈ Y ∗, x ∈ E and
s, c ∈ E∗. Here, K ⊂ E is assumed to be a regular closed convex cone, i.e., it contains no lines and has
a non-empty interior. It follows from standard convex analysis that its dual K ∗ := {s ∈ E∗ : 〈s, x〉 ≥
0 for all x ∈ K} is also a regular closed convex cone. We will denote the interiors of K and K ∗ by
int K and int K∗ respectively and Z and int Z will denote K × Y × K∗ and int K × Y × int K∗
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respectively.

In linear programming, E = E∗ = <n, Y = Y ∗ = <m, and K = K∗ = <n
+, the non-negative

orthant. In this case, A is a m×n matrix, A∗ = AT , b ∈ <m, c ∈ <n, and 〈s, x〉 = xT s is the standard
dot product for vectors x, s ∈ <n (or <m). In semidefinite programming, E = E∗ = Sn, the space of
symmetric matrices of order n, Y = Y ∗ = <m, and K = K∗ = Sn

+, the cone of symmetric positive
semidefinite matrices of order n. The scalar (inner) product is given by 〈s, x〉 = trace(xs) for x, s ∈ S n

and we have the standard dot product on <m ×<m. Here, Ax = (trace(aix))
m
1 ∈ <m, A∗y =

∑

i yiai,
ai ∈ Sn, b ∈ <m, and c ∈ Sn.

Let F be a strongly ν-self-concordant, logarithmically homogeneous, non-degenerate barrier for K
(see Definitions 2.1.1, 2.3.1, 2.3.2 in [7]). The dual barrier functional, F∗, is defined by

F∗(s) := sup{− 〈s, x〉 − F (x) : x ∈ int K}.

Then F∗ is also a strongly ν-self-concordant, logarithmically homogeneous, non-degenerate barrier for
K∗ (Theorem 2.4.4 in [7]). For self-concordant barriers, ν ≥ 1 by Corollary 2.3.3 in [7].

We say F is a self-scaled barrier for K if it is self-concordant and
(i) for any x,w ∈ int K, F ′′(w)x ∈ int K∗, and
(ii) for any x,w ∈ int K, F∗(F ′′(w)x) = F (x) − 2F (w) − ν.

Let us further assume F to be a self-scaled barrier. By Proposition 3.1 in [8], F∗ is a self-scaled
barrier for K∗. By convention, we call K and K∗ self-scaled cones, as there exist self-scaled barriers
for them, and (P ) and (D) are the primal and dual self-scaled conic programming problems. We recall
Theorem 3.2 in [8]:

Lemma 2.1 For any (x, s) ∈ int K× int K∗, there exists a unique scaling point w := w(x, s) ∈ int K
such that F ′′(w)x = s. �

Hereafter, we denote the scaling point for the pair (x, s) by w.
For linear programming, F (x) := −∑i lnxi and F∗(s) = −∑i ln si − n are self-scaled barriers,

and the scaling point w =
√

x
s , where the square root and fraction are taken component-wise. For

semidefinite programming, F (x) := − ln(det(x)) and F∗(s) = − ln(det(s)) − n for x, s ∈ Sn
++, the

space of positive definite matrices. The scaling point is given by w = x1/2[x1/2sx1/2]−1/2x1/2 =
s−1/2[s1/2xs1/2]1/2s−1/2. Note that the matrix square root is uniquely defined for positive definite
matrices. In both cases, the parameter ν of the barrier is n.

We collect here for later use some useful properties of the self-scaled barrier functionals. We then
define local norms using the barriers and prove a useful property. For τ > 0, x ∈ int K, s ∈ int K ∗,

F ′(τx) = 1
τ F

′(x), F ′′(τx) =
1

τ2
F ′′(x), (2.3)

F ′′(x)x = −F ′(x),
〈

−F ′(x), x
〉

= ν, (2.4)

〈F ′′(x)x, x〉 = ν,
〈

F ′(x), F ′′(x)−1F ′(x)
〉

= ν; (2.5)
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−F ′(x) ∈ int K∗, −F ′
∗(s) ∈ int K, (2.6)

F (x) + F∗(−F ′(x)) = −ν, F (−F ′
∗(s)) + F∗(s) = −ν, (2.7)

F ′
∗(−F ′(x)) = −x, F ′(−F ′

∗(s)) = −s, (2.8)

F ′′
∗ (−F ′(x)) = F ′′(x)−1, F ′′(−F ′

∗(s)) = F ′′
∗ (s)−1, (2.9)

F (x) + F∗(s) ≥ −ν ln 〈s, x〉 + ν ln ν − ν. (2.10)

Statements (2.3)-(2.5) follow from the logarithmic homogeneity of F (see Proposition 2.3.4 in [7])
and similar statements hold for F∗. Relations (2.7)-(2.10) follow from the definition of the dual barrier
functional (see Theorem 2.4.2 in [7], Theorem 3.3.5 in [14]). For self-scaled barriers, by Theorem 3.1
in [8], we have

F ′′(w)x = s, F ′′(w)F ′
∗(s) = F ′(x), and F ′′(w)F ′′

∗ (s)F ′′(w) = F ′′(x). (2.11)

We define the following norms induced by the barriers F and F∗ : for p ∈ E, x ∈ int K, q ∈ E∗,
s ∈ int K∗ and a fixed reference element e ∈ int K,

‖p‖x := 〈F ′′(x)p, p〉1/2 , ‖q‖∗x :=
〈

q, F ′′(x)−1q
〉1/2

,

‖q‖s := 〈q, F ′′
∗ (s)q〉1/2 , ‖p‖∗s :=

〈

F ′′
∗ (s)−1p, p

〉1/2
,

‖p‖ := ‖p‖e, and ‖q‖∗ := ‖q‖∗e.

Let ‖·‖ and ‖·‖∗ be dual norms on Y and Y ∗. The following is an important inequality on norms:

Lemma 2.2 For p ∈ K, x ∈ int K, q ∈ K∗, s ∈ int K∗,

〈s, p〉 ≥ ‖p‖∗s and 〈q, x〉 ≥ ‖q‖∗x.

Proof : From Theorem 2.1.1 (ii) in [7], s − F ′′

∗
(s)−1p

‖F ′′
∗

(s)−1p‖s
∈ K∗ so that,

〈

s− F ′′

∗
(s)−1p

‖F ′′
∗

(s)−1p‖s
, p
〉

≥ 0.

Expanding, we get

〈s, p〉 ≥
〈

F ′′
∗ (s)−1p, p

〉

〈F ′′∗ (s)−1p, F ′′∗ (s)F ′′∗ (s)−1p〉1/2
=

〈

F ′′
∗ (s)−1p, p

〉

〈F ′′∗ (s)−1p, p〉1/2
= ‖p‖∗s .

The proof of the other part proceeds similarly. �

We will make the following assumptions for the rest of the paper :

A1 A is a surjective linear map, and

A2 (P ) and (D) have strictly feasible solutions, i.e., feasible solutions in the interior of K and K ∗

respectively.

For x feasible in (P ) and (y, s) feasible in (D), we have the following weak duality result:

〈c, x〉 − 〈b, y〉 = 〈A∗y + s, x〉 − 〈Ax, y〉 = 〈s, x〉 ≥ 0.

4



Hence 〈s, x〉 = 0 is sufficient for optimality. But, given our assumption of strict feasibility, it is also
necessary by Theorem 4.2.1 in [7]. So, the optimality conditions for (P ) and (D) are:

A∗y + s = c
Ax = b,

〈s, x〉 = 0,
x ∈ K, s ∈ K∗.

(2.12)

We will now describe the central path and the associated Newton system. We define the central path
to be the set of solutions to the following system for all µ > 0 :

A∗y + s = c
Ax = b,

µF ′(x) + s = 0,
x ∈ int K, s ∈ int K∗.

(2.13)

Given our assumptions, it is known (see Chapter 2 in [7]) that the set of equations (2.13) has a
unique solution (x(µ), y(µ), s(µ)) for each µ > 0 and that (x(µ), y(µ), s(µ)) converges to (x∗, y∗, s∗), an
optimal solution of (P ) and (D), as µ ↓ 0. Following Nesterov and Todd [8], we propose the following
Newton system at a given (x, y, s) ∈ int Z:

Newton Equations

A∗4y + 4s = c−A∗y − s,
A4x = b−Ax,

F ′′(w)4x + 4s = h := −β1µF
′(x) − s,

4x ∈ E, 4y ∈ Y, 4s ∈ E∗,

(2.14)

where µ = 〈s,x〉
ν and β1 ∈ [0, 1] is a given parameter.

In linear programming, the third equation of (2.14) is S−1X4x + 4s = β1µX
−11 − s, where

S = diag(s), X = diag(x) and 1 is the vector of all ones. For semidefinite programming, Toh et. al.
[16] showed that the third Newton equation in (2.14) is equivalent to Hp(x4s + 4xs − xs) = σµi,
where i is the n× n identity matrix, p is any nonsingular matrix such that pTp = w−1, and Hp is the
symmetrization operator given by

Hp(a) =
pap−1 + (pap−1)T

2
.
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Lemma 2.3 The following hold as a consequence of the Newton equations (2.14), where α > 0 is
such that x+ α4x ∈ int K and s+ α4s ∈ int K∗.

(a) ‖4x‖2
w + ‖4s‖∗2w + 2 〈4s,4x〉 = ‖h‖∗2w ; (2.15)

(b) 〈4s, x〉 + 〈s,4x〉 = −(1 − β1) 〈s, x〉 ; (2.16)

(c)
〈

F ′(x),4x
〉

+
〈

4s, F ′
∗(s)

〉

= ν − β1µ
〈

F ′(x), F ′
∗(s)

〉

; (2.17)

(d)
〈s+ α4s, x+ α4x〉

ν
=

〈s, x〉
ν

(1 − α+ β1α) + α2 〈4s,4x〉
ν

; (2.18)

(e) ln

(〈s+ α4s, x+ α4x〉
ν

)

≤ ln

(〈s, x〉
ν

)

− α(1 − β1) + α2 〈4s,4x〉
〈s, x〉 ; (2.19)

(f) A(x+ α4x) − b = (1 − α)(Ax − b); (2.20)

A∗(y + α4y) + (s+ α4s) − c = (1 − α)(A∗y + s− c).

Proof : The first equation is gotten by expanding the third equation of (2.14):

‖h‖∗2w =
〈

F ′′(w)4x+ 4s, F ′′(w)−1(F ′′(w)4x+ 4s)
〉

=
〈

F ′′(w)4x+ 4s,4x+ F ′′(w)−14s
〉

=
〈

F ′′(w)4x,4x
〉

+
〈

4s, F ′′(w)−14s
〉

+ 2 〈4s,4x〉
= ‖4x‖2

w + ‖4s‖∗2w + 2 〈4s,4x〉 .
The second equation follows from

〈4s, x〉 + 〈s,4x〉 = 〈4s, x〉 +
〈

F ′′(w)x,4x
〉

=
〈

4s+ F ′′(w)4x, x
〉

=
〈

−β1µF
′(x) − s, x

〉

(from (2.14))

= −〈s, x〉 + β1µ
〈

−F ′(x), x
〉

= −(1 − β1) 〈s, x〉 (from (2.4)).

