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Preface

When there are already so many good books on linear optimization, any book on the topic

requires some justification. My goal in writing this material was to give an accessible yet

reasonably rigorous treatment of the fundamentals. I wanted the students to internalize

the material to such an extent that they can easily re-derive the fundamental results and

modeling tricks on their own without feeling the necessity to memorize things. To achieve

this goal, the book primarily use examples. It establishes, for instance, weak and strong

duality by using examples, provides the economic interpretation of an optimal dual solution

by tracking the pivots for a specific problem in the tableau, and demonstrates unboundedness

and degeneracy on examples. My belief is that once one sees how the examples work out, it

becomes a triviality to generalize the ideas by replacing numbers with symbols.

I should also explain the word uplifting in the subtitle of the book. I was fortunate

to be taught by and to work with wonderful scholars. Reading Bob Vanderbei’s book

Linear Programming: Foundations and Extensions as a fresh graduate student was an

eye-opener. Although I had studied linear programming before, Bob’s approach in the book

was so clear that I could not stop being happy every time I read his book. His book made

the material extremely easy to internalize, and once I learned from that book, it was nearly

impossible to forget. To the best possible extent, I strived for a similar level of clarity in my

writing so that students working through this book would quickly grasp the material rather

than being frustrated by chasing down minutiae.

I feel a bit guilty calling this material a book, but I will keep on doing so. The book has

gaps throughout. The way I use the book in class is that students bring their copy to every

lecture. We fill in the gaps as we cover the material together. By filling in the book during

the lectures, the students keep engaged, hopefully preventing slide fatigue. At the same time,

having much of the material already written in the book minimizes the note taking effort. I

stole this teaching technique from my colleague Shane Henderson. It seems to have served

me well in different classes. Despite the gaps, instructors using the book should easily see

the structure I follow and the examples I use.

I started writing this material in 2016 during my first year in New York City. The first

draft formed the basis of the course ORIE 5380: Optimization Methods that I taught in

the same year. I cover all of the material in one semester. The course is usually taken by

operations research, computer science and information science students. We also do large

modeling exercises using Gurobi’s Python interface. It has been more than five years since
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I starting coming up with the examples in the book, as far as I remember, I constructed

all of the examples myself. The book directly uses the tableau to show strong duality, to

justify why we can fetch an optimal dual solution from the final primal tableau, and to derive

the economic interpretation of an optimal dual solution. Bob often uses such tableau-based

derivations in his book, and they are a great way to make a photographic argument. I

did not see the specific derivations I mentioned in other material. They are obviously not

revolutionary, but I hope someone will find them uplifting. There might be several other

derivations scattered in the book that may be new.

I sincerely thank Cornell University for the wonderful academic environment it

provides. Using this material with students over the years has been a great source of joy. I look

forward to doing so for many iterations.

Huseyin Topaloglu

New York City, NY

August, 2021
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Formulating a Linear Program and Excel’s Solver

In this chapter, we use examples to understand how we can formulate linear programs to

model decision-making problems and how we can use Microsoft Excel’s solver to obtain the

optimal solution to these linear programs.

1.1 Allocating Servers Between Two Customer Types

Assume that we have 1000 servers to lease to users on a daily basis. There are two types of

users that we serve, standard users and power users. Standard users pay $3 per day for each

server and consume 1 unit of energy per day for each server they use. Power users pay $4

per day for each server and consume 2 units of energy per day for each server they use. We

have 1600 units of energy available per day. We are interested in figuring out how many

servers to lease to standard and power users to maximize the revenue per day.

To formulate this problem as a linear program, we need to identify the decision variables

and express the objective function and the constraints as a function of the decision

variables. The decision variables are the quantities whose values we want to determine to

attain our objective. Our objective is to maximize the revenue per day. To attain this

objective, we need to determine the numbers of servers that we lease to standard and power

users. Thus, the decision variables for this problem are as follows.

After we identify the decision variables, we need to express the objective function as a

function of the decision variables. In this problem, our objective is to maximize the revenue

per day. We obtain a revenue of $3 for each standard user that we serve and we obtain

a revenue of $4 for each power user that we serve. As a function of the decision variables

above, we can express the revenue per day as 3xs + 4xp, which is our objective.

Next, we need to express the constraints as a function of the decision variables. The

number of available servers and the amount of energy available per day restrict our

decisions. As a function of our decision variables, the total number of servers that we lease

is given by xs + xp and the number of servers that we lease cannot exceed 1000. Thus,

one constraint we have is xs + xp ≤ 1000. Also, we consume 1 unit of energy per day for

each server that we leave to a standard user and 2 units of energy per day for each server

that we lease to a power user. So, as a function of our decision variables, the total energy

consumption per day is xs + 2xp and the total energy consumption per day cannot exceed

1600 units. Thus, another constraint we have is xs + 2xp ≤ 1600. Note that both of our

constraints are expressed with a less than or equal to sign, but we can express constraints
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with a greater than or equal to sign or with an equal to sign. Which constraint type we use

depends on the problem statement. Finally, the number of servers that we lease to each type

of users cannot be negative. Therefore, we have the constraints xs ≥ 0 and xp ≥ 0.

Putting the discussion above together, the optimization problem that we want to solve

can be expressed as

The set of equations above characterize an optimization problem. The first row shows

the objective function and max emphasizes the fact that we are maximizing our objective

function. The second, third and fourth rows show the constraints. The acronym st stands

for subject to and it emphasizes that we are maximizing the objective function subject to

the constraints in the second, third and fourth rows. Since the objective function and

the constraints are linear functions of the decision variables, the optimization problem

characterized by the set of equations above is called a linear program. We study linear

programs for a significant portion of this course, but there are optimization problems

whose objective functions and constraints are not necessarily linear functions of the decision

variables. Such optimization problems are called nonlinear programs.

