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Abstract

We present a new method for computing bid-prices in network revenue management problems. The
novel aspect of our method is that it naturally provides bid-prices that depend on how much time
is left until the departure. Our method provides an upper bound on the optimal objective value of
the problem and this upper bound is tighter than the one obtained by the so-called deterministic
linear program. Similar to the bid-prices obtained by the deterministic linear program, the bid-
prices obtained by our method are asymptotically optimal as the capacities on the flight legs and the
expected numbers of itinerary requests increase linearly with the same rate. When applied on network
revenue management problems with cancellations, our method formally shows how the deterministic
linear program should be modified to incorporate cancellations. Computational experiments indicate
that our method can improve on other solution methods that are used to solve network revenue
management problems in practice.



Bid-prices form a powerful tool for constructing good policies for network revenue management problems.
The fundamental idea is to associate a bid-price with each flight leg, capturing the opportunity cost of
a unit of capacity. An itinerary request is accepted only when the revenue from the requested itinerary
exceeds the sum of the bid-prices of the flight legs in the requested itinerary; see Williamson (1992),
Talluri and van Ryzin (1998) and Talluri and van Ryzin (2004).

Traditionally, bid-prices are computed by solving a deterministic linear program. This deterministic
linear program has one constraint for each flight leg and the right side of these constraints are the
remaining leg capacities. Therefore, the optimal values of the dual variables associated with these
constraints are used as bid-prices. A shortcoming of the deterministic linear program, however, is that
it uses only the expected numbers of the itinerary requests that are to arrive until the departure and
does not incorporate the probability distributions or temporal dynamics of the arrivals of the itinerary
requests. In practice, as the itinerary requests arrive and the remaining leg capacities are adjusted, the
deterministic linear program is periodically resolved to artificially incorporate the temporal dynamics
of the arrivals of the itinerary requests.

In this paper, we present a new method for computing bid-prices. The deterministic linear program
described above is viewed as a straightforward deterministic approximation, whereas our method directly
works with the dynamic programming formulation of the network revenue management problem. The
idea behind our method is to relax the capacity availability constraints in the dynamic programming
formulation of the network revenue management problem by associating Lagrange multipliers with them.
In this case, the optimality equation decomposes by the time periods and we obtain a simple expression
for the value function. A good set of Lagrange multipliers can easily be obtained by minimizing a
convex function. Since the Lagrange multipliers depend on how much time is left until the departure,
the bid-prices that we obtain in this fashion also depend on how much time is left until the departure
and our method partially incorporates the temporal dynamics of the arrivals of the itinerary requests.

When compared with the other solution methods in the network revenue management literature, the
approach that we follow in this paper provides several advantages. First, computational experiments
indicate that the bid-prices obtained by our method perform noticeably better than the ones obtained by
the deterministic linear program. Second, our method provides an upper bound on the optimal objective
value of the network revenue management problem. Although Bertsimas and Popescu (2003) show that
the deterministic linear program also provides such an upper bound, the upper bound obtained by
our method is provably tighter than the one obtained by the deterministic linear program. Third, the
bid-prices obtained by our method are asymptotically optimal as the capacities on the flight legs and
the expected numbers of itinerary requests increase linearly with the same rate. This property provides
some theoretical basis for using our method and it is also known to hold for the bid-prices obtained by
the deterministic linear program; see Talluri and van Ryzin (1998). Fourth, when our method is applied
on network revenue management problems with cancellations, it formally shows how the deterministic
linear program should be modified to incorporate cancellations. This strengthens the links between the
dynamic programming formulation of the network revenue management problem and the deterministic
linear program. The form of the deterministic linear program is well-known under the assumption
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that there are no cancellations, but it is not clear how to modify the deterministic linear program to
incorporate cancellations and our method fills this gap.

Network revenue management has been an active area of research for the past two decades. Simpson
(1989) and Williamson (1992) were the first to use the deterministic linear program to compute bid-
prices. Talluri and van Ryzin (1998) show the asymptotic optimality result mentioned above for the
bid-prices obtained by the deterministic linear program. They use a relaxation strategy that resembles
our method, but their Lagrange multipliers do not depend on how much time is left until the departure.
As a result, they do not naturally incorporate the temporal dynamics of the arrivals of the itinerary
requests. Talluri and van Ryzin (1999) propose a randomized version of the deterministic linear program
that uses actual samples of the numbers of the itinerary requests that are to arrive until the departure.
Bertsimas and Popescu (2003) compute bid-prices by using the change in the optimal objective value
of the deterministic linear program induced by a change in the right sides of certain constraints. In
this way, they try to capture the total opportunity cost of the leg capacities consumed by an itinerary
request more accurately. Adelman (2006) uses the linear programming representation of the dynamic
programming formulation of the network revenue management problem to compute bid-prices. His
approach is related to our method in the sense that it computes bid-prices that depend on how much
time is left until the departure. Topaloglu (2006) uses a relaxation strategy to decompose the network
revenue management problem by the flight legs. His approach is more computationally intensive than
our method since it requires solving many network revenue management problems with one-dimensional
state variables. Computational experiments indicate that the policies proposed by Talluri and van Ryzin
(1999), Bertsimas and Popescu (2003), Adelman (2006) and Topaloglu (2006) perform better than the
bid-prices obtained by the deterministic linear program, but these policies are not compared with each
other. Finally, other methods, besides bid-prices, have been proposed for solving network revenue
management problems. We do not go into the details of these methods and refer the reader to Talluri
and van Ryzin (2004) for a comprehensive coverage of the network revenue management field.

We make the following research contributions in this paper. 1) We propose a new method for
computing bid-prices. Our method provides bid-prices that depend how much time is left until the
departure and partially incorporates the temporal dynamics of the arrivals of the itinerary requests.
2) We show that our method provides an upper bound on the optimal objective value of the network
revenue management problem and the upper bound obtained by our method is tighter than the one
obtained by the deterministic linear program. 3) We show that the bid-prices obtained by our method are
asymptotically optimal as the capacities on the flight legs and the expected numbers of itinerary requests
increase linearly with the same rate. 4) We apply our method on network revenue management problems
with cancellations. This formally shows how the deterministic linear program should be modified
to incorporate cancellations. 5) Computational experiments indicate that the bid-prices obtained by
our method perform noticeably better than the ones obtained by the deterministic linear program.
Furthermore, our method improves on the upper bounds obtained by many other solution methods.
Finally, we compare our method with the policies proposed by Talluri and van Ryzin (1999), Bertsimas
and Popescu (2003) and Topaloglu (2006).
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The rest of the paper is organized as follows. In Section 1, we formulate the network revenue
management problem as a dynamic program. Section 2 presents the fundamental Lagrangian relaxation
idea. In Section 3, we compare our method with the deterministic linear program. Section 4 describes the
bid-price structure of the policies obtained by our method. Section 5 shows that the bid-prices obtained
by our method are asymptotically optimal as the capacities on the flight legs and the expected numbers
of itinerary requests increase linearly with the same rate. In Section 6, we apply our method on network
revenue management problems with cancellations. Section 7 presents computational experiments.

1 Problem Formulation

We have a set of flight legs that can be used to satisfy the itinerary requests that arrive randomly over
time. Whenever an itinerary request arrives, we have to decide whether to accept or reject it. An
accepted itinerary request generates a revenue and consumes the capacities on the relevant flight legs.
A rejected itinerary request simply leaves the system.

The problem takes place over the finite planning horizon T =
{
1, . . . , τ

}
and all flight legs depart

at time period τ +1. The set of flight legs is L and the set of itineraries is J . The capacity on flight leg
i is ci. If a request for itinerary j is accepted, then we generate a revenue of fj and consume aij units
of capacity on flight leg i. If flight leg i is not in itinerary j, then we have aij = 0. The probability
that a request for itinerary j arrives at time period t is pjt. For notational brevity, we assume that∑

j∈J pjt = 1. If there is a positive probability that no itinerary requests arrive at time period t, then
we can cover this case by defining a fictitious itinerary jφ with fjφ

= 0 and pjφt = 1−∑
j∈J pjt.

We let xit be the remaining capacity on flight leg i at time period t so that xt =
{
xit : i ∈ L}

gives
the state of the system at time period t. We capture the decisions at time period t by yt =

{
yjt : j ∈ J }

,
where yjt takes value 1 if a request for itinerary j is accepted at time period t, and 0 otherwise. Letting
ei be the |L|-dimensional unit vector with a 1 in the element corresponding to i ∈ L, the optimal policy
can be found by computing the value functions

{
Vt(·) : t ∈ T }

through the optimality equation

Vt(xt) = max
∑

j∈J
pjt

[
fj yjt + Vt+1(xt − yjt

∑
i∈L aij ei)

]
(1)

subject to aij yjt ≤ xit for all i ∈ L, j ∈ J (2)

yjt ∈
{
0, 1

}
for all j ∈ J (3)

with the boundary condition that Vτ+1(·) = 0. Given the state variable xt, it is easy to see that the
optimal decisions at time period t are given by ŷt(xt) =

{
ŷjt(xt) : j ∈ J }

, where

ŷjt(xt) =

{
1 if fj + Vt+1(xt −

∑
i∈L aij ei) ≥ Vt+1(xt) and aij ≤ xit for all i ∈ L

0 otherwise.
(4)

A complicating factor in the optimality equation in (1)-(3) is constraints (2). In particular, if these
constraints did not exist, then the optimality equation in (1)-(3) would decompose by the time periods.
This suggests relaxing these constraints by associating the positive Lagrange multipliers

{
λijt : i ∈

L, j ∈ J , t ∈ T }
with them, in which case the optimality equation in (1)-(3) has a simple solution.