We obtain (2.17) from
〈

F ′(x),4x
〉

+
〈

4s, F ′
∗(s)

〉

=
〈

F ′′(w)F ′
∗(s),4x

〉

+
〈

4s, F ′
∗(s)

〉

(from (2.11))

=
〈

F ′′(w)4x+ 4s, F ′
∗(s)

〉

=
〈

−β1µF
′(x) − s, F ′

∗(s)
〉

(from (2.14))

= ν − β1µ
〈

F ′(x), F ′
∗(s)

〉

.

The equation (2.18) follows from

〈s+ α4s, x+ α4x〉
ν

=
〈s, x〉
ν

+ α
〈4s, x〉 + 〈s,4x〉

ν
+ α2 〈4s,4x〉

ν

=
〈s, x〉
ν

+ α
−(1 − β1) 〈s, x〉

ν
+ α2 〈4s,4x〉

ν
(from (2.16))

=
〈s, x〉
ν

(1 − α+ β1α) + α2 〈4s,4x〉
ν

.

Using the result above, we can see that (as ln(1 + ξ) ≤ ξ for ξ > −1)

ln

(〈s+ α4s, x+ α4x〉
ν

)

= ln

(〈s, x〉
ν

)

+ ln

(

1 − α(1 − β1) + α2 〈4s,4x〉
〈s, x〉

)

≤ ln

(〈s, x〉
ν

)

− α(1 − β1) + α2 〈4s,4x〉
〈s, x〉 .
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Note that the condition inside the parentheses will apply if all logarithms are defined, i.e., as long as
〈s+ α4s, x+ α4x〉 > 0, which is ensured by our assumption on α. Finally, note that (2.20) follows
directly from the first two equations of (2.14). �

3 Global convergence in a wide neighborhood of the central path

The algorithm produces a sequence of iterates {(xk, yk, sk)} ⊂ int Z until a termination criterion
is met. At each iterate, a step direction (4xk,4yk,4sk) is computed from the Newton equations
(2.14), and step lengths αk

p , α
k
d ∈ [0, 1] are chosen. The next iterate is given by (xk+1, yk+1, sk+1) :=

(xk + αk
p4xk, yk + αk

d4yk, sk + αk
d4sk). Before we describe the algorithms, we need some definitions

from [9, 2]. For x ∈ int K, s ∈ int K∗, let

γF (x, s) := F (x) + F∗(s) + ν ln

(〈s, x〉
ν

)

+ ν, (3.1)

γG(x, s) := µ
〈

F ′(x), F ′
∗(s)

〉

− ν, (3.2)

φk
p := Πk−1

i=0 (1 − αi
p), where φ0

p := 1, and

φk
d := Πk−1

i=0 (1 − αi
d), where φ0

d := 1.

The neighborhoods used in the algorithms will be defined using γF and γG. By applying (2.20)
in Lemma 2.3 inductively for αk

p (and similarly for αk
d), it is easy to see [2, 4] that φk

p (φk
d) represents

the proportion of the initial infeasibility remaining in the primal (dual) after k iterations. This we
summarize as

Axk − b = φk
p(Ax0 − b), and A∗yk + sk − c = φk

d(A
∗y0 + s0 − c). (3.3)

Let

NF (θF ) := {(x, y, s) ∈ int Z : γF (x, s) ≤ θF}.

In the linear programming instance, this neighborhood is

{

(x, y, s) ∈ <n
+ ×<m ×<n

+ : n ln

(

xT s

n

1

Πi(xisi)1/n

)

≤ θF

}

.

Thus the arithmetic mean of the xisi’s cannot exceed their geometric mean by more than a factor of
exp(θF /n). For semidefinite programming, if (λi)

n
i=1 denotes the spectrum of x1/2sx1/2, we obtain the

following description for the neighborhood:

{

(x, y, s) ∈ Sn
+ ×<m × Sn

+ : n ln

(

∑

i λi

n

1

Πiλ
1/n
i

)

≤ θF

}

,

with a similar interpretation in terms of the arithmetic and geometric means of the λi’s.
Now, we state
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Algorithm 1 :

1 Let 1 > β2 > β1 > 0, ε∗ > 0, Ω∗ > 0, θF > 0, x0 ∈ int K, y0 ∈ Y and s0 ∈ int K∗ be given such
that (x0, y0, s0) ∈ NF (θF ). Set k = 0.

2 Solve for (4xk,4yk,4sk) from the Newton equations (2.14) at (xk, yk, sk).

3 Let (x(α), y(α), s(α)) := (xk, yk, sk) + α(4xk,4yk,4sk). Compute the largest step length
ᾱk ∈ (0, 1] such that for all α ∈ [0, ᾱk], (x(α), y(α), s(α)) ∈ NF (θF ),
〈s(α), x(α)〉 ≥ max(φk

p, φ
k
d)(1 − α) 〈s0, x0〉, and 〈s(α), x(α)〉 ≤ 〈sk, xk〉 (1 − (1 − β2)α).

4 Choose a primal step length αk
p and a dual step length αk

d such that

(xk+1, yk+1, sk+1) := (xk + αk
p4xk, yk + αk

d4yk, sk + αk
d4sk) ∈ NF (θF ),

〈sk+1, xk+1〉 ≥ max(φk
p(1 − αk

p), φ
k
d(1 − αk

d)) 〈s0, x0〉 and

〈sk+1, xk+1〉 ≤ 〈sk, xk〉 (1 − (1 − β2)ᾱk).

5 Increase k by 1. If 〈sk, xk〉 < ε∗ 〈s0, x0〉 or ‖xk‖ + ‖sk‖∗ > Ω∗, then STOP. Otherwise, repeat
step 2.

We would like to note that, if we choose αk
p = αk

d = ᾱk, all the conditions in Step 4 are satis-
fied. However, we are free to choose different step lengths as long as a comparable decrease in the
complementarity is obtained, the iterate remains in the required neighborhood, and we maintain the
condition

〈sk, xk〉 ≥ max(φk
p, φ

k
d) 〈s0, x0〉 . (3.4)

This requirement ensures that when total complementarity, 〈s, x〉, approaches zero, the infeasibilities,
from the interpretations of φk

p and φk
p, also approach zero. For simplicity, we will often write x, y, s

and φ̄ for xk, yk, sk and max(φk
p, φ

k
d) respectively. We also write γF for γF (x, s) and γG for γG(x, s).

The arguments should be clear from the context.

Towards proving global convergence, we will assume that at the k-th iterate

〈sk, xk〉 ≥ ε∗ 〈s0, x0〉 and ‖xk‖ + ‖sk‖∗ ≤ Ω∗, (3.5)

and show that there exists an α∗ > 0 (independent of k) such that all conditions in Step 3 of the
algorithm are satisfied for all α ∈ [0, α∗]. This gives a lower bound of α∗ on ᾱk, which by Step 3 of
the algorithm, implies that 〈sk, xk〉 ≤ (1−α∗(1− β2))

k 〈s0, x0〉. Hence, if ‖xk‖+ ‖sk‖∗ ≤ Ω∗ for all k,
then the total complementarity goes to zero linearly and the infeasibility goes to zero at least linearly
by condition (3.4). This will complete the argument for the global convergence result. At the end of
Section 4, some conclusions are presented when ‖xk‖+‖sk‖∗ > Ω∗ occurs. As a first step, we establish
results that allow us to bound some key terms involving 4x and 4s.

Proposition 3.1 The scaling point w := w(x, s) (given by Lemma 2.1) is a continuous function of x
and s.
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Proof : Let ψx,s(v) := 〈s, v〉 − 〈F ′(v), x〉 for x, v ∈ int K and s ∈ int K∗. From the proof of Theorem
3.2 in [8] we know that w = w(x, s) is the unique minimizer of ψx,s(·), satisfying the optimality con-
dition F ′′(w)x = s, and that ψx,s(v) ≥ 〈s, v〉 + F (v) − F (x) + ν.

Let {(xn, sn)} ⊂ int K × int K∗ be such that xn → x̄ ∈ int K and sn → s̄ ∈ int K∗. Let
{wn = w(xn, sn)} ⊂ int K and w̄ = w(x̄, s̄) ∈ int K be the scaling points given by Lemma 2.1.
To establish continuity we need to show that wn → w̄. By continuity of ψ in x, s we note that
ψxn,sn(w̄) ≤ ψx̄,s̄(w̄) + 1 for all sufficiently large n. Also, ψxn,sn(wn) ≤ ψxn,sn(w̄) for all n.

We claim that F (wn) ≤ M < ∞ for some constant M . Then, from Proposition 2.1.1 in [7], as F
is a strongly non-degenerate barrier, it follows that wn is contained in {w ∈ E : F (w) ≤M} ⊂ int K
which is closed in E. To prove the claim, note that for all sufficiently large n, F (xn) ≤ F (x̄) + 1 and
hence,

ψxn,sn(wn) ≥ 〈sn, wn〉 + F (wn) − F (xn) + ν ≥ F (wn) − F (x̄) − 1 + ν.

This, along with the chain of inequalities ψxn,sn(wn) ≤ ψxn,sn(w̄) ≤ ψx̄,s̄(w̄) + 1 for all sufficiently
large n, shows that, for such n, F (wn) ≤ M̂ = F (x̄) + ψx̄,s̄(w̄) + 2 − ν. The claim follows.

As sn → s̄, for ε = 1
2 min{x∈K:‖x‖=1} 〈s̄, x〉 > 0 and all n sufficiently large,

〈sn, x〉 = 〈s̄, x〉 − 〈s̄− sn, x〉 ≥ 〈s̄, x〉 − ‖x‖‖s̄− sn‖∗ = 〈s̄, x〉 − ‖s̄− sn‖∗ ≥ 〈s̄, x〉 − ε ≥ ε

for every x ∈ K such that ‖x‖ = 1. Now, for all sufficiently large n,

ψxn,sn(wn) = 〈sn, wn〉 +
〈

−F ′(wn), xn

〉

≥ 〈sn, wn〉 = ‖wn‖
〈

sn,
wn

‖wn‖

〉

≥ ε‖wn‖.

Then ψxn,sn(wn) ≤ ψx̄,s̄(w̄)+1 (for all sufficiently large n) implies that {wn} is bounded. Hence, {wn}
is contained in some subset of int K that is compact in E.

Let ŵ be any limit point of {wn}. Since F ′′(wn)xn = sn for all n, we have F ′′(ŵ)x̄ = s̄. As w̄ is
the unique solution to F ′′(w)x̄ = s̄, ŵ = w̄. Therefore, w̄ is the the unique limit point of {wn}. Thus
w is a continuous function of (x, s) on int K × int K ∗. �

Lemma 3.2 The region

R :=

{

(x, y, s) ∈ int Z : 〈s, x〉 ≥ ε∗ 〈s0, x0〉 , ‖x‖ + ‖s‖∗ ≤ Ω∗, γF (x, s) ≤ θF ,
and ∃φp, φd ∈ [0, 1] s.t. Ax = b+ φp(Ax0 − b), A∗y + s = c+ φd(A

∗y0 + s0 − c)

}

is compact.

