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Abstract

The use of bias optimality to distinguish among gain optimal policies was recently
studied by Haviv and Puterman [1| and extended in Lewis, et al. [2]. In [1|, upon
arrival to an M /M /1 queue, customers offer the gatekeeper a reward R. If accepted,
the gatekeeper immediately receives the reward, but is charged a holding cost, ¢(s),
depending on, the number of customers in the system. The gatekeeper, whose objective
is to “maximize” rewards, must decide whether to admit the customer. If the customer
is accepted, the customer joins the queue and awaits service. Haviv and Puterman [1]
showed there can only be two Markovian, stationary, deterministic gain optimal policies
and that only the policy which uses the larger control limit is bias optimal. This
showed the usefulness of bias optimality to distinguish between gain optimal policies.
In the same paper, they conjectured that if the gatekeeper receives the reward upon
completion of a job instead of upon entry, the bias optimal policy will be the lower
control limit. This note confirms that conjecture.

1 Introduction

The use of bias optimality to distinguish among gain optimal policies was recently studied
by Haviv and Puterman [1] and extended in Lewis, et al. [2]. In Haviv and Puterman’s
model, upon arrival to an M/M/1 queue, customers offer the gatekeeper a reward R. If
accepted, the gatekeeper immediately receives the reward, but is charged a holding cost,
c(s), depending on, the number of customers in the system. The gatekeeper, whose objective
is to “maximize” rewards, must decide whether to admit the customer. If the customer is
accepted, the customer joins the queue and awaits service. Haviv and Puterman [1] showed
that when considering long-run average reward, or gain, there can only be two Markovian,
stationary, deterministic optimal policies. In fact, these policies are of control limit form and
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they occur consecutively. Further, only the policy which uses the larger control limit is bias
optimal. This showed the usefulness of bias optimality to distinguish between gain optimal
policies.

Intuitively, among the policies which are long-run average optimal, bias opimality finds
the policy that maximizes the total reward up to steady state. In the last section of Haviv
and Puterman’s analysis, the authors explain that this is so because the bias can be thought
of as a limit of discount optimal policies. Since the holding cost is state dependent, and
therefore is actually spread out over subsequent periods it is in some sense discounted. By
this argument, they conjectured that if the gatekeeper receives the reward upon completion
of a job instead of upon entry, the bias optimal policy will be the lower control limit. This
note will confirm this conjecture.

Example 1 Suppose the arrival and service rates of customers are 1/3 and 2/3, respectively.
Further suppose that the holding cost per unit time in state s is c(s) = 2s. Let the system
capacity be 10. The gains of control limit policies 2 and 3 are maximal and are both 2.5.
However, letting ho and hs denote the bias vectors of control limit policies 2 and 3 respectively,
we have

ho — {—3.64286,3.85714, 6.85714, 6.85714, 3.85714, —2.14286,
—11.1429, —23.1429, —38.1429, —56.1429, —77.1429},
hy = {—4.1,3.4,6.4,6.4,3.4,—2.6,—11.6, —23.6, —38.6, —56.6, —77.6}

Notice that ho > hs. We show that this holds in general for the problem considered.

2 Definitions and Preliminaries

Let A be the arrival rate of a Poisson arrival process and let y be the exponential service
rate. To ensure stability, assume that A < p. Although the model is actually an infinite state
queueing model, we consider a finite state truncation. Haviv and Puterman (Section 3) [1]
present an argument to justify this provision which we will not reiterate here. Hence, let
S =10,1,...,U} be the state space. Suppose c(s) is the holding cost to the system per unit
time when there are s customers in the system. We assume that this cost is nondecreasing
and convex in the state. Note that as an alternative to the stability condition (A < ),
we could assume that the cost function is strictly increasing. Under this assumption, the
state space truncation would again be justified as the cost of an arriving customer would
eventually overtake the benefit of admission. Stidham [4] showed the existence of an optimal
policy of control limit form for the model we consider. When a job is completed the customer
pays the gatekeeper a reward R and leaves the system. Customers that are rejected are lost.
We have defined a finite state, infinite horizon, continuous-time Markov decision process.
As has become standard we actually consider the discrete time uniformized version of this
process. Uniformization was first introduced in this context by Lippman [3].

Let A+ u be the uniformization constant and without loss of generality assume A+u = 1.
Let P; be the uniformized transition matrix of the decision rule d € D, where D is the set of
Markovian, deterministic decision rules. A stationary policy made up of such decision rules



will be denoted d*°. A decision rule which accepts arriving customers as long as the number
of customers in the system is less than a prespecified level after which it rejects arriving
customers is called a control limit decision rule. We denote the control limit decision rule
with limit L by L. Hence,

(N j=s+1,0<s<L;j=s,5>1,
Pu(jls) = §m j=0s=0j=s-11<s, (1)
0 otherwise.

It is well-known that an optimal gain vector can be determined by solving the following set
of equations:

9 = maxFug 2)

and
h = — Pih 3
drga};){rd g+ Psh} (3)

for g and h where G(g) C D is the set of decision rules that attain the maximum in (2). We
refer to the system of equations (2) and (3) as the gain optimality equations. Let H(g,h) C
G(g) be the set of decision rules that attain the maximum in (3). It was shown in Lewis et.
al. [2] under the assumption that the embedded Markov chain is irreducible, that H(g,h),
the set of decision rules that attain the maximum in (3), is the same for all g and h that
satisfy (2) and (3). When the model is unichain, and the transient states only have one
possible action, the proof found there extends. Hence, we will supress the dependence on ¢
and A and write H. Proposition 5.3 in Haviv and Puterman [1| shows among other results
that the bias optimality equation (4) characterizes bias optimal policies.