A pair of values of the decision variables (xs, xp) that satisfies all of the constraints in

the linear program above is called a feasible solution to the linear program. For example, if

we set (xs, xp) = (200, 700), then we have 200 + 700 ≤ 1000, 200 + 2× 700 ≤ 1600, 200 ≥ 0

and 700 ≥ 0. Thus, the solution (200, 700) is a feasible solution to the linear program. This

solution provides an objective value of 3 × 200 + 4 × 700 = 3400. On the other hand, a

pair of values for the decision variables (xs, xp) that maximizes the objective function, while

satisfying all of the constraints is called an optimal solution. There is no feasible solution to

the linear program that provides an objective value exceeding the objective value provided

by the optimal solution. In certain problems, there can be multiple optimal solutions. We

will come back to the possibility of multiple optimal solutions later on.

In a few lectures, we discuss algorithms to find an optimal solution to the linear program

above. Before we go into these algorithms, we demonstrate how to use Microsoft Excel’s

solver to obtain an optimal solution. We set up a spreadsheet where two cells include the

values of our decision variables. In the figure below, we use cells A1 and B1 to include

the values of our decision variables. For the time being, we put dummy values of 1 and

1 into these cells. Next, we set up a formula that computes the objective function as a
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function of the decision variables. We use the cell A2 for this purpose, where we include

the formula = 3 * A1 + 4 * B1. Similarly, we set up formulas that compute the left side

of the constraints as a function of the decision variables. We use the cells A3 and A4 to set

up the formulas for the left sides of the first two constraints. In these cells, we include the

formulas = A1 + B1 and = A1 + 2 * B1. We do not need to set up formulas to deal with

the last two non-negativity constraints in the linear program above, since Microsoft Excel’s

solver has options to automatically enforce the non-negativity constraints. After setting up

the formulas, the spreadsheet should look like the one in the figure below.

Once we set up the formulas, we choose Solver under Tools menu. This action brings

up a window titled Solver Parameters. In the box labeled Set Objective, we put the

reference for the cell that includes the formula for the objective function, which is A2. In

the box labeled To, we choose Max since we want to maximize the value of the objective

function. In the box labeled By Changing Variable Cells, we put =$A$1:$B$1, which is

the range of cells that includes our decision variables. Next, we click on Add to specify the

constraints for our problem. This action brings up a window titled Add Constraints.

In the box labeled Cell Reference, we put A3, which includes the formula for the left

side of the first constraint. In the middle box, we keep <=. In the box labeled Constraint,

we put 1000, which is the right side of the first constraint. We click on Add, which adds the

first constraint into the linear program. In the same way, we include the second constraint

into the linear program. In particular, in the box labeled Cell Reference, we put A4,

which includes the formula for the left side of the second constraint. In the middle box, we

keep <=. In the box labeled Constraint, we put 1600, which is the right side of the second

constraint. We click on OK to note that we added all of the constraints that we want to

add. This action brings us back to the window titled Solver Parameters.

In this window, we make sure that Make Unconstrained Variables Non-Negative is

checked so that the decision variables are constrained to be non-negative. In the drop down

menu titled Select a Solving Method, we choose Simplex LP, which is the algorithm that

is appropriate for solving linear programs. After constructing the linear program as described

above, the window titled Solver Parameters should look like the one in the figure below. We

click on Solve in the window titled Solver Parameters. Microsoft Excel’s solver adjusts

the values in the cells A1 and B1, which include the values of our decision variables. A dialog

box appears to inform us that the optimal solution to the problem has been reached. The

values in the cells A1 and B1 correspond to the optimal values of our decision variables. For
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this problem, the optimal solution is given by (x∗s, x
∗
p) = (400, 600). The objective value

provided by this solution is 3× 400 + 4× 600 = 3600.

1.2 Displaying Ads to Website Visitors

Assume that we have three advertisers, A, B and C, running ads on a website that we

operate. Advertisers A, B and C would like their ads be seen by 2000, 3000 and 1000 viewers

per day, respectively. There are 3 visitor types, 1, 2 and 3, that visit our website. These

visitor types correspond to visitors in the age ranges [20, 30), [30, 40) and [40, 50). The

daily numbers of visitors of type 1, 2 and 3 that visit our website are 1500, 2000 and 2500,

respectively. Each visitor sees at most one ad. If a visitor of a certain type sees an ad from

a certain advertiser, then we generate a revenue that depends on the type of the visitor and

the advertiser. These revenues are given in the following table. For example, we obtain a

revenue of 2.5 when we show a visitor of type 1 an ad from advertiser C.

A B C

1 1.5 3.5 2.5

2 2 1 3

3 1.5 4 2

We are interested in figuring out how many ads from each advertiser to show to how many

viewers of each type to maximize the revenue per day. To formulate the problem as a linear

program, we use the following decision variables.
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We define seven other decision variables, x1C , x2A, x2B, x2C , x3A, x3B and x3C with similar

interpretations. As a function of the decision variables, the revenue obtained per day is

1.5x1A + 3.5x1B + 2.5x1C + 2 x2A + x2B + 3x2C + 1.5x3A + 4 x3B + 2 x3C , which is the

objective function that we want to maximize. Constraints for this problem require a little

bit more thought. We have 1500 viewers of type 1. The total number visitors of type 1 that

are shown an ad from advertisers A, B and C cannot exceed the daily number of visitors

of type 1. We can express this constraint as x1A + x1B + x1C ≤ 1500. By following the

same reasoning, we can write constraints for visitors of type 2 and 3, which can be expressed

as x2A + x2B + x2C ≤ 2000 and x3A + x3B + x3C ≤ 2500. One the other hand, advertiser