Proof : Using the expression for γF in (3.1), the fact that 〈s, x〉 ≥ ε∗ 〈s0, x0〉 and γF (x, s) ≤ θF

we get that F (x) + F∗(s) ≤M1 for some constant M1. By Proposition 2.1.1 in [7]

R̂ := {(x, y, s) ∈ int Z : F (x) + F∗(s) ≤M1}

is closed in E × Y ×E∗. Hence replacing int Z by R̂ in the definition of R we see that R is closed.
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If A is surjective then the solution to the equation A∗y = r is unique and ‖y‖ ≤ ‖(AA∗)−1‖‖A‖‖r‖∗
with the standard operator norm on operators. Using ‖x‖ + ‖s‖∗ ≤ Ω∗, the remark above and the
inequality ‖c+ φd(A

∗y0 + s0 − c)‖∗ ≤ ‖c‖∗ + ‖c−A∗y0 − s0‖∗ we get ‖y‖ ≤ M2 for some constant
M2, or ‖x‖ + ‖y‖ + ‖s‖∗ ≤ Ω∗ +M2. Hence, R is compact. �

Note that the operator defining the Newton equations (2.14) is continuous in w and invertible for
all w ∈ int K. By Lemma 3.1, w is continuous in (x, y, s). Also note that all the iterates defined by
the algorithm lie in the region R as φk

p, φ
k
d ∈ [0, 1]. We established compactness of R in Lemma 3.2.

Therefore the operator is continuous and invertible over the compact set R. Hence,

Proposition 3.3 (4x,4y,4s) is a bounded continuous function of (x, y, s) on R. In particular, the
sequence {(4xk,4sk)} produced by the algorithm is uniformly bounded. �

As a consequence of Proposition 3.3, we can choose η sufficiently large that, for all (x, y, s) ∈ R,

‖4x‖2
x + ‖4s‖2

s ≤ η/2 and |〈4s,4x〉| ≤ η

2ν
ε∗ 〈s0, x0〉 . (3.6)

Using (3.5) and (3.6) we get as a consequence

|〈4s,4x〉|
〈s, x〉 ≤ η/2ν. (3.7)

The reason for this choice of η will become clear later. Next, we recall the definition of the Minkowski
functional and the associated norm from Section 4 of [8]. For p ∈ E, x ∈ int K, q ∈ E ∗, and
s ∈ int K∗,

σx(p) :=
1

sup{α ≥ 0 : x− αp ∈ K} = min{β ≥ 0 : βx− p ∈ K}, and

|p|x := max(σx(p), σx(−p));

σs(q) and |q|s are similarly defined, and we set

σx(q) := σ−F ′(x)(q), and σs(p) := σ−F ′
∗
(s)(p). (3.8)

Using (2.9) we derive the following identities: for ŝ = −F ′(x) and x̂ = −F ′
∗(s)

‖p‖x =
〈

F ′′(x)p, p
〉1/2

=
〈

F ′′
∗ (ŝ)−1p, p

〉1/2
= ‖p‖∗ŝ, and (3.9)

‖q‖s =
〈

q, F ′′
∗ (s)q

〉1/2
=
〈

q, F ′′
∗ (x̂)−1q

〉1/2
= ‖q‖∗x̂. (3.10)

Let κ̄ := max(‖4x‖x, ‖4s‖s). By Proposition 3.5 of [9], κ̄ ≥ max(|4x|x, |4s|s). Let us define
x(α) := x+ α4x and s(α) := s+ α4s. Then we have the following result (this is a slight weakening
of Theorem 4.2 in [8], but more suited for our analysis):

Lemma 3.4 For all α ∈ [0, 1/(2κ̄)]

F (x(α)) ≤ F (x) + α
〈

F ′(x),4x
〉

+ α2‖4x‖2
x and

F∗(s(α)) ≤ F∗(s) + α
〈

4s, F ′
∗(s)

〉

+ α2‖4s‖2
s.
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Proof : Note that σx(−4x) ≤ |4x|x ≤ κ̄. Let x(β) = x + 4x
κ̄ β, with β ∈ [0, 1

2 ]. Let θ(β) :=
F (x(β)). From the proof of Theorem 4.2 in [8], we have

θ(β) − θ(0) ≤ θ′(0)β + θ′′(0)
∫ β

0

∫ λ

0

dτdλ

(1 − τ)2

= θ′(0)β + θ′′(0)
∫ β

0

λdλ

1 − λ

≤ θ′(0)β + θ′′(0)
∫ β

0
2λdλ

(

as λ ≤ β ≤ 1

2

)

= θ′(0)β + θ′′(0)β2.

The first part of the lemma now follows by substituting the appropriate expressions. The second part
can be proven using a similar argument for F∗. �

Note that κ̄2 ≤ ‖4x‖2
x + ‖4s‖2

s ≤ η/2. Therefore,
√

1/(2η) ≤ 1/(2κ̄). If we define

ᾱ1 :=

√

1

2η
, (3.11)

then the conclusion of Lemma 3.4 and (2.19) in Lemma 2.3 hold for all α ∈ [0, ᾱ1].

Now, using γF to denote γF (x, s), it follows from Lemma 3.4, Lemma 2.3, and (3.2) that for
α ∈ [0, ᾱ1],

γF (x(α), s(α)) = F (x(α)) + F∗(s(α)) + ν ln

(〈s(α), x(α)〉
ν

)

+ ν

≤ F (x) + α
〈

F ′(x),4x
〉

+ α2‖4x‖2
x + F∗(s) + α

〈

4s, F ′
∗(s)

〉

+ α2‖4s‖2
s

+ν

{

ln

(〈s, x〉
ν

)

− α(1 − β1) + α2 〈4s,4x〉
〈s, x〉

}

+ ν

= γF + α
(〈

F ′(x),4x
〉

+
〈

4s, F ′
∗(s)

〉)

− αν(1 − β1) + α2ν
〈4s,4x〉
〈s, x〉

+α2
(

‖4x‖2
x + ‖4s‖2

s

)

= γF + α
(

ν − β1µ
〈

F ′(x), F ′
∗(s)

〉)

− αν(1 − β1) + α2ν
〈4s,4x〉
〈s, x〉

+α2
(

‖4x‖2
x + ‖4s‖2

s

)

= γF + αβ1

(

ν − µ
〈

F ′(x), F ′
∗(s)

〉)

+ α2

(

ν
〈4s,4x〉
〈s, x〉 + ‖4x‖2

x + ‖4s‖2
s

)

= γF − αβ1γG + α2

(

ν
〈4s,4x〉
〈s, x〉 + ‖4x‖2

x + ‖4s‖2
s

)

≤ γF − αβ1γF + α2(η/2 + η/2) = γF − αβ1γF + α2η.

The last inequality follows from γF ≤ γG ((4.17) in Theorem 4.2 of [9]), (3.6), and (3.7). To ensure
that γF (x(α), s(α)) ≤ θF , it suffices to have

γF − αβ1γF + α2η ≤ θF .
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By considering the larger root of the quadratic (γF −θF )−αβ1γF +α2η, we see that this is guaranteed
for 0 ≤ α ≤ ᾱ2 with

ᾱ2 =
1

2η
min

0≤γF≤θF

{β1γF +
√

β2
1γ

2
F + 4η(θF − γF )}.

Setting the derivative with respect to γF of the minimand to zero, we obtain θF = η/β2
1 . This implies

that the function is monotone, and so it achieves its minimum at one of the extreme points. Hence

ᾱ2 =
1

η
min(

√

ηθF , β1θF ). (3.12)

So, we have (x(α), y(α), s(α)) ∈ NF for all α ∈ [0, ᾱ2].
Next, we will establish a similar guarantee on step lengths for condition (3.4) at iteration k + 1.

Let h(α) := 〈s(α), x(α)〉− φ̄(1−α) 〈s0, x0〉. Recall that φ̄ = max(φk
p , φ

k
d) so that, if we took equal step

lengths of α in both primal and dual at the kth iteration, the resulting φk+1’s would both be at most
φ̄(1−α). We would like an ᾱ3 > 0 such that h(α) ≥ 0 for all α ∈ [0, ᾱ3]. Since (3.4) holds at (x, y, s),
using (2.18) in Lemma 2.3 and (3.7) we get

h(α) = 〈s(α), x(α)〉 − φ̄(1 − α) 〈s0, x0〉
= 〈s, x〉 (1 − α(1 − β1)) + α2 〈4s,4x〉 − φ̄(1 − α) 〈s0, x0〉

= (1 − α)(〈s, x〉 − φ̄ 〈s0, x0〉) + α 〈s, x〉
(

β1 + α
〈4s,4x〉
〈s, x〉

)

≥ α 〈s, x〉
(

β1 − α
η

2ν

)

.

Hence the choice of

ᾱ3 :=
2β1ν

η
(3.13)

ensures that the second condition in Step 3 of Algorithm 1 holds for all α ∈ [0, ᾱ3]. Using (2.18) and
(3.7), we find

〈s(α), x(α)〉 ≤ 〈s, x〉
(

1 − α(1 − β1) + α2 η

2ν

)

.

We will obtain our desired decrease in total complementarity if α satisfies

〈s, x〉
(

1 − α(1 − β1) + α2 η

2ν

)

≤ 〈s, x〉 (1 − α(1 − β2)) ,

or equivalently

α
[

(β2 − β1) − α
η

2ν

]

≥ 0.

Hence, we have 〈s(α), x(α)〉 ≤ 〈s, x〉 (1 − α(1 − β2)) for all α ∈ [0, ᾱ4], where

ᾱ4 :=
2(β2 − β1)ν

η
. (3.14)

Taking into account (3.11), (3.12), (3.13), (3.14), we obtain

α∗ := min (1, ᾱ1, ᾱ2, ᾱ3, ᾱ4) = min

(

1,

√

1

2η
,

√

θF

η
,
β1θF

η
,
2β1ν

η
,
2(β2 − β1)ν

η

)

= Ω(1/η). (3.15)

We are ready to state our first main theorem.
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Theorem 3.5 Given (A, b, c,K), 1 > β2 > β1 > 0 and θF , ε
∗,Ω∗ > 0, if all iterates of Algorithm

1 satisfy ‖xk‖ + ‖sk‖∗ ≤ Ω∗, then we obtain a solution (x∗, y∗, s∗) such that 〈s∗, x∗〉 ≤ ε∗ 〈s0, x0〉,
‖Ax∗ − b‖ ≤ ε∗‖Ax0 − b‖, and ‖A∗y∗ + s∗ − c‖ ≤ ε∗‖A∗y0 + s0 − c‖ in O

(

η ln
(

1
ε∗

))

iterations.

Proof : As ‖xk‖ + ‖sk‖∗ ≤ Ω∗ at each iterate, if we choose any α ∈ [0, α∗], with α∗ in (3.15), as the
step length, all the conditions in Step 3 of Algorithm 1 are satisfied. Hence for each k, ᾱk ≥ α∗. Thus

for k =
⌈

1
(1−β2)α∗

⌉

ln
(

1
ε∗

)

= O
(

η ln
(

1
ε∗

))

, we have

ln(〈sk, xk〉) ≤ ln (〈sk−1, xk−1〉 (1 − α∗(1 − β2)))

≤ ln
(

〈s0, x0〉 (1 − α∗(1 − β2))
k
)

= ln(〈s0, x0〉) + k ln (1 − α∗(1 − β2))

≤ ln(〈s0, x0〉) − kα∗(1 − β2)

≤ ln(〈s0, x0〉) + ln(ε∗) = ln(ε∗ 〈s0, x0〉).

The first inequality follows from the decrease in total complementarity condition, the second from the
same applied inductively, and the third inequality from the identity ln(1 + ξ) ≤ ξ for all ξ > −1. The
fourth inequality follows from our assumption on k.

From condition (3.4) it follows that max(φk
p, φ

k
d) ≤

〈sk,xk〉
〈s0,x0〉 ≤ ε∗. Then (3.3) implies that

‖Axk − b‖ ≤ ε∗‖Ax0 − b‖, and ‖A∗yk + sk − c‖ ≤ ε∗‖A∗y0 + s0 − c‖.