We make these ideas more precise in the following section.
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2 Lagrangian Relaxation Strategy

Associating the positive Lagrange multipliers λ =
{
λijt : i ∈ L, j ∈ J , t ∈ T }

with constraints (2), we
propose solving the optimality equation

V λ
t (xt) = max

yt∈{0,1}|J |





∑

j∈J
pjt

{[
fj −

∑

i∈L
aij λijt

]
yjt +

∑

i∈L
λijt xit + V λ

t+1(xt − yjt
∑

i∈L aij ei)
}



 , (5)

where we scale the Lagrange multipliers by
{
pjt : j ∈ J }

for notational brevity. If we have pjt = 0, then
the Lagrange multipliers

{
λijt : i ∈ L}

are inconsequential and scaling the Lagrange multipliers in this
fashion does not create a problem. We use the superscript λ in the value functions above to emphasize
that the solution to the optimality equation in (5) depends on the Lagrange multipliers. The next
proposition shows that there is a simple solution to this optimality equation. In the next proposition
and throughout the rest of the paper, we let

rλ
it =

∑

j∈J
pjt λijt + . . . +

∑

j∈J
pjτ λijτ

with the boundary condition that rλ
i,τ+1 = 0.

Proposition 1 Letting [·]+ = max
{
0, ·}, we have

V λ
t (xt) =

∑

i∈L
rλ
it xit +

∑

j∈J
pjt

[
fj −

∑

i∈L
aij λijt −

∑

i∈L
aij rλ

i,t+1

]+

+ . . . +
∑

j∈J
pjτ

[
fj −

∑

i∈L
aij λijτ −

∑

i∈L
aij rλ

i,τ+1

]+
. (6)

Proof We show the result by induction over the time periods. It is easy to show the result for the last
time period. Assuming that the result holds for time period t + 1, (5) implies that

V λ
t (xt) = max

yt∈{0,1}|J |





∑

j∈J
pjt

{[
fj −

∑

i∈L
aij λijt

]
yjt +

∑

i∈L
λijt xit +

∑

i∈L
rλ
i,t+1

[
xit − aij yjt

]}




+
∑

j∈J
pj,t+1

[
fj −

∑

i∈L
aij λij,t+1 −

∑

i∈L
aij rλ

i,t+2

]+

+ . . . +
∑

j∈J
pjτ

[
fj −

∑

i∈L
aij λijτ −

∑

i∈L
aij rλ

i,τ+1

]+
.

Letting 1(·) be the indicator function, the optimal values of the decision variables
{
yjt : j ∈ J }

in the
problem above are

{
1(fj −

∑
i∈L aij λijt −

∑
i∈L aij rλ

i,t+1 ≥ 0) : j ∈ J }
and the result follows. 2

The next proposition shows that we obtain an upper bound on the value function by solving the
optimality equation in (5).

Proposition 2 If the Lagrange multipliers are positive, then we have Vt(xt) ≤ V λ
t (xt).
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Proof We show the result by induction over the time periods. It is easy to show the result for the last
time period. Assuming that the result holds for time period t + 1 and letting ŷt =

{
ŷjt : j ∈ J }

be the
optimal solution to problem (1)-(3), we have

V λ
t (xt) ≥ max

yt∈{0,1}|J |





∑

j∈J
pjt

{[
fj −

∑

i∈L
aij λijt

]
yjt +

∑

i∈L
λijt xit + Vt+1(xt − yjt

∑
i∈L aij ei)

}




≥
∑

j∈J
pjt

[
fj ŷjt + Vt+1(xt − ŷjt

∑
i∈L aij ei)

]
= Vt(xt),

where the first inequality follows by (5) and the induction hypothesis, and the second inequality follows
by the nonnegativity of the Lagrange multipliers and the fact that ŷt ∈

{
0, 1

}|J | and aij ŷjt ≤ xit for
all i ∈ L, j ∈ J . 2

Since the initial leg capacities are given by c =
{
ci : i ∈ L}

, the maximum expected revenue over
the whole planning horizon is V1(c). Proposition 2 implies that V1(c) is bounded from above by V λ

1 (c)
as long as the Lagrange multipliers are positive. Therefore, to obtain the tightest possible upper bound
on V1(c), we solve the problem

min
λ≥0

{
V λ

1 (c)
}

. (7)

Since the function [·]+ is convex and
{
rλ
it : i ∈ L, t ∈ T }

are linear functions of the Lagrange multipliers,
(6) implies that the objective function of problem (7) is convex. In particular, using the fact that the
function 1(· ≥ 0) gives a subgradient of the function [·]+ that satisfies [`]+ ≥ [k]+ + 1(k ≥ 0) [`− k], we
can obtain a subgradient of V λ

1 (c) by simple algebraic manipulations on (6). In this case, problem (7)
can be solved by using either subgradient optimization or Benders decomposition; see Wolsey (1998)
and Ruszczynski (2003).

3 Comparisons with the Deterministic Linear Program

An alternative method for finding good policies for the network revenue management problem described
in Section 1 is to use a deterministic linear program. Letting wj be the number of requests for itinerary
j that we plan to accept over the whole planning horizon, this linear program has the form

max
∑

j∈J
fj wj (8)

subject to
∑

j∈J
aij wj ≤ ci for all i ∈ L (9)

0 ≤ wj ≤
∑

t∈T
pjt for all j ∈ J . (10)

Constraints (9) ensure that the itinerary requests that we plan to accept do not violate the leg capacities,
whereas constraints (10) ensure that the itinerary requests that we plan to accept do not exceed the
expected numbers of itinerary requests.

There are two uses of problem (8)-(10). First, letting
{
µ̂i : i ∈ L}

be the optimal values of the dual
variables associated constraints (9), we can use µ̂i as an estimate of the opportunity cost of a unit of
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capacity on flight leg i. These opportunity costs are referred to as the bid-prices in the network revenue
management vocabulary and they are used to decide whether to accept or reject an itinerary request.
The decision rule is that if the revenue from an itinerary request exceeds the sum of the bid-prices of
the flight legs in the requested itinerary, then we accept the itinerary request subject to the capacity
availability. Specifically, if we have

fj ≥
∑

i∈L
aij µ̂i (11)

and aij ≤ xit for all i ∈ L, then we accept a request for itinerary j. Letting Ṽt(xt) =
∑

i∈L µ̂i xit for
all t ∈ T , since we have Ṽt+1(xt) − Ṽt+1(xt −

∑
i∈L aij ei) =

∑
i∈L aij µ̂i, the decision rule in (11) is

equivalent to approximating the value functions
{
Vt(·) : t ∈ T }

in (4) by
{
Ṽt(·) : t ∈ T }

. This approach
is simple to implement and provides good solutions; see Williamson (1992).

Second, it is possible to show that the optimal objective value of problem (8)-(10) provides an upper
bound on the maximum expected revenue over the whole planning horizon. In particular, letting ζ̂

be the optimal objective value of problem (8)-(10), we have V1(c) ≤ ζ̂. The next proposition shows
that V1(c) ≤ minλ≥0

{
V λ

1 (c)
} ≤ ζ̂. Therefore, we can obtain a tighter upper bound on the maximum

expected revenue over the whole planning horizon by solving problem (7).

Proposition 3 We have V1(c) ≤ minλ≥0

{
V λ

1 (c)
} ≤ ζ̂.

Proof Since the first inequality follows from Proposition 2, we only show the second inequality. By
duality theory, there exist positive Lagrange multipliers

{
µ̂i : i ∈ L}

such that the problem

max
∑

i∈L
µ̂i ci +

∑

j∈J

[
fj −

∑

i∈L
aij µ̂i

]
wj

subject to 0 ≤ wj ≤
∑

t∈T
pjt for all j ∈ J

has the same optimal objective value as problem (8)-(10). The optimal values of the decision variables{
wj : j ∈ J }

in the problem above are
{
1(fj −

∑
i∈L aij µ̂i ≥ 0)

∑
t∈T pjt : j ∈ J }

, which implies that

ζ̂ =
∑

i∈L
µ̂i ci +

∑

t∈T

∑

j∈J

[
fj −

∑

i∈L
aij µ̂i

]+
pjt.

On the other hand, we define the Lagrange multipliers λ̃ =
{
λ̃ijt : i ∈ L, j ∈ J , t ∈ T }

as λ̃ijt = 0 for
all i ∈ L, j ∈ J , t ∈ T \ {τ} and λ̃ijτ = µ̂i for all i ∈ L, j ∈ J . In this case, we have rλ̃

it = µ̂i for all
i ∈ L, t ∈ T and (6) implies that

V λ̃
1 (c) =

∑

i∈L
µ̂i ci +

∑

t∈T

∑

j∈J

[
fj −

∑

i∈L
aij µ̂i

]+
pjt.

Therefore, we have minλ≥0

{
V λ

1 (c)
} ≤ V λ̃

1 (c) = ζ̂. 2
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Figure 1: The bid-prices of four flight legs as a function of time.