A would like its ad be seen by 2000 viewers. Thus, the total number of visitors of types

1, 2 and 3, that are shown an ad from advertiser A should be 2000. We can express this

constraint as x1A + x2A + x3A = 2000. By following the same reasoning, we can write

constraints for advertisers B and C, which can be expressed as x1B + x2B + x3B = 3000 and

x1C + x2C + x3C = 1000. Naturally, we need constraints to ensure that all of our decision

variables are non-negative. Putting it all together, the problem we are interested in can be

formulated as the linear program

Considering practical applications, the linear program above is actually not that

large. Many linear programs that appear in practical applications include thousands of

decision variables and thousands of constraints. Explicitly listing all of the decision variables

and the constraints in such linear programs can easily become tedious. To overcome this

difficulty, we often express a linear program in compact form. We use the example above to
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demonstrate how we can express a linear program in compact form. We represent the known

data of the problem as follows.

Rij = Revenue obtained by showing a visitor of type i an ad from advertiser j, i = 1, 2, 3,

j = A,B,C.

Vi = Daily number of visitors of type i, i = 1, 2, 3.

Dj = Daily number of viewers desired by advertiser j, j = A,B,C.

For example, we have R1A = 1.5, R3B = 4, V1 = 1500, V2 = 2000, V3 = 2500, DA = 2000,

DB = 3000, DC = 1000. Note that {Rij : i = 1, 2, 3, j = A,B,C}, {Vi : i = 1, 2, 3},
{Dj : j = A,B,C} are known data of the problem. Furthermore, we express the decision

variables as follows.

xij = Number of visitors of type i that are shown an ad from advertiser j, i = 1, 2, 3,

j = A,B,C.

As a function of our decision variables, we can write the daily revenue as∑3
i=1

∑C
j=ARij xij. The total number of visitors of type i that are shown an ad from

advertisers A, B and C is
∑C

j=A xij. Since the total number of visitors of type i that are

shown an ad from advertisers A, B and C cannot exceed the daily number of visitors of type

i, we have the constraints
∑C

j=A xij ≤ Vi for all i = 1, 2, 3. The total number of visitors of

types 1, 2 and 3 that are shown an ad from advertiser j is
∑3

i=1 xij. Since the total number

of visitors of types 1, 2 and 3 that are shown an ad from advertiser j should be equal to the

daily number of viewers desired advertiser j, we have the constraints
∑3

i=1 xij = Dj for all

j = A,B,C. Putting it all together, the problem we are interested in can be formulated as

the linear program
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Geometry of Linear Programming

In this chapter, we build some intuition into how we can solve a linear program by

understanding the geometry behind a linear programming problem.

2.1 Plotting the Set of Feasible Solutions

We use the following example to understand how to plot the set of feasible solutions of

a linear program. Assume that we provide computing services to two types of customers,

CPU-intensive and memory-intensive. We have a total of 1000 CPU’s and 1200 GB of

memory at our disposal. Each CPU-intensive customer uses 2 CPU’s and 1 GB of memory

for a whole day and pays $3 per day. Each memory-intensive customer uses 1 CPU and 2 GB

of memory for a whole day and pays $4 per day. Due to energy limits, we cannot serve more

than 400 CPU-intensive customers on a given day. We want to decide how many customers

of each type to serve daily to maximize the revenue. To formulate the problem as a linear

program, we use two decision variables defined as follows.

x1 = Number of CPU-intensive customers that we serve per day.

x2 = Number of memory-intensive customers that we serve per day.

We can find the numbers of the two types customers to serve to maximize the revenue per

day by solving the linear program

The objective function above accounts for the revenue that we obtain per day. The first

constraint ensures that the total number of CPU’s used by the two customer types on each

day does not exceed the number of available CPU’s. The second constraint ensures that

the total amount of memory used by the two customer types on each day does not exceed

the available memory. The third constraint ensures that we do not serve more than 400

CPU-intensive customers per day.

The set of (x1, x2) pairs that satisfy all of the constraints is called the set of feasible

solutions to the linear program. To understand the set of feasible solutions to the linear

program above, we plot the set of (x1, x2) pairs that satisfy each constraint. Consider the

constraint 2 x1+x2 ≤ 1000. Note that 2x1+x2 = 1000 describes a line in the two-dimensional
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plane. We plot this line in the left side of the figure below. The point (x1, x2) = (0, 0) is to

the lower left side of this line and it satisfies 2 × 0 + 0 ≤ 1000. Therefore, all points to the

lower left side of the line satisfy the constraint 2x1 + x2 ≤ 1000. We shade these points in

light blue. Similarly, consider the constraint x1 + 2x2 ≤ 1200. As before, x1 + 2x2 = 1200

describes a line in the two-dimensional plane. We plot this line in the right side of the

figure below. The point (x1, x2) = (0, 0) is to the lower left side of this line and it satisfies

0 + 2 × 0 ≤ 1200. So, all points to the lower left side of the line satisfy the constraint

x1 + 2x2 ≤ 1200. We shade these points in light red.
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In the figure below, we take the intersection of the light blue and light red regions in the

previous figure, which means that the set of points that satisfy both of the constraints

2x1 + x2 ≤ 1000 and x1 + 2x2 ≤ 1200 is given by the light orange region below.
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Carrying out the same argument for the constraints x1 ≤ 400, x1 ≥ 0 and x2 ≥ 0, it follows

that the set of points that satisfy all of the constraints in the linear program is given by the

8 c© 2016-2021 Huseyin Topaloglu



region shaded in light green below.

Any (x1, x2) pair in the light green region above is a feasible solution to our linear

program. We want to find the feasible solution that maximizes the objective function.