�

We postpone the discussion on indicators of infeasibility to the end of Section 4.

4 Polynomial iteration complexity

We now present a variation of Algorithm 1 with a neighborhood defined using γG, which is narrower
than one using γF (see (4.1) below). In this section, we obtain some key results leading to bounds
on terms involving 4x and 4s, and this leads us to our analysis of polynomial complexity. Most
of the results are extensions from the linear programming case proven by Zhang [18]. Though the
γG-neighborhood is tighter than the γF -neighborhood, it can be related (see (4.10), (4.11)) to the
γ∞-neighborhood used in practice. In our conclusion, we will discuss some implications of the relation
between neighborhoods and complexity estimates of the algorithm. Let

NG(θG) := {(x, y, s) ∈ int Z : γG(x, s) ≤ θG}.

We note that, as γF (x, s) ≤ γG(x, s) ((4.17) in Theorem 4.2 of [9]), it follows that

NG(θF ) ⊂ NF (θF ), (4.1)

and hence NF (θF ) is a wider neighborhood than NG(θF ).
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Algorithm 2 :

1 Suppose given 1 > β2 > β1 > 0, ε∗ > 0, θG > 0, and (x0, y0, s0) ∈ NG(θG). Set k = 0.

2 Solve for (4xk,4yk,4sk) from the Newton equations (2.14) at (xk, yk, sk).

3 Let (x(α), y(α), s(α)) := (xk, yk, sk) +α(4xk,4yk,4sk). Compute the largest step length ᾱk ∈
(0, 1] such that for all α ∈ [0, ᾱk],

(x(α), y(α), s(α)) ∈ NG(θG), (4.2)

〈s(α), x(α)〉 ≥ max(φk
p , φ

k
d)(1 − α) 〈s0, x0〉 , (4.3)

〈s(α), x(α)〉 ≤ 〈sk, xk〉 (1 − (1 − β2)α). (4.4)

4 Choose a primal step length αk
p and a dual step length αk

d such that

(xk+1, yk+1, sk+1) := (xk + αk
p4xk, yk + αk

d4yk, sk + αk
d4sk) ∈ NG(θG),

〈sk+1, xk+1〉 ≥ max(φk
p(1 − αk

p), φ
k
d(1 − αk

d)) 〈s0, x0〉 and

〈sk+1, xk+1〉 ≤ 〈sk, xk〉 (1 − (1 − β2)ᾱk).

5 Increase k by 1. If 〈sk, xk〉 < ε∗ 〈s0, x0〉, then STOP. Otherwise repeat Step 2.

In this section too, if we choose αk
p = αk

d = ᾱk, all the conditions in Step 4 are satisfied. However, we
are free to choose different step lengths as long as a comparable decrease in the complementarity is
obtained, the iterate remains in the required neighborhood, and we maintain the condition (3.4). In
our analysis, we again consider equal step lengths α in the k-th iteration, irrespective of the choice
of step lengths in previous iterations, and show that a certain minimal step length can be chosen.
Then different step lengths can be chosen, but we will preserve a minimal level of decrease in the
complementarity. The relations in (3.3) hold also for this algorithm. That is,

Axk − b = φk
p(Ax0 − b), and A∗yk + sk − c = φk

d(A
∗y0 + s0 − c). (4.5)

Let (u0, r0, v0) ∈ E×Y ×E∗, satisfying Au0 = b, A∗r0+v0 = c and (x0−u0, s0−v0) ∈ intK×intK∗,
denote our reference point. It is feasible to the linear system but not necessarily feasible to the cone
constraint. The last condition can be met by scaling our initial point by a large positive scalar.

For the given sequence of iterates {(xk, yk, sk)} we find it useful to define the following :

uk+1 = uk + αk
p(xk + 4xk − uk) = (1 − αk

p)(uk − xk) + xk+1;

rk+1 = rk + αk
d(yk + 4yk − rk) = (1 − αk

d)(rk − yk) + yk+1;
vk+1 = vk + αk

d(sk + 4sk − vk) = (1 − αk
d)(vk − sk) + sk+1.

The properties below directly follow from the above definitions :

xk+1 − uk+1 = (1 − αk
p)(xk − uk) = φk+1

p (x0 − u0) ∈ int K;

sk+1 − vk+1 = (1 − αk
d)(sk − vk) = φk+1

d (s0 − v0) ∈ int K∗;

Auk = b and A∗rk + vk = c for all k; (4.6)

A(xk + 4xk − uk) = A(x+ 4xk) −Auk = b− b = 0;

A∗(yk + 4yk − rk) + sk + 4sk − vk = 0.
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(The third line holds for k = 0 by assumption, and then holds for all k by induction using the last
two lines.)

The analysis in this section is quite similar to that in the previous section. We will henceforth
denote xk, yk, sk, wk, φ

k
p, and φk

d by x, y, s, w, φp, and φd respectively. We also write φ̄ for max(φp, φd)
and φ for min(φp, φd). We will drop the subscript k unless the subscript is necessary for clarity. We
first prove the following useful lemma.

Lemma 4.1 Let (x, y, s) be any iterate generated by the algorithm and (x∗, y∗, s∗) be an optimal
solution to (P ) and (D). Then

〈s, x− u〉 + 〈s− v, x〉
〈s, x〉 ≤ 1 +

〈s∗, x0 − u0〉 + 〈s0 − v0, x
∗〉 + 〈s0 − v0, x0 − u0〉

〈s0, x0〉
.

If a strictly feasible point for (P ) and (D) (say (x̃, ỹ, s̃)) exists, then the sequence {(xk, sk)} generated
by the algorithm is uniformly bounded.

Proof : We first observe the following inequality, assuming the iterate is the kth, so that φ̄ =
max(φp, φd) and φ = min(φp, φd):

〈s− v, x− u〉 = φpφd 〈s0 − v0, x0 − u0〉 (see (4.6))

= φ̄φ 〈s0 − v0, x0 − u0〉

≤ φ
〈s, x〉
〈s0, x0〉

〈s0 − v0, x0 − u0〉 (by (3.4)). (4.7)

Next, from 〈s∗ − v, x∗ − u〉 = 0, 〈s∗, x∗〉 = 0, x∗ ∈ K and s∗ ∈ K∗, we have

〈s, x− u〉 + 〈s− v, x〉 < 〈s, x− u〉 + 〈s− v, x〉 + 〈s∗, x〉 + 〈s, x∗〉 + 〈s∗ − v, x∗ − u〉
= 〈s, x〉 + 〈s− v, x∗〉 + 〈s∗, x− u〉 + 〈s− v, x− u〉 + 〈s∗, x∗〉
≤ 〈s, x〉 + φ̄ [〈s0 − v0, x

∗〉 + 〈s∗, x0 − u0〉] + φ 〈s,x〉
〈s0,x0〉 〈s0 − v0, x0 − u0〉

≤ 〈s, x〉 + 〈s,x〉
〈s0,x0〉 [〈s0 − v0, x

∗〉 + 〈s∗, x0 − u0〉] + φ 〈s,x〉
〈s0,x0〉 〈s0 − v0, x0 − u0〉

= 〈s, x〉
{

1 +
〈s∗, x0 − u0〉 + 〈s0 − v0, x

∗〉 + φ 〈s0 − v0, x0 − u0〉
〈s0, x0〉

}

.

The first inequality is strict because x ∈ int K and s ∈ int K ∗. We get the first equality by rearranging
the terms. The second inequality above follows from (4.7) and (4.6) and the third follows from (3.4).
This gives the inequality in the lemma since φ ≤ 1.

For the second part of the lemma, observe that

〈s, x̃〉 + 〈s̃, x〉 < 〈s, x̃〉 + 〈s̃, x〉 + 〈s, x− u〉 + 〈s− v, x〉 + 〈s̃− v, x̃− u〉
= 〈s, x〉 + 〈s− v, x̃〉 + 〈s̃, x− u〉 + 〈s− v, x− u〉 + 〈s̃, x̃〉
≤ 〈s0, x0〉 + 〈s0 − v0, x̃〉 + 〈s̃, x0 − u0〉 + 〈s0 − v0, x0 − u0〉 + 〈s̃, x̃〉 ( as φ̄ ≤ 1).

�
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We define

γ∞(x, s) := σ2µ− 1, (4.8)

where σ := σx(w) and µ := 〈s,x〉
ν . This definition follows from Lemma 3.1 and (4.10) of [9]. Then,

N∞(θ) := {(x, y, s) ∈ int Z : γ∞(x, s) ≤ θ} defines the γ∞-neighborhood (parameterized by θ) widely
used in the literature: for linear programming, this measure is the arithmetic mean of the xisi’s divided
by their minimum, minus one, and for semidefinite the same but using the eigenvalues of x1/2sx1/2.

From (4.18) in [9], we have

γ2
∞

1 + γ∞
≤ γG ≤ νγ∞. (4.9)

From this we get γ∞ ≤ γG

2 +

√

γG +
γ2

G

4 . This leads to the following relations:

γG

ν ≤ γ∞ ≤
√

γG

2 +
√

5γG

4 ≤ 2
√
γG ≤ γG + 1 for γG ≤ 1, (4.10)

γG

ν ≤ γ∞ ≤ γG

2 +
(γG

2 + 1
)

≤ γG + 1 for γG ≥ 1. (4.11)

From (4.10) and (4.11) we conclude

NG(θG) ⊂ N∞(θG + 1); N∞(θ) ⊂ NG(νθ). (4.12)

So γG ≤ θG implies that γ∞ ≤ θ∞− 1 for θ∞ := θG +2. This yields the following simple bound on σ :

σ ≤
√

θ∞
µ
. (4.13)

We will first note some useful consequences of Lemma 3.4 in [9] and Corollary 4.1 (ii) in [8]. Let
p ∈ E, x ∈ int K, q ∈ E∗, s ∈ int K∗, w ∈ int K such that F ′′(w)x = s and t = −F ′(w). From
Lemma 3.4 in [9] we have

σx(−F ′
∗(s)) = σs(−F ′(x)) = σx(w)2 = σ2, (4.14)

and from Corollary 4.1 (ii) in [8] we have

F ′′(x) ≤ σx(−F ′
∗(s))F

′′(w) = σ2F ′′(w) and F ′′
∗ (s) ≤ σs(−F ′(x))F ′′

∗ (t) = σ2F ′′
∗ (t). (4.15)

Here for two self-adjoint operators A and B, A ≤ B means that B −A is positive semidefinite.

Let us define

t = tk :=
√

‖4x‖2
w + ‖4s‖∗2w . (4.16)

The following two quantities play a crucial role in our bound for t:

χ = χk := 2

{ 〈s0 − v0, x0 − u0〉
〈s0, x0〉

}

+ β2
1

γG

ν
+ (1 − β1)

2, and (4.17)

ξ = ξk :=
√

θ∞ν

[〈s, x− u〉 + 〈s− v, x〉
〈s, x〉

]

. (4.18)
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Proposition 4.2 t2k ≤ ω 〈sk, xk〉, where ω is independent of k and

(

ξk +
√

ξ2k + χk

)2

≤ ω <∞. (4.19)

Proof : We will drop the subscripts for now. First, we note the following identity.