4 Structure of the Greedy Decision Rule

Letting λ̂ be the optimal solution to problem (7), we propose approximating the value functions
{
Vt(·) :

t ∈ T }
in (4) by

{
V λ̂

t (·) : t ∈ T }
. Specifically, if we have fj + V λ̂

t+1(xt −
∑

i∈L aij ei) ≥ V λ̂
t+1(xt)

and aij ≤ xit for all i ∈ L, then we accept a request for itinerary j at time period t. Since we have
V λ̂

t+1(xt)− V λ̂
t+1(xt −

∑
i∈L aij ei) =

∑
i∈L aij rλ̂

i,t+1 by (6), this decision rule is equivalent to accepting a
request for itinerary j at time period t when we have

fj ≥
∑

i∈L
aij rλ̂

i,t+1 (12)

and aij ≤ xit for all i ∈ L. The form of the decision rule in (12) is very similar to the one in (11), but
the bid-price of a flight leg in (11) is constant, whereas the bid-price of a flight leg in (12) depends on
how much time is left until the departure.

For a small test problem with τ = 18, Figure 1 plots
{
rλ̂
it : t ∈ T }

for four flight legs. The likelihood
of utilizing the capacity on a flight leg diminishes as we approach the end of the planning horizon and
the opportunity cost of a unit of capacity decreases. On the other hand, the capacities on the flight legs
are plentiful at the beginning of the planning horizon and the opportunity cost of a unit of capacity is
constant during this time.

5 Asymptotic Analysis of the Bid-Prices

We consider a family of network revenue management problems
{
Pn : n ∈ Z+

}
parameterized by the

scalar parameter n. Problem Pn takes place over the finite planning horizon T n =
{
1, . . . , nτ

}
. The

capacity on flight leg i in problem Pn is nci. Letting d·e be the round up function and pn
jt = pjdt/ne, the

probability that a request for itinerary j arrives at time period t in problem Pn is pn
jt.

With these definitions, we note that the problem described in Section 1 is P 1. The itinerary arrival
probabilities at time periods

{
n(t− 1) + 1, . . . , nt

}
in problem Pn are the same as the itinerary arrival

probabilities at time period t in problem P 1. Since we have
∑

t∈T n pn
jt = n

∑
t∈T 1 p1

jt, the leg capacities
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and the expected numbers of itinerary requests in problem Pn are n times larger than those in problem
P 1. This is a standard approach in the network revenue management literature to scale the problem
to show asymptotic optimality results; see Gallego and van Ryzin (1994) and Talluri and van Ryzin
(1998). Our goal is to show that our Lagrangian relaxation strategy provides an asymptotically optimal
decision rule for problem Pn as n approaches infinity.

We let
{
Vt(· |n) : t ∈ T n

}
be the solution to the optimality equation in (1)-(3) and

{
V λn

t (· |n) : t ∈
T n

}
be the solution to the optimality equation in (5) for problem Pn. These quantities can be obtained

by replacing τ with nτ , ci with nci and pjt with pn
jt in the corresponding optimality equations. We note

that the Lagrange multipliers for problem Pn are λn =
{
λn

ijt : i ∈ L, j ∈ J , t ∈ T n
}
. Letting

rλn

it =
∑

j∈J
pn

jt λn
ijt + . . . +

∑

j∈J
pn

j,nτ λn
ij,nτ

with the boundary condition that rλn

i,nτ+1 = 0, Proposition 1 implies that

V λn

1 (nc |n) = n
∑

i∈L
rλn

i1 ci +
∑

t∈T n

∑

j∈J
pn

jt

[
fj −

∑

i∈L
aij λn

ijt −
∑

i∈L
aij rλn

i,t+1

]+
.

Therefore, the optimal solution to the problem minλn≥0

{
V λn

1 (nc |n)
}

can be found by solving the linear
program

min n
∑

i∈L
ci ρ

n
i1 +

∑

t∈T n

∑

j∈J
pn

jt ηn
jt (13)

subject to ηn
jt +

∑

i∈L
aij λn

ijt +
∑

i∈L
aij ρn

i,t+1 ≥ fj for all j ∈ J , t ∈ T n \ {
nτ

}
(14)

ηn
j,nτ +

∑

i∈L
aij λn

ij,nτ ≥ fj for all j ∈ J (15)

ρn
it −

∑

j∈J
pn

jt λn
ijt − . . .−

∑

j∈J
pn

j,nτ λn
ij,nτ = 0 for all i ∈ L, t ∈ T n (16)

ηn
jt, λ

n
ijt, ρ

n
it ≥ 0 for all i ∈ L, j ∈ J , t ∈ T n. (17)

Specifically, if we let η̂n =
{
η̂n

jt : j ∈ J , t ∈ T n
}
, λ̂n =

{
λ̂n

ijt : i ∈ L , j ∈ J , t ∈ T n
}

and
ρ̂n =

{
ρ̂n

it : i ∈ L, t ∈ T n
}

be the optimal solution to problem (13)-(17), then we have

min
λn≥0

{
V λn

1 (nc |n)
}

= V λ̂n

1 (nc |n) = n
∑

i∈L
ci ρ̂

n
i1 +

∑

t∈T n

∑

j∈J
pn

jt η̂n
jt. (18)

Letting ψ̂n =
{
ψ̂n

jt : j ∈ J , t ∈ T n
}

be the optimal values of the dual variables associated with
constraints (14) and (15), and using the boundary condition that ρ̂n

i,nτ+1 = 0, we consider the following
decision rule for problem Pn. If we have fj >

∑
i∈L aij λ̂n

ijt +
∑

i∈L aij ρ̂n
i,t+1 and aij ≤ xit for all

i ∈ L, then we accept a request for itinerary j at time period t. If, on the other hand, we have
fj =

∑
i∈L aij λ̂n

ijt +
∑

i∈L aij ρ̂n
i,t+1 and aij ≤ xit for all i ∈ L, then we accept a request for itinerary j

at time period t with probability ψ̂n
jt/pn

jt. Otherwise, we reject a request for itinerary j at time period
t. We refer to this decision rule as the time-dependent bid-price decision rule. The dual of problem
(13)-(17) includes the constraints 0 ≤ ψ̂n

jt ≤ pn
jt for all j ∈ J , t ∈ T n and we can indeed use the quantity
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ψ̂n
jt/pn

jt as a probability. As a function of λ̂n, ρ̂n and ψ̂n, we let B(nc |n, λ̂n, ρ̂n, ψ̂n) be the expected
revenue obtained over the whole planning horizon by the time-dependent bid-price decision rule for
problem Pn. In this section, we show that limn→∞B(nc |n, λ̂n, ρ̂n, ψ̂n)/V1(nc |n) = 1. Therefore, the
expected revenue obtained over the whole planning horizon by the time-dependent bid-price decision
rule is asymptotically optimal as the capacities on the flight legs and the expected numbers of itinerary
requests increase linearly with the same rate.

The next lemma shows important properties of the optimal solution to problem (13)-(17). Its proof
is in the appendix.

Lemma 4 We have

V λ̂n

1 (nc |n) =
∑

t∈T n

∑

j∈J
fj 1(fj >

∑
i∈L aij λ̂n

ijt +
∑

i∈L aij ρ̂n
i,t+1) pn

jt

+
∑

t∈T n

∑

j∈J
fj 1(fj =

∑
i∈L aij λ̂n

ijt +
∑

i∈L aij ρ̂n
i,t+1) ψ̂n

jt (19)

nci ≥
∑

t∈T n

∑

j∈J
aij 1(fj >

∑
i∈L aij λ̂n

ijt +
∑

i∈L aij ρ̂n
i,t+1) pn

jt

+
∑

t∈T n

∑

j∈J
aij 1(fj =

∑
i∈L aij λ̂n

ijt +
∑

i∈L aij ρ̂n
i,t+1) ψ̂n

jt. (20)

The next lemma shows that V λ̂n

1 (nc |n) increases at least linearly with n. Its proof is in the appendix.

Lemma 5 We have nV λ̂1

1 (c | 1) ≤ V λ̂n

1 (nc |n).

The next proposition shows that limn→∞B(nc |n, λ̂n, ρ̂n, ψ̂n)/V1(nc |n) = 1. Our proof follows from
an argument similar to the proof of Theorem 1 in Talluri and van Ryzin (1998). However, we do not
smooth the problem by assuming that the revenues from accepting the itinerary requests are continuous
random variables. Instead, we directly work with the optimality conditions of a nonsmooth problem.

Proposition 6 We have limn→∞B(nc |n, λ̂n, ρ̂n, ψ̂n)/V1(nc |n) = 1.

Proof We have B(nc |n, λ̂n, ρ̂n, ψ̂n)/V λ̂n

1 (nc |n) ≤ B(nc |n, λ̂n, ρ̂n, ψ̂n)/V1(nc |n) ≤ 1, where the first
inequality follows from Proposition 2 and the second inequality follows from the fact that V1(nc |n)
is the maximum expected revenue over the whole planning horizon for problem Pn. Therefore, it is
enough to show that limn→∞B(nc |n, λ̂n, ρ̂n, ψ̂n)/V λ̂n

1 (nc |n) ≥ 1.

Letting fφ = maxj∈J fj , we consider a variant of the time-dependent bid-price decision rule for a
variant of problem Pn. In the new decision rule, if we have fj >

∑
i∈L aij λ̂n

ijt +
∑

i∈L aij ρ̂n
i,t+1, then we

accept a request for itinerary j at time period t and collect a revenue of fj , irrespective of the capacity
availability. If we have fj =

∑
i∈L aij λ̂n

ijt +
∑

i∈L aij ρ̂n
i,t+1, then we accept a request for itinerary j at

time period t with probability ψ̂n
jt/pn

jt and collect a revenue of fj , irrespective of the capacity availability.