2.2 Checking for a Target Objective Function Value

Before finding an optimal solution to the linear program, we consider the question of whether

there exists a feasible solution that provides a certain target revenue. For example, consider

the question of whether there exists a feasible solution that provides a revenue of 900. As a

function of our decision variables, the revenue is given by 3x1 +4x2. So, we are interested in

whether there exists (x1, x2) in the set of feasible solutions such that 3x1 + 4x2 = 900. Note

that 3x1 + 4x2 = 900 describes a line in the two-dimensional plane. We plot this line in

figure on the left side below in thin black. Thus, to check whether there exists (x1, x2) in

the set of feasible solutions such that 3x1 + 4 x2 = 900, we need to check whether there are

any points (x1, x2) that lie both in the set of feasible solutions and on the line 3 x1 + 4x2 =

900. In the figure on the left side below, the set of feasible solutions is given by light green

region. Thus, there are indeed points that lie both in the set of feasible solutions and on the

line 3 x1 + 4x2 = 900. These points are colored in thick black. In other words, since the

intersection between the set of feasible solutions and the line 3 x1 + 4x2 = 900 is nonempty,
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we can achieve a revenue of 900 by using a feasible solution to the linear program. So, the

optimal revenue in the linear program must be at least 900.

Similarly, consider the question of whether there exists a feasible solution that provides

a revenue of 3000. In other words, we are interested in whether there exists (x1, x2) in the

set of feasible solutions such that 3 x1 + 4x2 = 3000. In the figure on the right side below,

we plot the line 3x1 + 4 x2 = 3000 in black. We observe that there are no points that lie

both in the set of feasible solutions and on the line 3x1 + 4x2 = 3000. Therefore, there is

no feasible solution that provides a revenue of 3000, since the intersection between the set

of feasible solutions and the line 3x1 + 4x2 = 3000 is empty.
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Observe that the lines 3 x1 + 4x2 = 900 and 3x1 + 4x2 = 3000 are all parallel to each

other. Therefore, to check whether there exists a feasible solution that provides a revenue

of K, we can shift the line 3x1 + 4x2 = 900 parallel to itself until we obtain the line

3x1 +4x2 = K. If the line 3x1 +4x2 = K is still in contact with the set of feasible solutions,

then there exists a feasible solution that provides a revenue of K.

2.3 Finding an Optimal Solution

From the discussion in the previous section, there exists a feasible solution that provides a

revenue of 900, which was verified by showing that the intersection between the set of feasible

solutions and the line 3 x1 + 4 x2 = 900 is nonempty. So, the optimal revenue should be at

least 900. Similarly, there does not exists a feasible solution that provides a revenue of 3000,

which was verified by showing that the intersection between the set of feasible solutions and

the line 3x1 + 4x2 = 3000 is empty.

To find the optimal revenue, we need to find the largest value of K such that the

intersection between the set of feasible solutions and the line 3 x1+4x2 = K is nonempty. The

lines 3x1 + 4x2 = K for different values of K are parallel to each other and these lines move
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to the upper right side of the figure below as K increases. Thus, to find the optimal revenue,

we need to move the line 3 x1 + 4x2 = K to the upper right side as much as possible

while making sure that the intersection between the set of feasible solutions and the line

3x1 + 4x2 = K is nonempty. This approach yields the line plotted in black in the figure

below, which barely touches the set of feasible solutions at the black dot.
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The coordinates of the black dot in the figure above gives the optimal solution to the

problem. To compute these coordinates, we observe that the black dot lies on the lines

that represent the first two constraints in the linear program and these lines are given

by the equations 2 x1 + x2 = 1000 and x1 + 2x2 = 1200. Solving these two equations

simultaneously, we obtain x1 = 800/3 and x2 = 1400/3. Therefore, the optimal solution to

the linear program is given by (x∗1, x
∗
2) = (800/3, 1400/3). The revenue from this solution is

3x∗1 + 4x∗2 = 3× 800
3

+ 4× 1400
3

= 8000
3

, which is the optimal objective value.

A key observations from the discussion above is that the optimal solution to a linear

program is achieved at one of the corner points of the set of feasible solutions. This

observation is critical for the following reason. There are infinitely many possible feasible

solutions to the linear program. So, we cannot check the objective value provided by each

possible feasible solution. However, there are only finitely many possible corner points of the

set of feasible solutions. If we know that the optimal solution to a linear program occurs at

one of the corner points, then we can check the objective value achieved at the corner points

and pick the corner point that provides the largest objective value. Using this observation,

we will develop an algorithm to efficiently solve linear programs when there are more than

two decision variables and we cannot even plot the set of feasible solutions.

It is also useful to observe that in the optimal solution (x∗1, x
∗
2) = (800/3, 1400/3), we

have x∗1 < 400. Thus, the third constraint in the linear program does not play a role in

determining the optimal solution, which implies that the optimal solution would not change

even if we dropped this constraint from the linear program.
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Assume for the moment that the objective function of the linear program were 2 x1 +4x2,

instead of 3x1 + 4 x2. We leave the constraints unchanged. In the figure below, we plot the

line 2x1 + 4 x2 = 2400 and the set of feasible solutions. Notice that all points that are

colored in thick black lie both in the set of feasible solutions and on the line 2x1 + 4x2 =

2400. Furthermore, for any value of K > 2400, the intersection between the set of feasible

solutions and the line 2x1 + 4x2 = K is empty. Therefore, the largest revenue that we can

obtain is 2400 and any one of the points colored in thick black provides this revenue. In

other words, if the objective function were 2x1 + 4 x2, then the linear program would have

multiple optimal solutions and all of the points colored in thick black in the figure below

would be an optimal solution.
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Linear Algebra Concepts

In this chapter, we review some linear algebra concepts that will become useful when we

develop an algorithm to solve linear programs.