‖h‖∗2w =
〈

−β1µF
′(x) − s,−β1µF

′
∗(s) − x

〉

= β2
1µ

2
〈

F ′(x), F ′
∗(s)

〉

− β1µ
(〈

s,−F ′
∗(s)

〉

+
〈

−F ′(x), x
〉)

+ 〈s, x〉
= β2

1µ
2
〈

F ′(x), F ′
∗(s)

〉

− 2β1µν + 〈s, x〉 (from (2.4))

= µν
[

β2
1

(γG

ν
+ 1
)

− 2β1 + 1
]

(from (3.2))

= 〈s, x〉
[

(1 − β1)
2 + β2

1

γG

ν

]

.

From (2.15) in Lemma 2.3 and the expression for t in (4.16), we have

‖4x‖2
w + ‖4s‖∗2w + 2 〈4s,4x〉 = t2 + 2 〈4s,4x〉 = 〈s, x〉

[

β2
1

γG

ν
+ (1 − β1)

2
]

. (4.20)

Now we will show that 0 ≤ 〈s, x〉 〈s0−v0,x0−u0〉
〈s0,x0〉 + 〈4s,4x〉 + ξt

√

〈s, x〉.
Expanding 〈s+ 4s− v, x+ 4x− u〉 and using (4.6), it follows that

〈s− v, x− u〉 + 〈4s,4x〉 + 〈4s, x− u〉 + 〈s− v,4x〉 = 0. (4.21)

It follows from (4.15) that for p ∈ E, q ∈ E∗, ‖p‖x ≤ σ‖p‖w and ‖q‖s ≤ σ‖q‖∗w, so that

‖4x‖x ≤ σ‖4x‖w and ‖4s‖s ≤ σ‖4s‖∗w. (4.22)

By letting p = x− u, q = s− v in Lemma 2.2 we have

‖x− u‖∗s ≤ 〈s, x− u〉 and ‖s− v‖∗x ≤ 〈s− v, x〉 . (4.23)

From (4.22), (4.23), (4.13), and (4.16), we see that

〈4s, x− u〉 ≤ ‖x− u‖∗s‖4s‖s ≤ 〈s, x− u〉 σ‖4s‖∗w ≤
√

θ∞
µ

〈s, x− u〉 t. (4.24)

A similar bound holds for 〈s− v,4x〉.
Substituting these bounds and (4.7) in (4.21), we get

0 ≤ 〈s, x〉
〈s0, x0〉

〈s0 − v0, x0 − u0〉 + 〈4s,4x〉 +

√

θ∞
µ

〈s, x− u〉 t+

√

θ∞
µ

〈s− v, x〉 t

= 〈s, x〉 〈s0 − v0, x0 − u0〉
〈s0, x0〉

+ 〈4s,4x〉 + ξt
√

〈s, x〉.

Using (4.20) to eliminate 〈4s,4x〉, we get

t2 ≤ 2 〈s, x〉 〈s0 − v0, x0 − u0〉
〈s0, x0〉

+ 〈s, x〉
[

β2
1

γG

ν
+ (1 − β1)

2
]

+ 2ξt
√

〈s, x〉.
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So, t2 ≤ 2ξt
√

〈s, x〉 + 〈s, x〉χ or (t− ξ
√

〈s, x〉)2 ≤ 〈s, x〉 (χ+ ξ2). Therefore,

t2k ≤ 〈sk, xk〉
(

ξk +
√

ξ2k + χk

)2

.

Since γG ≤ θG, χk is uniformly bounded by χ̄, and ξk is uniformly bounded by ξ̄ using Lemma 4.1.
We can choose χ̄, ξ̄, and ω to be

χ̄ = β2
1

θG

ν
+ (1 − β1)

2 + 2

{ 〈s0 − v0, x0 − u0〉
〈s0, x0〉

}

, (4.25)

ξ̄ =
√

θ∞ν

{

1 +
〈s∗, x0 − u0〉 + 〈s0 − v0, x

∗〉 + 〈s0 − v0, x0 − u0〉
〈s0, x0〉

}

, and (4.26)

ω ≥
(

ξ̄ +

√

ξ̄2 + χ̄

)2

. (4.27)

This completes the proof of the proposition. �

In the following corollaries ω plays a role similar to η in the previous section. Later, we will obtain
a polynomial bound for ω, given a suitable choice of starting points and an assumption on the size of
optimal solutions.

Corollary 4.3 |〈4s,4x〉| ≤ ω
2 〈s, x〉.

Proof : |〈4s,4x〉| ≤ ‖4x‖w‖4s‖∗w ≤ ‖4x‖2
w+‖4s‖∗2w

2 ≤ ω
2 〈s, x〉. �

Corollary 4.4 ‖4x‖2
x + ‖4s‖2

s ≤ θ∞νω and ‖4x‖x‖4s‖s ≤ 1
2θ∞νω.

Proof : From (4.22) ‖4x‖x ≤ σ‖4x‖w and ‖4s‖s ≤ σ‖4s‖∗w. Hence,

‖4x‖2
x + ‖4s‖2

s ≤ σ2(‖4x‖2
w + ‖4s‖∗2w ) ≤ θ∞

µ
ω 〈s, x〉 = θ∞νω.

The second part follows from the inequality ‖4x‖x‖4s‖s ≤ ‖4x‖2
x+‖4s‖2

s

2 . �

Let x(α) := x + α4x and s(α) := s + α4s. We use the following lemma to guarantee that our
iterates x and s remain in their respective cones.

Lemma 4.5 Let κ̄ = max{‖4x‖x, ‖4s‖s}. Then for α ∈ [0, 1/(2κ̄)], x(α) ∈ int K, σx(α)(x) ≤
2, s(α) ∈ int K∗ and σs(α)(s) ≤ 2.

Proof : From the definition of κ̄, we have ‖α4x‖x ≤ 1/2 and ‖α4s‖s ≤ 1/2. Therefore x(α) ∈
int K and s(α) ∈ int K∗. Note that 2x(α)−x = 2(x+α4x)− x = x+ 2α4x ∈ K as ‖α4x‖x ≤ 1/2.
Hence, σx(α)(x) ≤ 2, and similarly σs(α)(s) ≤ 2. �
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From Corollary 4.4,

1

2κ̄
=

1

2max{‖4x‖x, ‖4s‖s}
≥ 1

2
√
θ∞νω

=: ᾱ1. (4.28)

Henceforth we will restrict our choice of α to [0, ᾱ1]. Note that

α‖4x‖x ≤ 1/2, α‖4s‖s ≤ 1/2, (4.29)

and the conclusion of Lemma 4.5 hold for all such α.
We have so far obtained bounds on expressions involving 4x and 4s and on step lengths guaran-

teeing that our iterates remain in the interiors of the respective cones. Now, we proceed to guarantee
the existence of a minimum positive step length such that we can satisfy (4.2)–(4.4), that is, stay
inside of the NG(θG) neighborhood, while satisfying the condition in (3.4) and the decrease in total
complementarity condition. First we will focus on the arguments that lead to bounding γG along the
step directions. We introduce the following convenient notation.

Using Taylor series expansions, let us define Rx and Rs by

F ′(x(α)) = F ′(x) + F ′′(x)(α4x) + α2Rx, F ′
∗(s(α)) = F ′

∗(s) + F ′′
∗ (s)(α4s) + α2Rs. (4.30)

We have

Lemma 4.6 For α ∈ [0, ᾱ1],

‖Rx‖∗w ≤ 2σ‖4x‖2
x, ‖Rs‖w ≤ 2σ‖4s‖2

s. (4.31)

Proof : From Theorem 4.3 in [8], since |4x|x ≤ ‖4x‖x, we get ‖Rx‖∗x(α) ≤ ‖4x‖2
x, and similarly

‖Rs‖∗s(α) ≤ ‖4s‖2
s. We now just need to change the local norms to obtain our result.

The identities in (4.15) can also be written as

F ′′(w)−1 ≤ σ2 F ′′(x)−1, and F ′′
∗ (t)−1 ≤ σ2 F ′′

∗ (s)−1. (4.32)

Let p ∈ E, x, x̂ ∈ int K, q ∈ E∗, s, ŝ ∈ int K∗, w such that F ′′(w)x = s and t = −F ′(w). Then,
using (4.32) and (4.14) we have

‖q‖∗w =
〈

q, F ′′(w)−1q
〉1/2 ≤ σ

〈

q, F ′′(x)−1q
〉1/2

= σ‖q‖∗x, (4.33)

‖p‖w = ‖p‖∗t ≤ σ
〈

F ′′
∗ (s)−1p, p

〉1/2
= σ‖p‖∗s; (4.34)

‖q‖∗x =
〈

q, F ′′(x)−1q
〉1/2 ≤ σx̂(x)

〈

q, F ′′(x̂)−1q
〉1/2

= σx̂(x)‖q‖∗x̂, and (4.35)

‖p‖∗s =
〈

F ′′
∗ (s)−1p, p

〉1/2 ≤ σŝ(s)
〈

F ′′
∗ (ŝ)−1p, p

〉1/2
= σŝ(s)‖p‖∗ŝ. (4.36)

In (4.35) and (4.36), x̂ and ŝ are used in the role of scaling points.

Using the above relations we get ‖Rx‖∗w ≤ σ‖Rx‖∗x ≤ σσx(α)(x)‖Rx‖∗x(α) ≤ 2σ‖4x‖2
x, and similarly

‖Rs‖w ≤ σ‖Rs‖∗s ≤ σσs(α)(s)‖Rs‖∗s(α) ≤ 2σ‖4s‖2
s. The first set of inequalities follow from (4.33) and
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(4.34). The second set follows from (4.35) and (4.36). The third follows from the bounds at the
beginning of the proof. �

Now γG(x(α), s(α)) depends on δ := 〈F ′(x(α)), F ′
∗(s(α))〉. Expanding δ into linear, quadratic,

cubic and quartic terms using (4.30), we get

δ =
〈

F ′(x), F ′
∗(s)

〉

+ α
{〈

F ′′(x)4x, F ′
∗(s)

〉

+
〈

F ′(x), F ′′
∗ (s)4s

〉}

(4.37)

+α2
{〈

F ′(x), Rs

〉

+
〈

Rx, F
′
∗(s)

〉

+
〈

F ′′(x)4x, F ′′
∗ (s)4s

〉}

+α3
{〈

Rx, F
′′
∗ (s)4s

〉

+
〈

F ′′(x)4x,Rs

〉}

+ α4 〈Rx, Rs〉 .

We begin with a bound for the linear term.

Lemma 4.7

〈

F ′′(x)4x, F ′
∗(s)

〉

+
〈

F ′(x), F ′′
∗ (s)4s

〉

≤
〈

F ′(x), F ′
∗(s)

〉

{

−β1

ν
γG + (1 − β1)

}

. (4.38)

Proof : Using relations (2.11) and F ′′(w)4x+ 4s = h = −β1µF
′(x) − s, we get

〈

F ′′(x)4x, F ′
∗(s)

〉

+
〈

F ′(x), F ′′
∗ (s)4s

〉

=
〈

F ′′(x)4x, F ′
∗(s)

〉

+
〈

F ′(x), F ′′(w)−1F ′′(x)F ′′(w)−14s
〉

=
〈

F ′′(x)4x, F ′
∗(s)

〉

+
〈

F ′′(x)F ′′(w)−14s, F ′
∗(s)

〉

=
〈

F ′′(x)F ′′(w)−1(F ′′(w)4x+ 4s), F ′
∗(s)

〉

=
〈

F ′′(x)F ′′(w)−1(−β1µF
′(x) − s), F ′

∗(s)
〉

= −β1µ
〈

F ′′(x)F ′′(w)−1F ′(x), F ′
∗(s)

〉

−
〈

F ′′(x)F ′′(w)−1s, F ′
∗(s)

〉

= −β1µ
〈

F ′′(x)F ′
∗(s), F

′
∗(s)

〉

−
〈

F ′′(x)x, F ′
∗(s)

〉

= −β1µ
〈

F ′′(x)F ′
∗(s), F

′
∗(s)

〉

+
〈

F ′(x), F ′
∗(s)

〉

.