9



If we have fj <
∑

i∈L aij λ̂n
ijt +

∑
i∈L aij ρ̂n

i,t+1, then we reject a request for itinerary j at time period t.
In the new decision rule, however, we incur a cost of fφ for each unit of leg capacity sold in excess of
the leg capacities

{
nci : i ∈ L}

.

Following the proof of Theorem 1 in Talluri and van Ryzin (1998), one can see that the new deci-
sion rule incurs a catastrophic cost whenever it accepts an itinerary request that violates the capacity
availability. Furthermore, accepting this itinerary request leaves the system with even less capac-
ity. Therefore, the expected revenue obtained over the whole planning horizon by the new decision
rule is smaller than the expected revenue obtained over the whole planning horizon by the time-
dependent bid-price decision rule. Specifically, if we let N(nc |n, λ̂n, ρ̂n, ψ̂n) be the expected revenue
obtained over the whole planning horizon by the new decision rule for problem Pn, then we have
N(nc |n, λ̂n, ρ̂n, ψ̂n) ≤ B(nc |n, λ̂n, ρ̂n, ψ̂n).

We let An
jt be the number of requests for itinerary j accepted at time period t by the new decision

rule for problem Pn. If we have fj >
∑

i∈L aij λ̂n
ijt +

∑
i∈L aij ρ̂n

i,t+1, then E
{
An

jt

}
= pn

jt, whereas if
we have fj =

∑
i∈L aij λ̂n

ijt +
∑

i∈L aij ρ̂n
i,t+1, then E

{
An

jt

}
= pn

jt [ψ̂n
jt/pn

jt] = ψ̂n
jt. Otherwise, we have

E
{
An

jt

}
= 0. Therefore, we obtain

N(nc |n, λ̂n, ρ̂n, ψ̂n) =
∑

t∈T n

∑

j∈J
fj E

{
An

jt

}− fφ

∑

i∈L
E

{[ ∑
t∈T n

∑
j∈J aij An

jt − nci

]+}

=
∑

t∈T n

∑

j∈J
fj 1(fj >

∑
i∈L aij λ̂n

ijt +
∑

i∈L aij ρ̂n
i,t+1) pn

jt

+
∑

t∈T n

∑

j∈J
fj 1(fj =

∑
i∈L aij λ̂n

ijt +
∑

i∈L aij ρ̂n
i,t+1) ψ̂n

jt

− fφ

∑

i∈L
E

{[∑
t∈T n

∑
j∈J aij An

jt − nci

]+}

= V λ̂n

1 (nc |n)− fφ

∑

i∈L
E

{[ ∑
t∈T n

∑
j∈J aij An

jt − nci

]+}

≤ B(nc |n, λ̂n, ρ̂n, ψ̂n), (21)

where the third equality follows by (19) and the inequality follows by the fact that N(nc |n, λ̂n, ρ̂n, ψ̂n) ≤
B(nc |n, λ̂n, ρ̂n, ψ̂n).

For a random variable Z with finite first two moments, Talluri and van Ryzin (1998) show that
E

{
[Z − z]+

} ≤
√

V ar
{
Z

}
/2 for all z ≥ E{

Z
}
. We have

E
{∑

t∈T n

∑
j∈J aij An

jt

}
=

∑

t∈T n

∑

j∈J
aij 1(fj >

∑
i∈L aij λ̂n

ijt +
∑

i∈L aij ρ̂n
i,t+1) pn

jt

+
∑

t∈T n

∑

j∈J
aij 1(fj =

∑
i∈L aij λ̂n

ijt +
∑

i∈L aij ρ̂n
i,t+1) ψ̂n

jt.

Therefore, we have E
{∑

t∈T n

∑
j∈J aij An

jt

} ≤ nci by (20) and we obtain

E
{[ ∑

t∈T n

∑
j∈J aij An

jt − nci

]+} ≤ 1
2

√
V ar

{∑
t∈T n

∑
j∈J aij An

jt

}

=
1
2

√∑
t∈T n V ar

{∑
j∈J aij An

jt

} ≤
√

nτΩ
2

,
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where we let Ω = maxi∈L, t∈T n V ar
{∑

j∈J aij An
jt

}
. Using this relationship in (21), we obtain

V λ̂n

1 (nc |n)− fφ |L|
√

nτΩ
2

≤ V λ̂n

1 (nc |n)− fφ

∑

i∈L
E

{[∑
t∈T n

∑
j∈J aij An

jt − nci

]+} ≤ B(nc |n, λ̂n, ρ̂n, ψ̂n).

Therefore, Lemma 5 implies that

1− fφ |L|
√

nτΩ

2n V λ̂1

1 (c | 1)
≤ 1− fφ |L|

√
nτΩ

2V λ̂n

1 (nc |n)
≤ B(nc |n, λ̂n, ρ̂n, ψ̂n)

V λ̂n

1 (nc |n)
.

The result follows by taking the limits in the expression above. 2

We emphasize that the time-dependent bid-price decision rule analyzed in this section differs from
the greedy decision rule described in Section 4 in two ways. First, the greedy decision rule for problem
P 1 uses

{
rλ̂1

i,t+1 : i ∈ L , t ∈ T }
as the bid-prices, whereas the time-dependent bid-price decision rule

for problem P 1 uses
{
λ̂1

ijt + rλ̂1

i,t+1 : i ∈ L , j ∈ J , t ∈ T }
as the bid-prices. In our computational

experiments, we often have λ̂1
ijt = 0 for all time periods except for a few time periods at the end of the

planning horizon. This implies that rλ̂1

i,t+1 and λ̂1
ijt+rλ̂1

i,t+1 are equal to each other during a major portion
of the planning horizon and the discrepancy between the bid-prices used by the greedy decision rule and
the time-dependent bid-price decision rule is not a major concern. Second, the time-dependent bid-price
decision rule breaks the tie by using randomization when we have fj =

∑
i∈L aij λ̂1

ijt +
∑

i∈L aij rλ̂1

i,t+1.

6 Incorporating Cancellations

In this section, we apply the ideas in Sections 2-5 on network revenue management problems with can-
cellations. In the presence of cancellations, we show that the decision rules obtained by our Lagrangian
relaxation strategy are the same as the decision rules obtained by a certain variant of problem (8)-(10).
Consequently, our Lagrangian relaxation strategy does not provide a practical advantage for problems
with cancellations. Nevertheless, our Lagrangian relaxation strategy formally shows how problem (8)-
(10) should be modified to incorporate cancellations. It also gives an alternative proof of the fact that
a certain variant of problem (8)-(10) provides an upper bound on the maximum expected revenue over
the whole planning horizon.

6.1 Problem Formulation

We use the cancellation model described in Talluri and van Ryzin (2004). The probability that a
reservation for itinerary j is retained from time period t to t + 1 is qjt. That is, the probability that a
reservation for itinerary j is canceled at time period t is 1 − qjt. We assume that the cancellations of
different reservations or the cancellations at different time periods are independent and the cancellations
at a certain time period occur after the reservations at that time period. Given that there are njt

reservations for itinerary j at time period t, we let Sjt(njt) be the number of reservations for itinerary j

that we retain from time period t to t+1. Due to our assumptions, Sjt(njt) has a binomial distribution
with parameters (qjt, njt) and the elements of the vector-valued random variable St(nt) =

{
Sjt(njt) :

11



j ∈ J }
are independent. If a reservation for itinerary j is denied boarding, then we incur a penalty

cost of bj . For notational brevity, we assume that the cancellations are not refunded.

We let sjt be the number of reservations for itinerary j at time period t so that st =
{
sjt : j ∈ J }

gives the state of the system at time period t. We continue using the decision variables yt =
{
yjt :

j ∈ J }
, where yjt takes value 1 if a reservation for itinerary j is accepted at time period t, and 0

otherwise. We define the decision variables z =
{
zj : j ∈ J }

, where zj is the number of reservations
for itinerary j that we allow boarding. Letting εj be the |J |-dimensional unit vector with a 1 in the
element corresponding to j ∈ J , the optimal policy can be found by computing the value functions{
Jt(·) : t ∈ T }

through the optimality equation

Jt(st) = max
yt∈{0,1}|J |





∑

j∈J
pjt

[
fj yjt + E

{
Jt+1(St(st + yjt εj))

}]


 (22)

with the boundary condition that

Jτ+1(sτ+1) = max −
∑

j∈J
bj

[
sj,τ+1 − zj

]
(23)

subject to
∑

j∈J
aij zj ≤ ci for all i ∈ L (24)

zj ≤ sj,τ+1 for all j ∈ J (25)

zj ∈ Z+ for all j ∈ J . (26)

We emphasize that the expectation in (22) involves the random variable St(st + yjt εj). We solve
problem (23)-(26) to decide which reservations should be allowed boarding to minimize the penalty
cost. Constraints (24) ensure that our boarding decisions do not violate the leg capacities, whereas
constraints (25) ensure that the reservations that we allow boarding do not exceed the reservations that
we retain until time period τ + 1.

In the next section, we apply our Lagrangian relaxation strategy on the optimality equation in (22).