3.1 Matrices and Vectors

An m× n matrix A is characterized by the entries {aij : i = 1, . . . ,m, j = 1, . . . , n}, where

aij is the entry in row i and column j. Thus, a matrix A ∈ <m×n is represented as

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

...
...

...
...

am1 am2 am3 . . . amn

 .
We denote the transpose of matrix A by At. If A = {aij : i = 1, . . . ,m, j = 1, . . . , n} ∈ <m×n,

then At = {aji : j = 1, . . . , n, i = 1, . . . ,m} ∈ <n×m. For example, if we have

A =


1 2 3

3 1 7

1 4 2

4 5 1

 , then At =

 1 3 1 4

2 1 4 5

3 7 2 1

 .
A matrix I = {Iij : i = 1, . . . , n, j = 1, . . . , n} ∈ <n×n is called the n× n identity matrix if

its diagonal entries are 1 and off-diagonal entries are 0. The 4× 4 identity matrix is
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
We refer to an n × 1 matrix as a vector in <n. A vector x ∈ <n is characterized by the

entries {xj : j = 1, . . . , n}. Thus, a vector x ∈ <n is represented as

x =


x1

x2

...

xn

 .
Note that we follow the convention that a vector is always a column vector, which is

essentially a matrix with one column and multiple rows.
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3.2 Matrix Addition and Multiplication

If we have two matrices that are of the same dimension, then we can add them. To

demonstrate matrix addition, we have
1 2 −1

3 1 7

1 4 2

4 5 1

+


2 4 9

1 3 8

7 7 1

2 −1 0

 =


3 6 8

4 4 15

8 11 3

6 4 1

 .
So, if A = {aij : i = 1, . . . ,m, j = 1, . . . , n} and B = {bij : i = 1, . . . ,m, j = 1, . . . , n},
then A + B = {aij + bij : i = 1, . . . ,m, j = 1, . . . , n}. Similar to addition, we can subtract

two matrices that are of the same dimension. The only difference is that we subtract the

corresponding entries rather than adding them.

We can multiply an m×r matrix with an r×n matrix to obtain an m×n matrix. If A =

{aik : i = 1, . . . ,m, k = 1, . . . , r} ∈ <m×r and B = {bkj : k = 1, . . . , r, j = 1, . . . , n} ∈ <r×n,

then AB = {
∑r

k=1 aik bkj : i = 1, . . . ,m, j = 1, . . . , n} ∈ <m×n. To demonstrate matrix

multiplication, we have

 1 3 4 2

2 4 1 3

5 1 2 3




2 3

1 1

1 −1

4 2

 =

 17 6

21 15

25 20

 .
To verify the computation above, note that the entry in row 1 and column 1 of the product

matrix is
∑4

k=1 a1k bk1 = 1 × 2 + 3 × 1 + 4 × 1 + 2 × 4 = 17. Similarly, the entry in row 3

column 2 of the product matrix is
∑4

k=1 a3k bk2 = 5 × 3 + 1 × 1 − 2 × 1 + 3 × 2 = 20. The

other entries can be verified in a similar fashion.

We can write a sum of the form a1 x1+a2 x2+a3 x3+a4x4 as the product of two vectors. In

particular, considering the vectors

a =


a1

a2

a3

a4

 and x =


x1

x2

x3

x4

 ,
we have a1 x1 + a2 x2 + a3 x3 + a4x4 = atx. We can use matrix multiplication to represent a

system of linear equations. For example, consider the system of equations

5x1 + 6x2 + 3 x3 + x4 = 7

6x1 + 2x2 + 4 x4 = 8

9x1 + 6 x3 + 2 x4 = 1.
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Using a matrix to represent the coefficients on the left side above, we can write this system

of equations equivalently as

 5 6 3 1

6 2 0 4

9 0 6 2



x1

x2

x3

x4

 =

 7

8

1

 .
Matrix multiplication is not a commutative operation. So, we do not have AB = BA. If I

is the identity matrix of appropriate dimensions, then AI = A and IA = A. Also, we have

(AB)t = BtAt.

3.3 Matrix Inversion

For an n× n matrix A, we denote its inverse by A−1. The inverse of an n× n matrix is also

an n× n matrix. We have

AA−1 = A−1A = I,

where I is the identity matrix. Computing the inverse of a matrix is related to row

operations. Consider computing the inverse of the matrix

A =

 1 2 2

2 −1 1

1 0 2

 .
To compute the inverse of this matrix, we augment this matrix with the identity matrix on

the right side to obtain the matrix

A row operation refers to multiplying one row of a matrix with a constant or adding a

multiple of one row to another row. To compute the inverse of the 3 × 3 matrix A above,

we carry out a sequence of row operations on the matrix [A | I] to bring [A | I] in the form

of [I |B]. In this case, B is the inverse of A. Consider the matrix [A | I] given by
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Multiply the first row by −2 and add to the second row. Also, multiply the first row by −1

and add to the third row. Thus, we get

Multiply the second row by −1/5. Thus, we get

Multiply the second row by −2 and add to the first row. Also, multiply the second row by

2 and add to the third row. Thus, we get

Multiply the third row by 5/6. Thus, we get

Multiply the third row by −4/5 and add to the first row. Also, multiply the third row by

−3/5 and add to the second row. Thus, we get

Simplifying the fractions, we have
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Note that the last matrix above is of the form [I |B]. Therefore, it follows that the inverse

of the matrix  1 2 2

2 −1 1

1 0 2

 is

 1
3

2
3
−2

3
1
2

0 −1
2

−1
6
−1

3
5
6

 .
To check that our computations are correct, we can multiply the two matrices above to see

that we get the identity matrix. In particular, we have 1 2 2

2 −1 1

1 0 2

 1
3

2
3
−2

3
1
2

0 −1
2

−1
6
−1

3
5
6

 =

 1 0 0

0 1 0

0 0 1

 .
Matrix inversion is useful to solve a system of linear equations. To demonstrate, consider

the system of equations

x1 + 2x2 + 2 x3 = 12

2x1 − x2 + x3 = 4

x1 + 2 x3 = 18,

which is equivalent to  1 2 2

2 −1 1

1 0 2

 x1

x2

x3

 =

 12

4

8

 .
Using A ∈ <3×3 to denote the matrix on the left side, x ∈ <3×1 to denote the vector on the

left side and b ∈ <3×1 to denote the vector on the right side, the equation above is of the

form Ax = b. Multiplying both side of the this equality by A−1, we get

A−1Ax = A−1 b =⇒ I x = A−1 b =⇒ x = A−1 b.