We note that 〈F ′′(x)F ′
∗(s), F

′
∗(s)〉 ≥ 〈F ′(x),F ′

∗
(s)〉2

ν . This follows from

〈

F ′(x), F ′
∗(s)

〉

≤ ‖F ′
∗(s)‖x‖F ′(x)‖∗x =

√
ν‖F ′

∗(s)‖x.

Hence,

〈

F ′′(x)4x, F ′
∗(s)

〉

+
〈

F ′(x), F ′′
∗ (s)4s

〉

≤ −β1µ
〈F ′(x), F ′

∗(s)〉2
ν

+
〈

F ′(x), F ′
∗(s)

〉

=
〈

F ′(x), F ′
∗(s)

〉

{

−β1

ν
µ
〈

F ′(x), F ′
∗(s)

〉

+ 1

}

=
〈

F ′(x), F ′
∗(s)

〉

{

−β1

ν
(γG + ν) + 1

}

=
〈

F ′(x), F ′
∗(s)

〉

{

−β1

ν
γG + (1 − β1)

}

.

�
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Using (2.11), we obtain

‖F ′(x)‖∗2w =
〈

F ′(x), F ′′(w)−1F ′(x)
〉

=
〈

F ′(x), F ′
∗(s)

〉

=
〈

F ′′(w)F ′
∗(s), F

′
∗(s)

〉

= ‖F ′
∗(s)‖2

w.

So, we let

π := ‖F ′(x)‖∗w = ‖F ′
∗(s)‖w. (4.39)

For future use, we note that

π2 =
〈

F ′(x), F ′
∗(s)

〉

=
γG + ν

µ
= σ2 γG + ν

γ∞ + 1
≤ νσ2. (4.40)

This follows from relations (3.2), (4.8), and (4.9).
We now bound the quadratic terms. Using the above and (4.31) we get

〈

F ′(x), Rs

〉

≤ ‖Rs‖w‖F ′(x)‖∗w (4.41)

≤ 2πσ‖4s‖2
s,

and similarly
〈

Rx, F
′
∗(s)

〉

≤ 2πσ‖4x‖2
x. (4.42)

Finally,
〈

F ′′(x)4x, F ′′
∗ (s)4s

〉

≤ ‖F ′′
∗ (s)4s‖w‖F ′′(x)4x‖∗w

≤ σ2‖F ′′
∗ (s)4s‖∗s‖F ′′(x)4x‖∗x (by (4.33) and (4.34)) (4.43)

= σ2‖4s‖s‖4x‖x.

To bound the cubic and quartic terms, we have
〈

Rx, F
′′
∗ (s)4s

〉

+
〈

F ′′(x)4x,Rs

〉

≤ ‖F ′′
∗ (s)4s‖w‖Rx‖∗w + ‖Rs‖w‖F ′′(x)4x‖∗w (4.44)

≤ 2σ2‖F ′′
∗ (s)4s‖∗s‖4x‖2

x + 2σ2‖F ′′(x)4x‖∗x‖4s‖2
s

(by (4.33), (4.34), and (4.31))

= 2σ2‖4s‖s‖4x‖2
x + 2σ2‖4x‖x‖4s‖2

s.

Using (4.31), we have

〈Rx, Rs〉 ≤ ‖Rs‖w‖Rx‖∗w ≤ 4σ2‖4x‖2
x‖4s‖2

s. (4.45)

Let

L :=
〈

F ′(x), F ′
∗(s)

〉

{

−β1

ν
γG + (1 − β1)

}

, Q := σ2
{

2
π

σ
(‖4s‖2

s + ‖4x‖2
x) + 4‖4s‖s‖4x‖x

}

.

Substituting (4.38), (4.41), (4.42), (4.43), (4.44) and (4.45) in (4.37), and using (4.29) in the first
inequality we get

δ ≤
〈

F ′(x), F ′
∗(s)

〉

+ αL+ α2
{

2πσ‖4s‖2
s + 2πσ‖4x‖2

x + σ2‖4s‖s‖4x‖x

}

+α3
{

2σ2‖4s‖s‖4x‖2
x + 2σ2‖4x‖x‖4s‖2

s

}

+ 4α4σ2‖4x‖2
x‖4s‖2

s

≤
〈

F ′(x), F ′
∗(s)

〉

+ αL+ α2σ2
{

2
π

σ
(‖4s‖2

s + ‖4x‖2
x) + ‖4s‖s‖4x‖x

}

+α2
{

2σ2‖4s‖s‖4x‖x(1/2) + 2σ2‖4x‖x‖4s‖s(1/2)
}

+ 4α2σ2‖4x‖x‖4s‖s(1/4)

=
〈

F ′(x), F ′
∗(s)

〉

+ αL+ α2σ2
{

2
π

σ
(‖4s‖2

s + ‖4x‖2
x) + 4‖4s‖s‖4x‖x

}

=
〈

F ′(x), F ′
∗(s)

〉

+ αL+ α2Q.
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Note that µ(x(α), s(α)) = 〈s(α),x(α)〉
ν > 0 as x(α) ∈ int K and s(α) ∈ int K∗ for all α ∈ [0, ᾱ1]. So, we

have

γG(x(α), s(α)) + ν = µ(x(α), s(α))
〈

F ′(x(α)), F∗(s(α))
〉

≤
{

µ+ α(β1 − 1)µ+ α2 〈4s,4x〉
ν

}

{〈

F ′(x), F ′
∗(s)

〉

+ αL+ α2Q
}

= γG + ν + α
{

µ(β1 − 1)
〈

F ′(x), F ′
∗(s)

〉

+ Lµ
}

+α2

{

µQ+
〈4s,4x〉

ν

〈

F ′(x), F ′
∗(s)

〉

+ (β1 − 1)µL

}

(4.46)

+α3

{ 〈4s,4x〉
ν

L+ (β1 − 1)µQ

}

+ α4 〈4s,4x〉
ν

Q.

We derive the following bounds on the terms of the above expansion:

µ(β1 − 1)
〈

F ′(x), F ′
∗(s)

〉

+ Lµ = µ(β1 − 1)
〈

F ′(x), F ′
∗(s)

〉

+ µ
〈

F ′(x), F ′
∗(s)

〉

{

−β1

ν
γG + (1 − β1)

}

= −β1

ν
γGµ

〈

F ′(x), F ′
∗(s)

〉

= −β1

ν
γG(γG + ν). (4.47)

We will now use our bound on π to bound Q. From (4.40), we see that

µQ = µσ2

(

2

√

γG + ν

σ2µ
(‖4s‖2

s + ‖4x‖2
x) + 4‖4s‖s‖4x‖x

)

≤ 2µσ2

√

γG + ν

σ2µ
(σ2ω 〈s, x〉) + 4µσ2 θ∞νω

2
(using the proof of Corollary 4.4) (4.48)

= 2
√
γG + ν (µσ2)3/2νω + 2θ2

∞νω (using 〈s, x〉 = µν)

≤ 2θ3/2
∞ νω(

√

θG + ν +
√

θ∞) (by (4.13)).

Using Corollary 4.3, we get

〈4s,4x〉
ν

〈

F ′(x), F ′
∗(s)

〉

≤ ω 〈s, x〉
2ν

〈

F ′(x), F ′
∗(s)

〉

=
ω

2
µ
〈

F ′(x), F ′
∗(s)

〉

=
ω

2
(γG + ν) ≤ ω

2
(θG + ν).

(4.49)

Next,

(β1 − 1)µL = µ(β1 − 1)
〈

F ′(x), F ′
∗(s)

〉

{

−β1
γG

ν
+ (1 − β1)

}

= (β1 − 1)(γG + ν)
{

−β1
γG

ν
+ (1 − β1)

}

= β1(1 − β1)
γG(γG + ν)

ν
− (1 − β1)

2(γG + ν)

≤ β1(1 − β1)
θG(θG + ν)

ν
, (4.50)
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and

〈4s,4x〉
ν

L+ (β1 − 1)µQ ≤
∣

∣

∣

∣

〈4s,4x〉
ν

∣

∣

∣

∣

|L|

≤ ω

2
µ
〈

F ′(x), F ′
∗(s)

〉

{

β1

ν
γG + (1 − β1)

}

≤ ω

2
(γG + ν)

{

β1

ν
γG + (1 − β1)

}

≤ ω(θG + ν)

2
(β1

θG

ν
+ (1 − β1)). (4.51)

Using the expression for Q and (4.29) we have

α2Q = σ2
(

2
π

σ
(α2‖4s‖2

s + α2‖4x‖2
x) + 4α2‖4s‖s‖4x‖x

)

≤ σ2(
√
ν + 1). (4.52)

From (4.52), (4.13) and Corollary 4.3 we have

α2Q
〈4s,4x〉

ν
≤ σ2(

√
ν + 1)

ω 〈s, x〉
2ν

=
ω

2
θ∞(

√
ν + 1). (4.53)

To reduce the cubic to a quadratic term, we use α ≤ 1. We use (4.53) to reduce the quartic term to
a quadratic. Substituting the corresponding bounds into the expansion (4.46), we get

γG(x(α), s(α)) + ν ≤ γG + ν − αβ1
γG(γG + ν)

ν
+ α2τ,

where

τ = 2θ3/2
∞ νω(

√

(θG + ν) +
√

θ∞) +
ω

2
(θG + ν) + β1(1 − β1)

θG(θG + ν)

ν
(4.54)

+
ω

2
(θG + ν)

[

β1
θG

ν
+ (1 − β1)

]

+
θ∞
2
ω(

√
ν + 1)

and the quantities in τ are gotten from (4.47), (4.48), (4.49), (4.50), (4.51) and (4.53).

Denoting γG by ζ, we want an αζ such that ζ − αβ1
ζ(ζ+ν)

ν + α2τ ≤ θG for all α ∈ [0, αζ ]. So, we
have

αζ =
1

2τ







β1
ζ(ζ + ν)

ν
+

√

(

β1
ζ(ζ + ν)

ν

)2

+ 4τ(θG − ζ)







.

Let α̂2 = minζ∈[0,θG] αζ . Let f(ζ) = β1ζ(ζ + ν) and g = 4ν2τ(θG − ζ). Then,

2τνα̂2 = min
ζ∈[0,θG]

f(ζ) +
√

f2(ζ) + g(ζ) ≥ min
ζ∈[0,θG]

f(ζ) +
√

g(ζ).

Let the derivative of the minimand be `(ζ) = f ′(ζ)+ g′(ζ)

2
√

g(ζ)
= β1(2ζ+ν)− 4ν2τ

2
√

4ν2τ(θG−ζ)
= β1(2ζ+ν)−

ν
√

τ√
θG−ζ

. We can check that `′′(ζ) depends only on the second term and is negative for all ζ ∈ [0, θG].