6.2 Lagrangian Relaxation Strategy

Associating the positive Lagrange multipliers α =
{
αi : i ∈ L}

with constraints (24), we propose solving
the optimality equation

Jα
t (st) = max

yt∈{0,1}|J |





∑

j∈J
pjt

[
fj yjt + E

{
Jα

t+1(St(st + yjt εj))
}]



 (27)

with the boundary condition that

Jα
τ+1(sτ+1) = max

∑

j∈J

[
bj −

∑

i∈L
aij αi

]
zj −

∑

j∈J
bj sj,τ+1 +

∑

i∈L
ci αi (28)

subject to (25), (26). (29)
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The next proposition shows that there is a simple solution to this optimality equation. In the next
proposition and throughout the rest of the paper, we let Rα

j = −min
{
bj ,

∑
i∈L aij αi

}
and Qjt =

qjt . . . qjτ . With this definition, we note that Qjt is the probability that a reservation for itinerary j at
time period t is retained until time period τ + 1.

Proposition 7 We have

Jα
t (st) =

∑

j∈J
Rα

j Qjt sjt +
∑

i∈L
ci αi +

∑

j∈J
pjt

[
fj + Rα

j Qjt

]+ + . . . +
∑

j∈J
pjτ

[
fj + Rα

j Qjτ

]+
. (30)

Proof We show the result by induction over the time periods. The optimal values of the decision
variables

{
zj : j ∈ J }

in problem (28)-(29) are
{
1(bj −

∑
i∈L aij αi ≥ 0) sj,τ+1 : j ∈ J }

. Therefore, we
have

Jα
τ+1(sτ+1) =

∑

j∈J

[
bj −

∑

i∈L
aij αi

]+
sj,τ+1 −

∑

j∈J
bj sj,τ+1 +

∑

i∈L
ci αi =

∑

j∈J
Rα

j sj,τ+1 +
∑

i∈L
ci αi.

Using the expression above and the fact that Sjτ (njτ ) has a binomial distribution with parameters
(qjτ , njτ ), we obtain

E
{
Jα

τ+1(Sτ (sτ + yjτ εj))
}

= E
{ ∑

∈J
Rα

 Sτ (sτ )−Rα
j Sjτ (sjτ ) + Rα

j Sjτ (sjτ + yjτ )
}

+
∑

i∈L
ci αi

=
∑

∈J
Rα

 qτ sτ + Rα
j qjτ yjτ +

∑

i∈L
ci αi.

Therefore, (27) implies that

Jα
τ (sτ ) = max

yτ∈{0,1}|J |





∑

j∈J
pjτ

[
fj + Rα

j qjτ

]
yjτ



 +

∑

j∈J
Rα

j qjτ sjτ +
∑

i∈L
αi ci

=
∑

j∈J
pjτ

[
fj + Rα

j qjτ

]+ +
∑

j∈J
Rα

j qjτ sjτ +
∑

i∈L
ci αi,

which shows that the result holds for time period τ . Assuming that the result holds for time period
t + 1, it is easy to show that the result holds for time period t. 2

The next proposition shows that we obtain an upper bound on the value function by solving the
optimality equation in (27). Its proof follows the same argument in the proof of Proposition 2.

Proposition 8 If the Lagrange multipliers are positive, then we have Jt(st) ≤ Jα
t (st).

Since we do not have any reservations initially, the maximum expected revenue over the whole
planning horizon is J1(0). Proposition 8 implies that J1(0) is bounded from above by Jα

1 (0) as long as
the Lagrange multipliers are positive. Therefore, to obtain the tightest possible upper bound on J1(0),
we solve the problem

min
α≥0

{
Jα

1 (0)
}

. (31)
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Since the function [·]+ is convex and increasing, and
{
Rα

j : j ∈ J }
are convex functions of the Lagrange

multipliers, (30) implies that the objective function of problem (31) is convex. In this case, we can
obtain a subgradient of Jα

1 (0) by simple algebraic manipulations on (30) and easily solve problem (31).

6.3 Comparisons with the Deterministic Linear Program

This section relates problem (31) to a certain variant of problem (8)-(10). Letting ujt be the number of
reservations for itinerary j that we plan to accept at time period t and vj be the number of reservations
for itinerary j that we plan to deny boarding, this variant of problem (8)-(10) has the form

max
∑

t∈T

∑

j∈J
fj ujt −

∑

j∈J
bj vj (32)

subject to
∑

t∈T

∑

j∈J
aij Qjt ujt −

∑

j∈J
aij vj ≤ ci for all i ∈ L (33)

∑

t∈T
Qjt ujt − vj ≥ 0 for all j ∈ J (34)

0 ≤ ujt ≤ pjt for all j ∈ J , t ∈ T (35)

vj ≥ 0 for all j ∈ J . (36)

Since Qjt is the probability that a reservation for itinerary j at time period t is retained until time
period τ + 1, the first term on the left side of constraints (33) accounts for the leg capacities consumed
by the reservations that we plan to accept and expect to retain until time period τ +1. Constraints (34)
ensure that the reservations that we plan to deny boarding do not exceed the reservations that we plan
to accept and expect to retain until time period τ + 1. Constraints (35) ensure that the reservations
that we plan to accept do not exceed the expected numbers of reservations.

Letting ξ̂ be the optimal objective value of problem (32)-(36), the next proposition shows that we
have minα≥0

{
Jα

1 (0)
}

= ξ̂.

Proposition 9 We have minα≥0

{
Jα

1 (0)
}

= ξ̂.

Proof Associating the positive Lagrange multipliers
{
αi : i ∈ L}

with constraints (33), we let ξ̂α be
the optimal objective value of the problem

max
∑

i∈L
ci αi +

∑

t∈T

∑

j∈J

[
fj −

∑

i∈L
aij Qjt αi

]
ujt +

∑

j∈J

[∑

i∈L
aij αi − bj

]
vj

subject to (34), (35), (36).

We have ξ̂ = minα≥0

{
ξ̂α

}
by duality theory. The optimal values of the decision variables

{
vj : j ∈ J }

in the problem above are
{
1(

∑
i∈L aij αi − bj ≥ 0)

∑
t∈T Qjt ujt : j ∈ J }

, in which case we can drop
these decision variables by plugging their optimal values into the objective function. Therefore, the
optimal objective value of the problem

max
∑

i∈L
ci αi +

∑

t∈T

∑

j∈J

{
fj−

∑

i∈L
aij Qjt αi +

[ ∑

i∈L
aij αi − bj

]+
Qjt

}
ujt (37)

subject to 0 ≤ ujt ≤ pjt for all j ∈ J , t ∈ T (38)
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is also ξ̂α. Using the definition of Rα
j , the objective function of problem (37)-(38) can be written as

∑

i∈L
ci αi +

∑

t∈T

∑

j∈J

[
fj + Rα

j Qjt

]
ujt.

In this case, the optimal values of the decision variables
{
ujt : j ∈ J , t ∈ T }

in problem (37)-(38) are{
1(fj + Rα

j Qjt ≥ 0) pjt : j ∈ J , t ∈ T }
and we obtain

ξ̂α =
∑

i∈L
ci αi +

∑

t∈T

∑

j∈J

[
fj + Rα

j Qjt

]+
pjt.

Therefore, (30) implies that Jα
1 (0) = ξ̂α and the result follows. 2

Propositions 8 and 9 imply that J1(0) ≤ ξ̂ and the optimal objective value of problem (32)-(36)
provides an upper bound on the maximum expected revenue over the whole planning horizon. Fur-
thermore, Proposition 9 formally shows that the deterministic linear program corresponding to the
optimality equation in (22) should have the form of problem (32)-(36).

Problem (32)-(36) is the analogue of problem (8)-(10) that incorporates cancellations. Although
problem (8)-(10) is ubiquitous in the literature, problem (32)-(36) is rarely mentioned. Bertsimas and
Popescu (2003) formulate a similar problem, but they assume that Qj1 = . . . = Qjτ for all j ∈ J , which
cannot hold when we have 0 < qjt < 1 for all j ∈ J , t ∈ T .

7 Computational Experiments

In this section, we compare the performances of numerous solution methods for the network revenue
management problem described in Section 1.

7.1 Benchmark Strategies

We compare the performances of the following six solution methods.

• Lagrangian Relaxation Strategy (LR). This is the solution method developed in this paper, but
our implementation tries to refine the approximation to the value function at each time period by
resolving problem (7). In particular, given the state variable xt at time period t, we solve the problem
minλ≥0

{
V λ

t (xt)
}

to obtain the optimal solution λ̂t(xt). If we have fj ≥
∑

i∈L aij r
λ̂t(xt)
i,t+1 , then we accept

a request for itinerary j at time period t subject to the capacity availability.

• Alternative Lagrangian Relaxation Strategy (LR-A). Defining a fictitious flight leg iφ with infinite
capacity and the decision variables

{
yijt : i ∈ L ∪ {iφ}, j ∈ J , t ∈ T }, LR-A is based on writing the

optimality equation in (1) as

Vt(xt) = max
∑

j∈J
pjt

[
fj yiφjt + Vt+1(xt−

∑
i∈L yijt aij ei)

]
(39)

subject to aij yijt ≤ xit for all i ∈ L, j ∈ J (40)

yijt − yiφjt = 0 for all i ∈ L, j ∈ J (41)

yijt ∈
{
0, 1

}
for all i ∈ L ∪ {iφ}, j ∈ J . (42)
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In this case, we can associate the Lagrange multipliers β =
{
βijt : i ∈ L, j ∈ J , t ∈ T }

with constraints
(41) to obtain the optimality equation

V β
t (xt) = max

∑

j∈J
pjt

{[
fj −

∑

i∈L
βijt

]
yiφjt +

∑

i∈L
βijt yijt + V β

t+1(xt−
∑

i∈L yijt aij ei)
}

subject to (40), (42).