Thus, the solution to the system of equations above is given by x = A−1 b.

We emphasize that not every matrix has an inverse.

3.4 Systems of Equations and Row Operations

Consider the set of points that satisfy the system of equations 2x1 + x2 = 4 and −x1 + x2 =

1. Each of these equations characterizes a line in the two-dimensional plane. Plotting these

lines in the figure below, we observe that the set of points that satisfy the system of equations

2x1 + x2 = 4 and −x1 + x2 = 1 is a single point given by (x1, x2) = (1, 2).
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We apply an arbitrary sequence of row operations on the system of equations

2x1 + x2 = 4

−x1 + x2 = 1.

For example, add the first row to the second row to get

2x1 + x2 = 4

x1 + 2 x2 = 5.

Multiply the second row by −4/5 and add to the first row to get

6
5
x1 − 3

5
x2 = 0

x1 + 2 x2 = 5.

Noting the last system of equations above, consider the set of points that satisfy the system

of equations 6
5
x1 − 3

5
x2 = 0 and x1 + 2 x2 = 5. Plotting the lines that are characterized by

each of these equations in the figure below, we observe that the set of points that satisfy

the system of equations 6
5
x1 − 3

5
x2 = 0 and x1 + 2 x2 = 5 is the single point given by

(x1, x2) = (1, 2). Observe that this is the same point that satisfy the system of equations

that we started with. Therefore, the critical observation from this discussion is that the set

of points that satisfy a system of equations does not change when we apply any sequence of

row operations to a system of equations.
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We keep on applying row operations on the last system of equations, which is given by

6
5
x1 − 3

5
x2 = 0

x1 + 2 x2 = 5.

Multiply the first row by −5/6 and add to the second row to get

6
5
x1 − 3

5
x2 = 0

+ 5
2
x2 = 5.

Multiply the second row by 6/25 and add to the first row to get

6
5
x1 = 6

5
5
2
x2 = 5.

Multiply the first row by 5/6 and the second row by 2/5 to get

x1 = 1

x2 = 2.

The last system of equations is obtained by applying a sequence of row operations on the

original system of equations. We know that the set of points that satisfy a system of equations

does not change when we apply any row operations to the system of equations. Thus, the

set of points that satisfy the original system of equations

2x1 + x2 = 4

−x1 + x2 = 1
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is the same as the set of points that satisfy the last system of equations

x1 = 1

x2 = 2.

We can immediately see that the set of points that satisfy the last system of equations is the

single point (x1, x2) = (1, 2). Therefore, the set of points that satisfy the original system of

equations is also the single point (x1, x2) = (1, 2). This discussion shows why row operations

are useful to solve a system of equations.
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Simplex Method for Solving Linear Programs

Understanding the geometry of linear programs allowed us to solve small linear programs by

using graphical methods. However, this approach becomes ineffective when the number of

decision variables exceeds two or three. In this chapter, we develop the simplex method for

solving large linear programs.

4.1 Key Idea of the Simplex Method

Consider the linear program

We want to solve this linear program without using graphical methods. The first thing

we do is to introduce the decision variable w1 to represent how much the right side

of the first constraint above exceeds the left side of the constraint. That is, we have

w1 = 1000 − 2x1 − x2. If (x1, x2) is a feasible solution to the linear program above, then

we must have w1 ≥ 0 and w1 = 1000 − 2x1 − x2. We refer to w1 as the slack variable

associated with the first constraint. Similarly, we associate the slack variable w2 with the

second constraint so that w2 = 1200 − x1 − 2x2. Thus, if (x1, x2) is a feasible solution to

the linear program above, then we must have w2 ≥ 0 and w2 = 1200 − x1 − 2x2. Finally,

we associate the slack variable w3 with the third constraint so that w3 = 400 − x1. So, if

(x1, x2) is a feasible solution to the linear program above, then we must have w3 ≥ 0 and

w3 = 400− x1. In this case, we can write the linear program above equivalently as
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Since the two linear programs above are equivalent to each other, we focus on solving the

second linear program. The advantage of the second linear program is that its constraints

are of equality form. The simplex method expresses the system of equations associated with

the second linear program above as

3x1 + 4x2 = z

2x1 + x2 + w1 = 1000

x1 + 2x2 + w2 = 1200

x1 + w3 = 400,

where the first row corresponds to the objective function and the other three rows correspond

to the three constraints. The system of equations captures all the information that we

have on the linear program. We do not explicitly express the non-negativity constraints

on the decision variables, but we always keep in mind that all of the decision variables are

constrained to be non-negative.

We make two observations for the system of equations above. First, if we keep on applying

row operations to the system of equations, then the system of equations that we obtain

through the row operations remain equivalent to the original system of equations. Second,

the decision variable w1 appears only in the first constraint row with a coefficient of 1

and nowhere else. Similarly, w2 and w3 respectively appear only in the second and third

constraint rows with a coefficient of 1 and nowhere else. Thus, it is simple to spot a solution

(x1, x2, w1, w2, w3) and z to the system of equations above. We can set

w1 = 1000, w2 = 1200, w3 = 400, x1 = 0, x2 = 0, z = 0.