Proposition 1 Suppose g and h satisfy the gain optimality equations and that there exists
a vector w for which

w = I&E}g{{—thPdw}. (4)

Then, if d* € H attains the maximum in (4), (d*)* is bias optimal. Moreover, suppose that
the process is unichain and that for some d € H where g and h satisfy the gain optimality
equations, there exists a veclor w with

w = —h+ Paw. (5)
Then if
Pyw > P (6)

for some d' € H with strict inequality in at least one recurrent state in the Markov chain
generated by d', '™ > h?™ with strict inequality in ot least one component.

Remark 1 We note that the statement of the result in [1] does not include the essential
conditions that the process must be unichain and that the strict inequality in (6) must occur
at a recurrent state in the Markov chain generated by d'.



3 Formulation of Payment on Exit Model

In the model that we propose the gatekeeper does not receive rewards upon entry. Instead,
the reward is received upon departure. In effect, the cost associated with an arriving customer
is accrued before the reward is received. Hence, it seems that the gatekeeper may be less
willing to accept customers than in the previous model of Haviv and Puterman [1]. As
before, when a customer arrives the gatekeeper can either accept or reject the customer. To
avoid degenerate cases assume that it is optimal for the gatekeeper to accept customers when
the system is empty. We further assume that ¢(1) > ¢(0) = 0. Note that for any stationary
policy the induced Markov decision process is unichain. Since the gain of these policies is
a constant vector the first gain optimality equation (2) is superfluous. Consider the second
gain optimality equation, written in component form. If s > 1,

h(s) = max{—c(s) =g+ A(s + 1) + u(L + h(s — 1)),
—c(s) — g+ Mh(s) + u(R+ h(s — 1)}. (7)

If s=0,
h(0) = —g+ Ah(1) + uh(0). (8)

Note that the first term in the maximization in (7) corresponds to accepting the next arrival
and the second corresponds to rejecting it.

For ease of notation, for a function f(s) let Af(s) = f(s+1) — f(s). From (7) it follows
that it is gain optimal to accept an arriving customer if Ah(s) > 0 and it optimal to reject
if Ah(s) < 0. When equality holds we are indifferent. One interesting thing to note is that
the optimality criterion does not explicitly depend on R. However, the assumption that
it is optimal to accept in state zero, implies from (8) that AA(0) = g/ > 0 which is an
assumption on K. Consider state 1. If it is optimal to accept an arriving customer then
Ah(1) > 0 and we have

h(l) = —c(1) — g+ A(2) + u(R+ h(0)). (9)
Subtracting (8) from (9) we have
1
Ah(l) = l(e()) + AR(0)) — pR] = 0. (10)
We get a similar expression if it is optimal to reject in state 1.

We now state the main result of this note.

Theorem 1 Suppose control limits L and L+1 are gain optimal in the payment on departure
model. Then hr 1 < hr with strict inequality in ot least one component.

Proof: Since the transition matrix is exactly the same as the model discussed in Haviv and
Puterman [1] we apply Proposition 1 in the same manner. Since decision rules L and L + 1



only differ in state L, we restrict our attention to that state. The Lth component of the
vector w which satisfies the bias optimality equations is given by

w(L) = max{—hy(L) + (L + 1) + pw((L — 1)"), (11)
—hp(L) + Aw(L) + pw((L = 1))}, (12)

where the first quantity corresponds to admitting a customer and the second to rejecting.
Hence, it is optimal to reject if

w(lL) < w(L+ 1) or, equivalently Aw(L) < 0. (13)

Hence, if we establish (13), the result follows from the second part of Proposition 1. Following
the analysis in Haviv and Puterman [1| we get

(I —T)Aw, = =z (14)
where wy, is the vector which satisfies the w;, = —hy + Prwy, z is defined by
—Ahp(s) 0<s< L
ORI i A (15)
I )

and

j=s+1,0<s< L —1,
j=s—1,0<s< L—1,
j=s—1,s=1 '
otherwise

A
TGls) = § (16)
0

Noting that the zeroth and (L — 1)St rows have row sums strictly less than one, T' can be
viewed as a (L + 1) x(L + 1) transition submatrix of transient states for a Markov chain and

(I-T)y*t = ij (17)

Hence we get,
Aw = (I-T)'z (18)

Note that all of the elements of T" are nonnegative and that each row has at least one strictly
nonegative element. Since L is the lowest gain optimal control limit, Ahz(s) > 0 for all
s < L. Further, since L + 1 is also gain optimal Ahz(L) = 0. Hence, using the second order
approximation of the power series in (17) we get,

Aw(L) < —Ahy(L) — (T'Ahp)(L)
< 0

from which the result follows. O



4 Further Comments
Finally, we note the following minor errors in [1]. The definition for z(s) should read

—Ahp(s) 0<s<L,
SORE i A (19)

1-p

Further, (54) should be an “s” instead of a “2”.

This note confirms the prior conjecture that bias optimality captures the intuitive result
that a decision-maker should be more restrictive if the cost of an arriving customer must be
incurred before receiving the reward. Further, although bias optimality does not explicitly
discount rewards, it leads to selection of policies which receive rewards earlier.
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