One can show that the optimality equation above decomposes by the flight legs and V β
1 (c) can be com-

puted by solving |L| network revenue management problems, each of which involves a one-dimensional
state variable. It is also possible to show that we have V1(c) ≤ V β

1 (c). To obtain the tightest possible
upper bound on V1(c), we solve the problem minβ

{
V β

1 (c)
}
; see Topaloglu (2006).

Similar to LR, our implementation of LR-A tries to refine the approximation to the value function
at each time period. In particular, given the state variable xt at time period t, we solve the problem
minβ

{
V β

t (xt)
}

to obtain the optimal solution β̂t(xt). Following the decision rule in (4), if we have

fj ≥ V
β̂t(xt)
t+1 (xt)− V

β̂t(xt)
t+1 (xt −

∑
i∈L aij ei), (43)

then we accept a request for itinerary j at time period t subject to the capacity availability. From
the computational perspective, LR-A is more expensive than LR because there does not exist a simple
expression for V β

t (xt) comparable to (6).

• Deterministic Linear Program (LP-D). This is the solution method described in Section 3. Given
the state variable xt at time period t, we replace the right side of constraints (9) with

{
xit : i ∈ L}

and the right side of constraints (10) with
{∑τ

t′=t pjt′ : j ∈ J }
, and solve problem (8)-(10). Letting{

µ̂it(xt) : i ∈ L}
be the optimal values of the dual variables associated with constraints (9), if we have

fj ≥
∑

i∈L aij µ̂it(xt), then we accept a request for itinerary j at time period t subject to the capacity
availability; see Talluri and van Ryzin (2004).

• Randomized Linear Program (LP-R). LP-D uses only the expected numbers of itinerary requests and
LP-R tries to make up for this deficiency. We let Djt be the number of requests for itinerary j at time
period t so that we have P

{
Djt = 1

}
= pjt and P

{
Djt = 0

}
= 1 − pjt. We generate K independent

samples of D =
{
Djt : j ∈ J , t ∈ T }, which we denote by D̃k =

{
D̃k

jt : j ∈ J , t ∈ T }
for k = 1, . . . , K.

Given the state variable xt at time period t, we replace the right side of constraints (9) with
{
xit : i ∈ L}

and the right side of constraints (10) with
{∑τ

t′=t D̃k
jt′ : j ∈ J }

, and solve problem (8)-(10). Letting
L̂t(xt, D̃

k) be the optimal objective value of this problem and
{
µ̂it(xt, D̃

k) : i ∈ L}
be the optimal

values of the dual variables associated with constraints (9), if we have

fj ≥ 1
K

K∑

k=1

∑

i∈L
aij µ̂it(xt, D̃

k),

then we accept a request for itinerary j at time period t subject to the capacity availability; see Talluri
and van Ryzin (1999). It is also possible to show that V1(c) ≤ E

{
L̂1(c,D)

}
. Therefore, LP-R provides

an upper bound on the maximum expected revenue over the whole planning horizon, but computing
the expectation E

{
L̂1(c,D)

}
requires estimation through simulation.
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• Finite Differences on Deterministic Linear Program (FD-D). FD-D tries to capture the total opportu-
nity cost of the leg capacities consumed by an itinerary request more accurately. Given the state variable
xt at time period t, we replace the right side of constraints (9) with

{
xit : i ∈ L}

and the right side of
constraints (10) with

{∑τ
t′=t pj′t : j ∈ J }

, and solve problem (8)-(10) to obtain the optimal objective
value L̂t(xt). We then replace the right side of constraints (9) with

{
xit − aij : i ∈ L}

and resolve
problem (8)-(10) to obtain the optimal objective value L̂−jt(xt). If we have fj ≥ L̂t(xt) − L̂−jt(xt), then
we accept a request for itinerary j at time period t subject to the capacity availability; see Bertsimas
and Popescu (2003).

• Finite Differences on Randomized Linear Program (FD-R). FD-R is a natural extension of LP-R
and FD-D. We generate K independent samples of D =

{
Djt : j ∈ J , t ∈ T }

, which we denote
by D̃k =

{
D̃k

jt : j ∈ J , t ∈ T }
for k = 1, . . . , K. Given the state variable xt at time period t, we

replace the right side of constraints (9) with
{
xit : i ∈ L}

and the right side of constraints (10) with{∑τ
t′=t D̃k

jt′ : j ∈ J }
, and solve problem (8)-(10) to obtain the optimal objective value L̂t(xt, D̃

k). We
then replace the right side of constraints (9) with {xit − aij : i ∈ L} and resolve problem (8)-(10) to
obtain the optimal objective value L̂−jt(xt, D̃

k). If we have

fj ≥ 1
K

K∑

k=1

L̂t(xt, D̃
k)− L̂−jt(xt, D̃

k), (44)

then we accept a request for itinerary j at time period t subject to the capacity availability. Although
FD-R is a natural extension of LP-R and FD-D, it did not previously appear in the literature.

7.2 Experimental Setup

In our test problems, we consider an airline network serving N locations out of a single hub. This is
an important network structure that frequently arises in practice. Associated with each location, there
are two flight legs, one of which is to the hub and the other is from the hub. There is a high-fare and a
low-fare itinerary that connects each origin-destination pair. Consequently, we have 2N flight legs and
2N(N +1) itineraries, 4N of which include one flight leg and 2N(N−1) of which include two flight legs.
The revenues associated with the high-fare itineraries are κ times larger than the revenues associated
with the low-fare itineraries. The probability of having a request for a high-fare itinerary increases over
time, whereas the probability of having a request for a low-fare itinerary decreases over time. Since we
have E

{
Djt

}
= pjt, the expected demand for the capacity on flight leg i is

∑
t∈T

∑
j∈J aij pjt and we

measure the tightness of the leg capacities by

θ =

∑
t∈T

∑
i∈L

∑
j∈J aij pjt∑

i∈L ci
.

We vary N , θ and κ in our test problems and label our test problems by the triplet (N, θ, κ). We
have τ = 100 in all of our test problems and use K = 250 for LP-R and FD-R. To solve the prob-
lem minλ≥0

{
V λ

t (xt)
}

as accurately as possible, we use Benders decomposition instead of subgradient
optimization. This avoids the problem of step size and termination criterion selection.
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Problem LR LR-A LP-D LP-R

(N, θ, κ) V
λ̂1(c)
1 (c) V

β̂1(c)
1 (c) ζ̂ E

�
L̂1(c, D)

	
Rankings V

λ̂1(c)
1 (c)/ζ̂ Best/ζ̂ CPU

(2, 1.0, 2) 3,857 3,655 3,918 3,738 (3, 1, 4, 2) 98.43 93.28 1.52
(2, 1.0, 4) 5,441 5,179 5,513 5,332 (3, 1, 4, 2) 98.68 93.94 0.73
(2, 1.0, 8) 8,630 8,306 8,704 8,521 (3, 1, 4, 2) 99.15 95.43 0.52

(3, 1.0, 2) 5,864 5,538 5,966 5,665 (3, 1, 4, 2) 98.29 92.83 6.41
(3, 1.0, 4) 8,360 7,945 8,478 8,175 (3, 1, 4, 2) 98.61 93.72 2.95
(3, 1.0, 8) 13,383 12,878 13,501 13,196 (3, 1, 4, 2) 99.12 95.39 1.94

(4, 1.0, 2) 7,320 6,848 7,460 7,023 (3, 1, 4, 2) 98.12 91.80 30.03
(4, 1.0, 4) 10,521 9,908 10,691 10,248 (3, 1, 4, 2) 98.41 92.68 14.03
(4, 1.0, 8) 16,978 16,228 17,152 16,697 (3, 1, 4, 2) 98.98 94.61 5.63

(2, 1.2, 2) 3,384 3,252 3,448 3,395 (2, 1, 4, 3) 98.14 94.30 1.61
(2, 1.2, 4) 4,966 4,752 5,044 4,989 (2, 1, 4, 3) 98.47 94.23 0.91
(2, 1.2, 8) 8,155 7,861 8,234 8,178 (2, 1, 4, 3) 99.04 95.47 0.59

(3, 1.2, 2) 5,231 4,984 5,339 5,194 (3, 1, 4, 2) 97.97 93.34 5.53
(3, 1.2, 4) 7,727 7,356 7,851 7,704 (3, 1, 4, 2) 98.42 93.69 3.47
(3, 1.2, 8) 12,750 12,255 12,874 12,724 (3, 1, 4, 2) 99.03 95.19 2.19

(4, 1.2, 2) 6,509 6,167 6,691 6,467 (3, 1, 4, 2) 97.28 92.18 50.74
(4, 1.2, 4) 9,702 9,175 9,921 9,691 (3, 1, 4, 2) 97.79 92.48 13.50
(4, 1.2, 8) 16,156 15,478 16,382 16,141 (3, 1, 4, 2) 98.62 94.48 7.50

(2, 1.6, 2) 2,716 2,604 2,783 2,775 (2, 1, 4, 3) 97.60 93.58 1.36
(2, 1.6, 4) 4,297 4,090 4,378 4,369 (2, 1, 4, 3) 98.13 93.41 0.69
(2, 1.6, 8) 7,485 7,191 7,569 7,556 (2, 1, 4, 3) 98.89 95.01 0.52

(3, 1.6, 2) 4,367 4,150 4,483 4,398 (2, 1, 4, 3) 97.42 92.57 7.88
(3, 1.6, 4) 6,857 6,470 6,995 6,908 (2, 1, 4, 3) 98.03 92.50 3.75
(3, 1.6, 8) 11,880 11,343 12,018 11,927 (2, 1, 4, 3) 98.85 94.38 2.61

(4, 1.6, 2) 5,216 4,943 5,401 5,306 (2, 1, 4, 3) 96.56 91.51 51.58
(4, 1.6, 4) 8,406 7,905 8,632 8,525 (2, 1, 4, 3) 97.38 91.59 12.58
(4, 1.6, 8) 14,858 14,165 15,093 14,965 (2, 1, 4, 3) 98.44 93.85 6.33

Table 1: Upper bounds on the maximum expected revenue over the whole planning horizon.