Note that the solution above is feasible to the linear program. Also note that the value of

the decision variable z corresponds to the value of the objective function provided by the

solution above. Now, we iteratively apply row operations to the system of equations above

to obtain other solutions that are feasible to the linear program and provide larger objective

function values. As we apply the row operations, we make sure that there is always a set of

three variables such that each one of these variables appear in only one constraint row with

a coefficient of 1. Furthermore, these variables do not appear in the objective function row

and each of these three variables appear in a different constraint row. For example, in the

system of equations above, each one of the three decision variables w1, w2 and w3 appear

in different constraint rows with a coefficient of 1 and they do not appear in the objective

function row. We start with the system of equations
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For this system of equations, we have the solution w1 = 1000, w2 = 1200, w3 = 400, x1 =

0, x2 = 0, z = 0. From the objective function row, for each unit of increase in the decision

variable x1, the objective function increases by 3 units, whereas for each unit of increase

in the decision variable x2, the objective function increases by 4 units. Therefore, we will

increase the value of the decision variable x2.

The next question is how much we can increase the value of the decision variable x2 while

making sure that the solution on hand remains feasible and all of the decision variables remain

non-negative. Considering the first constraint row above, w1 is the decision variable that

appears only in this row. Thus, if we increase x2, then we can make up for the increase in

x2 by a decrease in w1 to make sure that the first constraint remains satisfied. However, if

we increase x2 too much, then the decision variable w1 may have to go negative. Note that

we can increase x2 up to 1000, while making sure that w1 remains non-negative.

Similarly, considering the second constraint row, w2 is the decision variable that appears

only in this row. Thus, if we increase x2, then we can make up for the increase in x2 by

a decrease in w2 to make sure that the second constraint remains satisfied. Again, if we

increase x2 too much, then the decision variable w2 may go negative. Note that we can

increase x2 up to 600, while making sure that w2 remains non-negative.

Lastly, the decision variable x2 does not appear in the third constraint row

above. Therefore, we can increase x2 as much as we want and the third constraint would

remain satisfied. Considering the preceding discussion, since min{1000, 600} = 600, we can

increase x2 at most up to 600 while making sure that all of the constraints remain satisfied

and all of the decision variables remain non-negative.

If we increase x2 up to 600, then the new value of the decision variable x2 is determined

by the second constraint row. Thus, we carry out row operations in the system of equations

above to make sure that x2 appears only in the second constraint row with a coefficient of

1. In particular, we multiply the second constraint row by −2 and add it to the objective

function row. We multiply the second constraint row by−1/2 and add it to the first constraint

row. Finally, we multiply the second constraint row by 1/2. Through these row operations,

we obtain the system of equations

We just carried row operations. So, the system of equations above is equivalent to the

original one. Each one of the decision variables w1, x2 and w3 appears only in each one

of the three constraint rows above and nowhere else. Thus, it is simple to spot a solution
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(x1, x2, w1, w2, w3) and z to the system of equations above. We can set

w1 = 400, x2 = 600, w3 = 400, x1 = 0, w2 = 0, z = 2400.

The solution above is feasible to the linear program. It is actually not surprising that this

solution is feasible, since this solution is obtained from the original system of equations by

using row operations. Furthermore, the value of the decision variable z corresponds to the

value of the objective function provided by the solution above. From the objective function

row, for each unit of increase in the decision variable x1, the objective function increases by

1 unit, whereas for each unit of increase in the decision variable w2, the objective function

decreases by 2 units. Therefore, we will increase the value of x1.

Next, we ask how much we can increase the value of the decision variable x1 while making

sure that the other variables stay non-negative. Considering the first constraint row above,

w1 is the decision variable that appears only in this row. Thus, if we increase x1, then we will

make up for the increase in x1 by a decrease in w1. We can increase x1 up to 400/3
2

= 800/3,

while making sure that w1 remains non-negative.

Considering the second constraint row above, x2 is the decision variable that appears

only in this row. Thus, if we increase x1, then we will make up for the increase in x1 by a

decrease in x2. We can increase x1 up to 600/1
2

= 1200, while making sure that x2 remains

non-negative.

Considering the third constraint row above, w3 is the decision variable that appears only

in this row. Thus, if we increase x1, then we will make up for the increase in x1 by a decrease

in w3. We can increase x1 up to 400, while making sure that w3 remains non-negative. Since

min{800/3, 1200, 400} = 800/3, we can increase x1 at most up to 800/3 while making sure

that all of the variables remain non-negative and all of the constraints remain satisfied.

When we increase x1 up to 800/3, the new value of the decision variable x1 is determined

by the first constraint. Therefore, we carry out row operations in the system of equations

above to make sure that x1 appears only in the first constraint row with a coefficient of 1. So,

we multiply the first constraint row by −2/3 and add it to the objective row. We multiply

the first constraint row by −1/3 and add it to the second constraint row. We multiply the

first constraint row by −2/3 and add it to the third constraint row. Finally, we multiply the

first constraint row by 2/3. These row operations yield the system of equations
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In the system of equations above, since each one of the decision variables x1, x2 and w3

appears only in each of the three constraints above, the solution (x1, x2, w1, w2, w3) and z

corresponding to the system of equations above is

x1 =
800

3
, x2 =

1400

3
, w3 =

400

3
, w1 = 0, w2 = 0, z =

8000

3
.