Hence, `(0) ≤ 0 and `′(0) ≤ 0, implies that `(ζ) ≤ 0 for all ζ ∈ [0, θG]. This leads to the condition
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that τ ≥ τ̌ := max
(

β2
1θG, 16β

2
1θ

3
G/ν

2
)

. This can be ensured by requiring that ω ≥ 32β1θG/ν, because
then

τ ≥ ω

2
(θG + ν) +

ω

2
(θG + ν)

[

β1
θG

ν
+ (1 − β1)

]

≥ ων

2
+
ω

2

β1θ
2
G

ν
≥ β2

1θG +
16β2

1θ
3
G

ν2
≥ τ̌ .

Since the derivative is nonpositive throughout, the minimum is achieved at ζ = θG and

α̂2 =
β1θG(θG + ν)

ντ
≥ β1θG

τ
=: ᾱ2. (4.55)

Then (x(α), y(α), s(α)) ∈ NG for all α ∈ [0, ᾱ2]. Taking into account the above condition on ω and
the bound imposed by Proposition 4.2, we will define

ω := max

{

(

ξ̄ +

√

ξ̄2 + χ̄

)2

,
32β1θG

ν

}

. (4.56)

Now we focus on obtaining a guarantee of a positive step length ᾱ3 satisfying the condition (3.4).
We want an ᾱ3 such that (4.3) holds for all 0 ≤ α ≤ ᾱ3. Using (2.18) and Corollary 4.3, we note that

〈s(α), x(α)〉
〈s0, x0〉

− φ̄(1 − α) =
〈s, x〉
〈s0, x0〉

(1 + α(β1 − 1)) + α2 〈4s,4x〉
〈s0, x0〉

− φ̄(1 − α)

=

( 〈s, x〉
〈s0, x0〉

− φ̄

)

(1 − α) + αβ1
〈s, x〉
〈s0, x0〉

+ α2 〈4s,4x〉
〈s0, x0〉

≥ α
〈s, x〉
〈s0, x0〉

(

β1 − α
ω

2

)

.

Therefore, it suffices to have

ᾱ3 :=
2β1

ω
(4.57)

in order that 〈s(α), x(α)〉 − φ̄(1 − α) 〈s0, x0〉 ≥ 0 for all α ∈ [0, ᾱ3].

Using (2.18) and Corollary 4.3, we get

〈s(α), x(α)〉 = 〈s, x〉 (1 − α(1 − β1)) + α2 〈4s,4x〉
≤ 〈s, x〉

(

1 − α(1 − β1) + α2ω/2
)

.

Therefore, to satisfy (4.4), it suffices to ensure that

〈s, x〉
(

1 − α(1 − β1) + α2ω/2
)

− 〈s, x〉 (1 − α(1 − β2)) = 〈s, x〉α (−(β2 − β1) + αω/2) ≤ 0.

Thus for all α ∈ [0, ᾱ4] with

ᾱ4 :=
2(β2 − β1)

ω
, (4.58)

〈s(α), x(α)〉 ≤ 〈s, x〉 (1 − α(1 − β2)).
Taking into account (4.28), (4.55), (4.57), (4.58), we define

α∗ = min

(

1,
1

2
√
θ∞νω

,
β1θG

τ
,
2β1

ω
,
2(β2 − β1)

ω

)

. (4.59)
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For α ∈ [0, α∗], all the conditions in Step 3 of Algorithm 2 are satisfied. Observe from (4.54) that
τ = O(ων1.5). So, α∗ = Ω(τ−1) = Ω(ω−1ν−1.5). We will now establish a bound on ω.

Let (u0, r0, v0) be the solution to min{‖u‖ + ‖v‖∗ : Au = b, A∗r + v = c}. Let

x0 = ρ0e ∈ int K, s0 = −ρ0F
′(e) ∈ int K∗, (4.60)

where e is the fixed reference element in int K and ρ0 > max(‖u0‖, ‖v0‖∗) ≥ max(|u0|e, |v0|e). Then
we have σe(x0 − u0) = |x0 − u0|e ≤ 2ρ0 and σe(s0 − v0) = |s0 − v0|e ≤ 2ρ0. Therefore,

2ρ0e− (x0 − u0) ∈ K, −2ρ0F
′(e) − (s0 − v0) ∈ K∗, and 〈s0, x0〉 = ρ2

0ν. (4.61)

Let us assume that, for some constant Ψ > 0,

ρ0 ≥ 1

Ψ
ρ∗ :=

1

Ψ
min{max (|x∗|e, |s∗|e) : (x∗, s∗) solves (P ) and (D)}. (4.62)

(Note that we can always increase ρ0.) Now we can obtain a bound for ω. From (4.26) we recall that

ξ̄ =
√

θ∞ν

{

1 +
〈s∗, x0 − u0〉 + 〈s0 − v0, x

∗〉 + 〈s0 − v0, x0 − u0〉
〈s0, x0〉

}

≤
√

θ∞ν

{

1 +
2ρ0ρ

∗ν + 2ρ0ρ
∗ν + 4ρ2

0ν

ρ2
0ν

}

(using (4.61))

=
√

θ∞ν

{

1 +
4(ρ∗ + ρ0)

ρ0

}

=
√

θ∞ν(4Ψ + 5) (using (4.62)).

We use (4.61) to bound χ̄ (see (4.25)), which is used subsequently to bound ω (see (4.56)) to get

χ̄ = β2
1

θG

ν
+ (1 − β1)

2 + 2

{〈s0 − v0, x0 − u0〉
〈s0, x0〉

}

≤ θG

ν
+ 1 + 2 · 4ρ2

0ν

ρ2
0ν

=
θG

ν
+ 9 and

ω = max

(

(ξ̄ +

√

ξ̄2 + χ̄)2,
32β1θG

ν

)

= O(θ∞ν).

Hence

τ = O(ων1.5) = O(ν2.5).

Substituting the expression in (4.59), we get

α∗ = min (1, ᾱ1, ᾱ2, ᾱ3, ᾱ4) = min
(

1,Ω(ν−1),Ω(ν−2.5),Ω(ν−1),Ω(ν−1)
)

. (4.63)

Theorem 4.8 Given (A, b, c,K,K∗) and β1, θG, ε
∗ > 0, let us choose x0 and y0 as in (4.60), where

(4.62) holds. Then Algorithm 2 will produce a solution (x∗, y∗, s∗) such that 〈s∗, x∗〉 ≤ ε∗ 〈s0, x0〉 and
φ̄∗ ≤ ε∗ in O(ν2.5 ln

(

1
ε∗

)

) iterations.

Proof : If we choose α∗ in (4.63) as the step length at each iterate, then all the conditions in Step
3 of Algorithm 2 are satisfied. Thus ᾱk ≥ α∗ for each k, so that the complementarity is reduced by at
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least the factor (1 − (1 − β2)α
∗) at each iteration. So for k =

⌈

1
(1−β2)α∗

⌉

ln
(

1
ε∗

)

= O
(

ν2.5 ln
(

1
ε∗

))

, we

have

ln(〈sk, xk〉) ≤ ln (〈sk−1, xk−1〉 (1 − α∗(1 − β2)))

≤ ln
(

〈s0, x0〉 (1 − α∗(1 − β2))
k
)

= ln(〈s0, x0〉) + k ln (1 − α∗(1 − β2))

≤ ln(〈s0, x0〉) − kα∗(1 − β2)

≤ ln(〈s0, x0〉) + ln(ε∗) = ln(ε∗ 〈s0, x0〉).
The first inequality follows from the decrease in total complementarity condition, the second from the
same applied inductively, and the third inequality from the identity ln(1 +x) ≤ x for all x > −1. The
fourth inequality follows from our assumption on k.
From condition (3.4) it follows that φk ≤ 〈sk,xk〉

〈s0,x0〉 ≤ ε∗. From (4.5), it follows that

‖Axk − b‖ ≤ ε∗‖Ax0 − b‖, and ‖A∗yk + sk − c‖ ≤ ε∗‖A∗y0 + s0 − c‖.
�

By the second part of Lemma 4.1, we can see that strict feasibility in both primal and dual implies
that all the iterates are bounded. As the result was independent of the neighborhood, this implies
that there exists a Ω∗ large enough that (3.5) in Section 3 will always hold. However, if such a Ω∗

did not exist or is very large, then we would like some inference on the infeasibility of the primal-dual
pair. We will also see the relevance of ξ and condition (4.62) in producing infeasibility indicators.
Todd and Ye [17] provide some guarantees on the norms of optimal as well as feasible solutions for
linear programming. We closely follow their approach and obtain analogous results in this extended
setting of self-scaled conic programs. Let (x∗, y∗, s∗) denote an optimal solution to the pair (P ) and
(D), if one exists.

Now, we will directly relate ξ (which contributes to the complexity estimate through ω) defined in
(4.18) to indicators of infeasibility. Recall that φ̄ = max(φp, φd) and φ

¯
:= min(φp, φd). Let

ρ := max(|x0 − u0|e, |s0 − v0|e). (4.64)

If max(|x∗|e, |s∗|e) ≤ ρ̃, then following the proof of Lemma 4.1, we have

〈s, x− u〉 + 〈s− v, x〉
〈s, x〉 =

φp 〈s, x0 − u0〉 + φd 〈s0 − v0, x〉
〈s, x〉

< 1 +
〈s∗, x0 − u0〉 + 〈s0 − v0, x

∗〉 + φ
¯
〈s0 − v0, x0 − u0〉

〈s0, x0〉

≤ 1 +
2ρρ̃ν + φ

¯
ρ2ν

ρ2
0ν

= 1 +
ρ(2ρ̃+ φ

¯
ρ)

ρ2
0

.

In light of our discussion above, we can use the following condition as a stopping rule.

• Stopping Rule 1. For some ρ̃, stop if

φp 〈s, x0 − u0〉 + φd 〈s0 − v0, x〉
〈s, x〉 ≥

(

1 +
ρ(2ρ̃+ φ

¯
ρ)

ρ2
0

)

.
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Theorem 4.9 If stopping rule 1 applies, then there is no optimal solution pair x∗ and (y∗, s∗) for (P )
and (D) with |x∗|e ≤ ρ̃ and |s∗|e ≤ ρ̃. �

We would like to show that for some Ω∗, under certain assumptions, violation of condition (3.5) does
lead to some conclusions on the size of optimal solutions and the size of feasible solutions (as we
shall see in Theorem 4.13). Assume that the primal is strictly infeasible, i.e., the alternative Farkas
system is strictly feasible; then it can be shown that the sequence of iterates {xk} is bounded by some

constant M > 0. So, suppose that φp ≥ φ̃ > 0, and Ω∗ = M +
ν|e|(x0−u0)

φ̃

(

ρ2
0 + 2ρ̃ρ+ φ

¯
ρ2
)

, so that

‖x‖ + ‖s‖∗ ≥ Ω∗ implies that ‖s‖∗ ≥
ν|e|(x0−u0)

φ̃

(

ρ2
0 + 2ρ̃ρ+ φ

¯
ρ2
)

. In this case, from

φp 〈s, x0 − u0〉 + φd 〈s0 − v0, x〉 ≥ φp 〈s, x0 − u0〉 ≥
φ̃

|e|(x0−u0)
〈s, e〉 ≥ φ̃

|e|(x0−u0)
‖s‖∗,

if we substitute the lower bound on ‖s‖∗ and use ρ2
0ν ≥ 〈s, x〉, we get

φp 〈s, x0 − u0〉 + φd 〈s0 − v0, x〉 ≥ ν
(

ρ2
0 + 2ρ̃ρ+ φ

¯
ρ2
)

≥
(

1 +
ρ(2ρ̃+ φ

¯
ρ)

ρ2
0

)

〈s, x〉 ,

so that stopping rule 1 applies. Note also that condition (4.62) implies a bound on
φp〈s,x0−u0〉+φd〈s0−v0,x〉

〈s,x〉 ,

because
(

1 +
ρ(2ρ∗+φ

¯
ρ)

ρ2
0

)

≤ 5 + 4ρ∗

ρ0
≤ 5 + 4Ψ. The inequality can be seen using φ

¯
≤ 1, ρ ≤ 2ρ0 and

condition (4.62).
Next we investigate stopping rules that provide lower bounds on the size of any feasible solutions.