7.3 Computational Results

As described in Sections 2, 3 and 7.1, LR, LR-A, LP-D and LP-R provide upper bounds on the maximum
expected revenue over the whole planning horizon. For different test problems, Table 1 compares the
upper bounds obtained by these four solution methods. The second, third, fourth and fifth columns in
this table respectively show the upper bounds obtained by LR, LR-A, LP-D and LP-R. To compute
the upper bound obtained by LP-R, we estimate the expectation E

{
L̂1(c,D)

}
through simulation with

∓0.5% accuracy and 95% confidence. The sixth column shows the rankings of the upper bounds obtained
by LR, LR-A, LP-D and LP-R. For example, (3, 1, 4, 2) indicates that the upper bounds obtained by LR,
LR-A, LP-D and LP-R are respectively the third, first, fourth and second tightest upper bounds. The
seventh column shows the ratios of the upper bounds obtained by LR and LP-D, whereas the eighth
column shows the ratios of the upper bounds obtained by the best solution method and LP-D. For
example, the eighth column for test problem (2, 1.0, 2) shows the ratio of the upper bounds obtained by
LR-A and LP-D. LP-D is frequently used to solve network revenue management problems in practice
and the purpose of the seventh and eighth columns is to show how much we can improve the upper
bounds obtained by LP-D by using other solution methods. The ninth column shows the CPU seconds
required to solve problem (7) on a Pentium IV PC running Windows XP with 2.4 GHz of CPU and 1
GB of RAM.
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Problem
(N, θ, κ) LR LR-A LP-D LP-R FD-D FD-R Rankings LR/LP-D Best/LP-D

(2, 1.0, 2) 3,638 3,648 3,637 3,640 3,634 3,643 (4, 1, 5, 3, 6, 2) 100.04 100.30
(2, 1.0, 4) 5,134 5,178 5,076 5,151 5,120 5,172 (4, 1, 6, 3, 5, 2) 101.14 102.01
(2, 1.0, 8) 8,208 8,305 7,956 8,239 8,106 8,290 (4, 1, 6, 3, 5, 2) 103.17 104.39

(3, 1.0, 2) 5,460 5,471 5,456 5,450 5,446 5,467 (3, 1, 4, 5, 6, 2) 100.08 100.27
(3, 1.0, 4) 7,829 7,896 7,718 7,811 7,795 7,884 (3, 1, 6, 4, 5, 2) 101.44 102.31
(3, 1.0, 8) 12,695 12,871 12,248 12,723 12,496 12,845 (4, 1, 6, 3, 5, 2) 103.65 105.09

(4, 1.0, 2) 6,670 6,696 6,659 6,644 6,652 6,698 (3, 2, 4, 6, 5, 1) 100.16 100.59
(4, 1.0, 4) 9,566 9,654 9,362 9,474 9,507 9,657 (3, 2, 6, 5, 4, 1) 102.17 103.15
(4, 1.0, 8) 15,496 15,873 14,900 15,622 15,310 15,949 (4, 2, 6, 3, 5, 1) 104.00 107.03

(2, 1.2, 2) 3,224 3,228 3,210 3,210 3,205 3,214 (2, 1, 4, 5, 6, 3) 100.42 100.56
(2, 1.2, 4) 4,692 4,721 4,562 4,682 4,643 4,710 (3, 1, 6, 4, 5, 2) 102.84 103.48
(2, 1.2, 8) 7,698 7,825 7,262 7,743 7,521 7,814 (4, 1, 6, 3, 5, 2) 106.01 107.76

(3, 1.2, 2) 4,860 4,889 4,833 4,854 4,839 4,886 (3, 1, 6, 4, 5, 2) 100.56 101.15
(3, 1.2, 4) 7,174 7,272 6,950 7,136 7,105 7,259 (3, 1, 6, 4, 5, 2) 103.21 104.62
(3, 1.2, 8) 11,855 12,227 11,164 11,977 11,650 12,184 (4, 1, 6, 3, 5, 2) 106.18 109.52

(4, 1.2, 2) 5,867 5,941 5,861 5,860 5,868 5,938 (4, 1, 5, 6, 3, 2) 100.10 101.36
(4, 1.2, 4) 8,681 8,875 8,410 8,710 8,675 8,886 (4, 2, 6, 3, 5, 1) 103.22 105.65
(4, 1.2, 8) 14,556 15,047 13,574 14,701 14,340 15,077 (4, 2, 6, 3, 5, 1) 107.23 111.07

(2, 1.6, 2) 2,568 2,578 2,550 2,562 2,555 2,569 (3, 1, 6, 4, 5, 2) 100.68 101.09
(2, 1.6, 4) 4,000 4,055 3,821 4,024 3,960 4,045 (4, 1, 6, 3, 5, 2) 104.67 106.11
(2, 1.6, 8) 6,880 7,156 6,351 7,053 6,783 7,160 (4, 2, 6, 3, 5, 1) 108.33 112.73

(3, 1.6, 2) 4,014 4,060 3,994 4,041 4,006 4,050 (4, 1, 6, 3, 5, 2) 100.50 101.65
(3, 1.6, 4) 6,269 6,378 6,037 6,279 6,226 6,376 (4, 1, 6, 3, 5, 2) 103.84 105.65
(3, 1.6, 8) 10,818 11,268 10,093 11,105 10,624 11,296 (4, 2, 6, 3, 5, 1) 107.18 111.91

(4, 1.6, 2) 4,680 4,699 4,640 4,655 4,651 4,736 (3, 2, 6, 4, 5, 1) 100.86 102.07
(4, 1.6, 4) 7,312 7,482 7,032 7,373 7,313 7,575 (5, 2, 6, 3, 4, 1) 103.97 107.72
(4, 1.6, 8) 12,721 13,483 11,817 13,369 12,686 13,726 (4, 2, 6, 3, 5, 1) 107.65 116.15

Table 2: Expected revenues over the whole planning horizon.

Proposition 3 shows that the upper bound obtained by LR is tighter than the one obtained by LP-D.
Similarly, Topaloglu (2006) and Talluri and van Ryzin (1999) show that the upper bounds obtained by
LR-A and LP-R are tighter than the upper bound obtained by LP-D. Therefore, it is not surprising
that the upper bounds obtained by LR, LR-A and LP-R are tighter than the upper bound obtained by
LP-D for all test problems. LR improves the upper bounds obtained by LP-D by up to 3.5% and the
best solution method improves the upper bounds obtained by LP-D by up to 8.5%. LR-A consistently
provides the tightest upper bounds. For many test problems, LR improves the upper bounds obtained
by LP-R and this especially appears to be the case for problems with tight leg capacities.

Table 2 compares the expected revenues obtained over the whole planning horizon by different so-
lution methods. The second, third, fourth, fifth, sixth and seventh columns in this table respectively
show the expected revenues obtained by LR, LR-A, LP-D, LP-R, FD-D and FD-R. We estimate all of
the expected revenues through simulation with ∓0.5% accuracy and 95% confidence. We use common
random numbers when simulating the performances of different solution methods under different tra-
jectories of the itinerary arrivals; see Law and Kelton (2000). The eighth column shows the rankings
of the expected revenues obtained by LR, LR-A, LP-D, LP-R, FD-D and FD-R. The interpretation of
this column is similar to that of the sixth column in Table 1. The ninth column shows the ratios of
the expected revenues obtained by LR and LP-D, whereas the tenth column shows the ratios of the
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Figure 2: Ratios of the expected revenues and upper bounds obtained by LR and LP-D.

expected revenues obtained by the best solution method and LP-D. For example, the tenth column for
test problem (4, 1.0, 2) shows the ratio of the expected revenues obtained by FD-R and LP-D.

The results indicate that LR-A and FD-R consistently provide the highest expected revenues,
whereas LP-D and FD-D consistently provide the lowest expected revenues. LR and LP-R compete for
the third and fourth places. LR can perform up to 8% better than LP-D and the best solution method
can perform up to 16% better than LP-D. For many test problems, the expected revenues obtained by
LR are higher than those obtained by LP-D, LP-R and FD-D.

To illustrate how different problem parameters affect the performance gap between LR and LP-D,
the thick data series in Figure 2 plot the ratios of the expected revenues obtained by LR and LP-D.
In this figure, blocks of three consecutive test problems in the horizontal axis share the same problem
characteristics other than the tightness of the leg capacities. Consequently, the saw tooth pattern of the
thick data series indicates that tight leg capacities cause the performance gap between LR and LP-D
to grow. Similarly, the thin data series in Figure 2 plot the ratios of the upper bounds obtained by LR
and LP-D. The saw tooth pattern of the thin data series indicates that tight leg capacities also cause
the gap between the upper bounds obtained by LR and LP-D to grow.