We use the following result:

Lemma 4.10 Let

αx := min
x

{‖x‖ : Ax = b, x ∈ K},
αy := min

y,s
{‖y‖ : A∗y + s = c, s ∈ K∗},

αs := min
y,s

{‖s‖∗ : A∗y + s = c, s ∈ K∗}, and

αys := min
y,s

{‖y‖ + ‖s‖∗ : A∗y + s = c, s ∈ K∗}.

Let

βc := min
ĉ,y

{‖ĉ‖∗ : ĉ−A∗y ∈ K∗, 〈b, y〉 = 1},

βb := min
b̂,x

{‖b̂‖∗ : Ax = b̂, 〈c, x〉 = −1, x ∈ K}

βw := min
w,x

{‖w‖ : Ax = 0, 〈c, x〉 = −1, x+ w ∈ K}, and

βbw := min
b̂,x,w

{max(‖b̂‖∗, ‖w‖) : Ax = b̂, 〈c, x〉 = −1, x+ w ∈ K}.

Then, αxβc = αyβb = αsβw = αysβbw = 1.
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Proof : The proof of the first three relations follow directly by applying Lemma 3.13 in Renegar [13].
The fourth follows by using the relation between αx and βc with linear operators [A∗ I] : (y, s) 7→
A∗y+ s replacing A, cone Y ×K∗ replacing K and right-hand side c instead of b. Note that the norm
max(‖b̃‖∗, ‖w̃‖) on Y ∗ ×E is dual to the norm ‖y‖ + ‖s‖∗ on Y ×E∗. Then as a counterpart for the
problem defining αys, we get

βbw = min
b̃,x̃,w̃

{max(‖b̃‖∗, ‖w̃‖) :

(

b̃
w̃

)

−
(

A
I

)

x̃ ∈
(

Y ∗
d

(K∗)∗

)

, 〈c, x̃〉 = 1},

where Y ∗
d = {0} is the dual cone of Y and (K∗)∗ = K. Now changing variables to b̂ = −b̃, x = −x̃

and ŵ = w̃, we obtain the desired form for the problem defining βbw. �

It is straightforward to verify that

u0 := F ′′(e)−1A∗(AF ′′(e)−1A∗)−1b, r0 := (AF ′′(e)−1A∗)−1AF ′′(e)−1c, and v0 := c−A∗r0.

(We can observe here that 〈c, u0〉 = 〈b, r0〉.) Consider the following stopping rules.

• Stopping Rule 2p. Let r = y − φd(y0 − r0). Then, for some ρ̄p > 0, stop if

〈b, r〉 ≥ ‖c+ φd(s0 − v0)‖∗ ρ̄p.

• Stopping Rule 2d. Let u = x− φp(x0 − u0). Then, for some ρ̄d > 0, stop if

〈c, u〉 ≤ −max (‖b‖∗, φp‖x0 − u0‖) ρ̄d.

The following theorem establishes lower bounds on the norms of x in the primal space and (y, s) in
the dual space.

Theorem 4.11 If stopping rule 2p applies, then any feasible solution to (P ) has norm at least ρ̄p; if
stopping rule 2d applies, then any feasible solution to (D) has ‖y‖ + ‖s‖∗ at least ρ̄d.

Proof : If we let ỹ = r
〈b,r〉 and ĉ = c+φd(s0−v0)

〈b,r〉 in Lemma 4.10, we will get that βc ≤ ‖ĉ‖∗. Therefore,

αx ≥ 1
‖ĉ‖∗ = 〈b,r〉

‖c+φd(s0−v0)‖∗ ≥ ρ̄p, proving the first part. Next note that if we let x̃ = u
−〈c,u〉 and

w = x−u
−〈c,u〉 , then x̃+w = x

−〈c,u〉 ∈ K. Now, the second part follows by using the relation between βbw

and αys in Lemma 4.10. �

The following modified stopping rule is analogous to the rule proposed in [17] and this is symmetric
between x and s.

• Stopping Rule 2′p. Let ŷ = y − [r0 + φd(y0 − r0)]. Then, for some ρ̄p > 0, stop if

〈b, ŷ〉 ≥ ‖v0 + φd(s0 − v0)‖∗ ρ̄p.

• Stopping Rule 2′d. Let x̂ = x− [u0 + φp(x0 − u0)]. Then, for some ρ̄d > 0, stop if

〈c, x̂〉 ≤ −‖u0 + φp(x0 − u0)‖ ρ̄d.
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The proof of the following theorem follows verbatim from that of Proposition 4.2 in [17] using Lemma
4.10 in place of Lemma 2.1 in [17].

Theorem 4.12 If stopping rule 2′p applies, then any feasible solution to (P ) has norm at least ρ̄p; if
stopping rule 2′d applies, then any feasible solution to (D) has ‖s‖∗ at least ρ̄d. �

The following theorem shows that if ρ̃ is sufficiently large, whenever stopping rule 1 applies, so
does stopping rule 2p or 2d (alternatively, stopping rule 2′p or 2′d). This result provides a sharper lower
bound than that provided in [17], and as should be no surprise, we can see that φ

¯
does not appear in

the denominator of the lower bound. As a consequence, if for instance the primal is infeasible while
the dual is feasible, the dual is not restricted from attaining feasibility.

Theorem 4.13 If

ρ̃ ≥ 1

2ρφ̄ν
[‖c+ φd(s0 − v0)‖∗ ρ̄p + max (‖b‖∗, φp‖x0 − u0‖) ρ̄d] ,

then if stopping rule 1 applies, so does either 2p or 2d. If

ρ̃ ≥ 1

2ρφ̄ν
[‖v0 + φd(s0 − v0)‖∗ ρ̄p + ‖u0 + φp(x0 − u0)‖ ρ̄d] ,

then if stopping rule 1 applies, so does either 2′p or 2′d.

Proof : Let us first note the following identities:

Au = b, A∗r + s = c+ φd(s0 − v0),
u = x− φp(x0 − u0), and r = y − φd(y0 − r0).

Hence using a weak-duality like relation it follows that

〈s, u〉 = 〈c+ φd(s0 − v0), u〉 − 〈b, r〉 = 〈c, u〉 − 〈b, r〉 + 〈φd(s0 − v0), u〉 .

We first substitute for u and r in the above identity, then use the condition in stopping rule 1 and
rewrite φpφd as φ̄ φ

¯
, and finally use (4.64), 〈s0, x0〉 = ρ2

0ν and φ̄ 〈s0, x0〉 ≤ 〈s, x〉 to get

〈c, u〉 − 〈b, r〉 = 〈s, u〉 − 〈φd(s0 − v0), u〉
= 〈s, x− φp(x0 − u0)〉 − 〈φd(s0 − v0), x− φp(x0 − u0)〉
= 〈s, x〉 − φd 〈s0 − v0, x〉 − φp 〈s, x0 − u0〉 + φpφd 〈s0 − v0, x0 − u0〉

≤ 〈s, x〉
[

1 − 1 −
ρ(2ρ̃+ φ

¯
ρ)

ρ2
0

]

+ φ
¯

〈s0 − v0, x0 − u0〉
〈s0, x0〉

φ̄ 〈s0, x0〉

≤ 〈s, x〉
[

−2ρρ̃

ρ2
0

−
φ
¯
ρ2

ρ2
0

]

+ φ
¯

ρ2

ρ2
0

〈s, x〉

≤ φ̄ρ2
0ν

[

−2ρρ̃

ρ2
0

]

= −2φ̄νρρ̃.

If termination criteria of both the stopping rules 2p and 2d did not apply, then

〈c, u〉 − 〈b, r〉 ≥ − [‖c+ φd(s0 − v0)‖∗ ρ̄p + max (‖b‖∗, φp‖x0 − u0‖) ρ̄d] .
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Therefore, if we choose

ρ̃ ≥ 1

2ρφ̄ν
[‖c+ φd(s0 − v0)‖∗ ρ̄p + max (‖b‖∗, φp‖x0 − u0‖) ρ̄d] ,

then one of the stopping criteria must hold, otherwise it will contradict the lower bound on the dif-
ference 〈c, u〉 − 〈b, r〉. This completes the proof of the first part.

Furthermore, note that x̂ = u− u0, ŷ = r− r0 and we have already observed that 〈c, u0〉 = 〈b, r0〉.
Consequently, 〈c, x̂〉 − 〈b, ŷ〉 = 〈c, u〉 − 〈b, r〉. Hence, by a similar argument, for the choice of ρ̃ stated
in the hypothesis, it is seen that if stopping rule 1 applies, then so does either 2 ′

p or 2′d. �

5 Conclusion

We have established global convergence of Algorithm 1 and polynomial iteration complexity of Al-
gorithm 2. In Section 4, we placed restrictions on our initial points so that x0 − u0 ∈ int K and
s0 − v0 ∈ int K∗. There have been global convergence results for linear programming using arbitrary
infeasible starting points [1]. It would be interesting to see if such results also extend in this setting.

Complexity estimates of algorithms for linear programming problems have normally been derived
using the γ∞-neighborhood, because this is a reasonable approximation to the 99%-of-the-way scheme
used in many practical implementations. If we are given θ and the γ∞-neighborhood N∞(θ), we could
relax it to a bigger neighborhood NG(θG) by choosing θG = νθ and θ∞ = νθ + 2. This gives us a
complexity estimate of O(ν4), larger for example than the O(ν2.5) bound using the γ∞-neighborhood
for semidefinite programming in [19]. However, we must note that the neighborhood has also gotten
bigger and is a better approximation to the 99%-of-the-way scheme. Moreover, our complexity anal-
ysis contains several approximations, and it is quite possible that a different analysis would yield a
tighter estimate.

We can make modifications to the algorithms presented to implement them in practice with-
out losing the convergence guarantees. The α∗ in both the algorithms are hard to compute as we
do not know η in Algorithm 1 or ω in Algorithm 2 beforehand. The step length at each itera-

tion can be computed by replacing η by max
(

2(‖4x‖2
x + ‖4s‖2

s),
2ν|〈4s,4x〉|

〈s,x〉

)

in Algorithm 1 and

ω by max
(

(‖4x‖2
x+‖4s‖2

s)
νθ∞

, 2|〈4s,4x〉|
〈s,x〉

)

in Algorithm 2. We can also obtain step lengths using local

(or binary) search satisfying the conditions in Step 3, to improve the practical performance of the
methods based on γF - and γG-neighborhoods. For example, as long as the step length α̃k satisfies
all the conditions in Step 3, but 2α̃k fails at least one condition, then we know that α̃k ≥ ᾱk/2 ≥ α∗/2.

Finally, we presented results pertaining to lower bounds on optimal and feasible solutions when
certain stopping rules apply and also related them to the termination condition (3.5) in Algorithm 1
and condition (4.62) in Algorithm 2.
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