8 Conclusions

In this paper, we presented a new method for computing bid-prices in network revenue management
problems. Our method provides an upper bound on the optimal objective value of the problem and
this upper bound is tighter than the one obtained by the deterministic linear program. We showed that
the bid-prices obtained by our method are asymptotically optimal as the capacities on the flight legs
and the expected numbers of itinerary requests increase linearly with the same rate. We applied our
method on problems with cancellations to formally show how the deterministic linear program should
be modified to incorporate cancellations.

Our computational experiments indicated that the expected revenues obtained by LR are consis-
tently higher than those obtained by LP-D and FD-D, which essentially use a deterministic approxima-
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tion of the network revenue management problem. LP-R and FD-R improve the performances of LP-D
and FD-D by incorporating randomization. Interestingly, FD-R appears to be one of the best solution
methods, whereas FD-D appears to be one of the worst. Nevertheless, despite its superior performance,
FD-R may be less desirable in practice since the right side of (44) has to be computed for each itinerary
and the number of itineraries can be large. Similarly, LR-A consistently provides superior performance,
but it may be less desirable in practice since the bid-prices used by the decision rule in (43) depend on
the remaining leg capacities. Consequently, LR and LP-R seem to emerge as two solution methods that
provide a balance between solution quality and practical tractability.

9 Appendix

We show Lemmas 4 and 5 in this section.

Proof of Lemma 4 Associating the dual variables
{
ψn

jt : j ∈ J , t ∈ T n
}

with constraints (14) and
(15), after simple algebraic manipulations, the dual of problem (13)-(17) can be written as

max
∑

t∈T n

∑

j∈J
fj ψn

jt (45)

subject to
∑

∈J
pn

jt ai ψn
1 + . . . +

∑

∈J
pn

jt ai ψn
,t−1 + aij ψn

jt ≤ n pn
jt ci for all i ∈ L, j ∈ J , t ∈ T n (46)

0 ≤ ψn
jt ≤ pn

jt for all j ∈ J , t ∈ T n. (47)

Constraints (46) are associated with the decision variables
{
λn

ijt : i ∈ L, j ∈ J , t ∈ T n
}
, whereas

constraints (47) are associated with the decision variables
{
ηn

jt : j ∈ J , t ∈ T n
}

in problem (13)-(17).
Some of the complementary slackness conditions for problem (13)-(17) are

[
pn

jt − ψ̂n
jt

]
η̂n

jt = 0 (48)[
η̂n

jt +
∑

i∈L
aij λ̂n

ijt +
∑

i∈L
aij ρ̂n

i,t+1 − fj

]
ψ̂n

jt = 0 (49)

with the boundary condition that ρ̂n
i,nτ+1 = 0. Considering constraints (46) for time period nτ , adding

these constraints over all j ∈ J and noting that
∑

j∈J pn
j,nτ = 1, we obtain

∑

t∈T n

∑

j∈J
aij ψ̂n

jt ≤ nci. (50)

If we have fj >
∑

i∈L aij λ̂n
ijt +

∑
i∈L aij ρ̂n

i,t+1, then constraints (14) and (15) imply that η̂n
jt > 0 and

we obtain ψ̂n
jt = pn

jt by (48). If we have fj <
∑

i∈L aij λ̂n
ijt +

∑
i∈L aij ρ̂n

i,t+1, then nonnegativity of η̂n
jt

implies that η̂n
jt +

∑
i∈L aij λ̂n

ijt +
∑

i∈L aij ρ̂n
i,t+1 − fj > 0 and we obtain ψ̂n

jt = 0 by (49). Using these
observations in the objective function of problem (45)-(47) shows that (19) holds, whereas using these
observations in (50) shows that (20) holds. 2

Proof of Lemma 5 We let ψ̂1 =
{
ψ̂1

jt : j ∈ J , t ∈ T 1
}

be the optimal solution to problem (45)-(47)
when solved with n = 1. We have

V λ̂1

1 (c | 1) =
∑

t∈T 1

∑

j∈J
fj ψ̂1

jt =
1
n

∑

t∈T n

∑

j∈J
fj ψ̂1

jdt/ne,
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1 2 . . . n− 1 nX
∈J

pn
jt ai ψ̃n

1 +
X
∈J

pn
jt ai ψ̃n

2 . . . +
X
∈J

pn
jt ai ψ̃n

,n−1 +
X
∈J

pn
jt ai ψ̃n

n

+
X
∈J

pn
jt ai ψ̃n

,n+1 +
X
∈J

pn
jt ai ψ̃n

,n+2 . . . +
X
∈J

pn
jt ai ψ̃n

,2n−1 +
X
∈J

pn
jt ai ψ̃n

,2n

...
...

...
...

+
X
∈J

pn
jt ai ψ̃n

,(dt/ne−2)n+1 +
X
∈J

pn
jt ai ψ̃n

,(dt/ne−2)n+2 . . . +
X
∈J

pn
jt ai ψ̃n

,(dt/ne−1)n−1 +
X
∈J

pn
jt ai ψ̃n

,(dt/ne−1)n

+
X
∈J

pn
jt ai ψ̃n

,(dt/ne−1)n+1 +
X
∈J

pn
jt ai ψ̃n

,(dt/ne−1)n+2 . . . +
X
∈J

pn
jt ai ψ̃n

,t−1 + aij ψ̃n
jt

Table 3: List of the terms in
∑

∈J pn
jt ai ψ̃n

1 + . . . +
∑

∈J pn
jt ai ψ̃n

,t−1 + aij ψ̃n
jt.

1 2 . . . n− 1 nX
∈J

p1
jdt/ne ai ψ̂1

1 +
X
∈J

p1
jdt/ne ai ψ̂1

1 . . . +
X
∈J

p1
jdt/ne ai ψ̂1

1 +
X
∈J

p1
jdt/ne ai ψ̂1

1

+
X
∈J

p1
jdt/ne ai ψ̂1

2 +
X
∈J

p1
jdt/ne ai ψ̂1

2 . . . +
X
∈J

p1
jdt/ne ai ψ̂1

2 +
X
∈J

p1
jdt/ne ai ψ̂1

2

...
...

...
...

+
X
∈J

p1
jdt/ne ai ψ̂1

,dt/ne−1 +
X
∈J

p1
jdt/ne ai ψ̂1

,dt/ne−1 . . . +
X
∈J

p1
jdt/ne ai ψ̂1

,dt/ne−1 +
X
∈J

p1
jdt/ne ai ψ̂1

,dt/ne−1

+
X
∈J

p1
jdt/ne ai ψ̂1

dt/ne +
X
∈J

p1
jdt/ne ai ψ̂1

dt/ne . . . +
X
∈J

p1
jdt/ne ai ψ̂1

dt/ne + aij ψ̂1
jdt/ne

Table 4: List of the terms in
∑

∈J pn
jt ai ψ̃n

1 + . . .+
∑

∈J pn
jt ai ψ̃n

,t−1 +aij ψ̃n
jt after replacing pn

jt with
p1

jdt/ne and ψ̃n
jt with ψ̂1

jdt/ne.

where the first equality follows from (18) and the fact that the dual of problem (13)-(17) is problem
(45)-(47). If we show that

{
ψ̂1

jdt/ne : j ∈ J , t ∈ T n
}

is a feasible solution to problem (45)-(47), then we

obtain V λ̂n

1 (nc |n) ≥ ∑
t∈T n

∑
j∈J fj ψ̂1

jdt/ne and the result follows. Letting ψ̃n
jt = ψ̂1

jdt/ne for all j ∈ J ,
t ∈ T n, the remainder of the proof shows that ψ̃n =

{
ψ̃n

jt : j ∈ J , t ∈ T n
}

is a feasible solution to
problem (45)-(47).

Table 3 lists the terms in
∑

∈J pn
jt ai ψ̃n

1 + . . . +
∑

∈J pn
jt ai ψ̃n

,t−1 + aij ψ̃n
jt. This table has n

columns and dt/ne rows. The first dt/ne − 1 rows have n entries. The last row has t − (dt/ne − 1)n
entries, which is strictly less than n when t is not a multiple of n. Replacing pn

jt with p1
jdt/ne and ψ̃n

jt

with ψ̂1
jdt/ne in Table 3, we obtain Table 4. Following the same argument used to obtain (50), we have

∑

t∈T 1

∑

j∈J
aij ψ̂1

jt ≤ ci.

Therefore, other than the column that includes the entry aij ψ̂1
jdt/ne, the sum of the entries in each col-

umn in Table 4 is less than or equal to p1
jdt/ne ci. Since the solution ψ̂1 is feasible to problem (45)-(47)

when solved with n = 1, constraints (46) imply that the sum of the entries in the column that includes
the entry aij ψ̂1

jdt/ne in Table 4 is less than or equal to p1
jdt/ne ci. Therefore, the sum of all of the entries

in Table 4 is less than or equal to n p1
jdt/ne ci. The entries in Tables 3 and 4 are identical. Since we have
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p1
jdt/ne = pn

jt, the sum of all of the entries in Table 3 is less than or equal to n pn
jt ci and the solution

ψ̃n satisfies constraints (46) in problem (45)-(47). Since the solution ψ̂1 is feasible to problem (45)-(47)
when solved with n = 1, constraints (47) imply that 0 ≤ ψ̂1

jdt/ne = ψ̃n
jt ≤ p1

jdt/ne = pn
jt and the solution

ψ̃n satisfies constraints (47) in problem (45)-(47). 2
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