The solution above is a feasible solution to the linear program. Furthermore, from the

objective function row of the last system of equations, we observe that increasing the value

of one of the decision variables w1 and w2 decreases the objective function. So, we stop and

conclude that the last solution above is an optimal solution to the linear program. In other

words, the solution (x1, x2, w1, w2, w3) = (800
3
, 1400

3
, 0, 0, 400

3
) is an optimal solution providing

the optimal objective value 8000
3

for the linear program.

Throughout the iterations of the simplex method, we visited three solutions. The first

solution is (x1, x2, w1, w2, w3) = (0, 0, 1000, 1200, 400) with an objective value of 0. The

second solution is (x1, x2, w1, w2, w3) = (0, 600, 400, 0, 400) with an objective value of

2400. The third solution is (x1, x2, w1, w2, w3) = (800
3
, 1400

3
, 0, 0, 400

3
) with an objective value

of 8000
3

. Therefore, at each iteration of the simplex method, we improve the objective value

provided by the current solution. In the figure below, we show the set of feasible solutions

to the linear program and the pairs (x1, x2) corresponding to each of the solutions visited by

the simplex method. Note that the solutions visited by the simplex method correspond to

the corner points of the set of feasible solutions.
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4.2 Some Observations and Terminology

At each iteration, the simplex method visits a feasible solution to the linear program. We

progressively increase the value of the objective function at each iteration. In particular,

at the beginning of each iteration, we inspect the equation in the objective function row,

pick the variable with the largest positive coefficient in this row and increase the value of

this decision variable. Picking any decision variable with a positive coefficient in objective

function row would be enough to increase the objective function value from one iteration

to the next. Picking the variable with the largest positive coefficient is a heuristic for

obtaining the largest increase in the objective function value at each iteration, but it does

not necessarily guarantee that the simplex method will find the optimal solution in the

quickest possible manner. Sometimes picking a variable with a positive, but not the largest

positive, coefficient may allow finding the optimal solution more quickly.

Assume that we have m constraints and n decision variables in the original linear program

with inequality constraints. Once we add the slack variables, we have a total of n+m decision

variables. At each iteration of the simplex method, there exists a set of m decision variables

such that each one of these decision variables appears with a coefficient of 1 in only one

constraint row and a coefficient of 0 in all other constraint rows and in the objective function

row. We refer to these decision variables as basic variables. The remaining decision variables

are referred to as non-basic variables. If we have m constraints and n decision variables in

the original linear program, then we have m basic variables and n non-basic variables at

each iteration. We emphasize that each basic variable appears with a coefficient of 1 in a

different constraint row. To give an example, after applying the first set of row operations

in the previous section, we obtained the system of equations

x1 − 2w2 = z − 2400
3
2
x1 + w1 − 1

2
w2 = 400

1
2
x1 + x2 + 1

2
w2 = 600

x1 + w3 = 400.

In the system of equations above, the basic variables are w1, x2 and w3. The non-basic

variables are x1 and w2. The non-basic variables always take the value of zero. The values of

the basic variables are given by the right side of the constraint rows. There is one constraint

row that is associated with each basic variable. For example, the first constraint row above is

associated with the basic variable w1, whereas the second constraint row above is associated

with the basic variable x2.

As an alternative way to obtain the values of the basic variables at each iteration, we

can go back to the equality constraints in the original linear program, set the values of the

non-basic variables to zero and solve for the values of the m basic variables by using the m

constraints. For example, in the system of equations above, the basic variables are w1, x2

and w3, whereas the non-basic variables are x1 and w2. To obtain the values of the basic

variables, we can go back to the equality constraints in the original linear program and set
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x1 = 0 and w2 = 0 to obtain the system of equations x2 + w1 = 1000, 2x2 = 1200 and

w3 = 400. Solving this system of equations, we obtain x2 = 600, w1 = 400 and w3 = 400,

which is precisely the solution given by the right side of the constraint rows in the system

of equations above.

At each iteration, one decision variable that was non-basic before becomes basic and one

decision variable that was basic before becomes non-basic. For example, in the system of

equations above, the basic variables are w1, x2 and w3, whereas the non-basic variables are x1

and w2. If we apply row operations to make sure that x1 appears only in the first constraint

row with a coefficient of 1, then we obtain the system of equations

− 2
3
w1 − 5

3
w2 = z − 8000

3

x1 + 2
3
w1 − 1

3
w2 = 800

3

+ x2 − 1
3
w1 + 2

3
w2 = 1400

3

− 2
3
w1 + 1

3
w2 + w3 = 400

3
.

In the system of equations above, the basic variables are x1, x2 and w3, whereas the non-basic

variables are w1 and w2. Thus, through the row operations that we applied, the variable

x1 became basic and the variable w1 became non-basic. At any iteration, the variable that

becomes basic is called the entering variable. The variable that becomes non-basic is called

the leaving variable. Solutions with m basic variables and n non-basic variables are called

basic solutions. The solutions visited by the simplex method are basic solutions.

4.3 Simplex Method Applied on a Larger Example

Consider the linear program

max 5x1 + 3x2 − x3

st 4x1 − x2 + x3 ≤ 6

3x1 + 2x2 + x3 ≤ 9

4x1 + x2 − x3 ≤ 3

x1, x2, x3 ≥ 0.

Using the slack variables, w1, w2 and w3, we can write the linear program above as
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Thus, we start with the system of equations

5x1 + 3 x2 − x3 = z

4x1 − x2 + x3 + w1 = 6

3x1 + 2 x2 + x3 + w2 = 9

4x1 + x2 − x3 + w3 = 3,

In the system of equations above, the basic variables are w1, w2 and w3, whereas the non-

basic variables are x1, x2 and x3. The values of the variables are given by

w1 = 6, w2 = 9, w3 = 3, x1 = 0, x2 = 0, x3 = 0, z = 0.

From the objective row, we observe that each unit of increase in x1 increases the objective

function by 5 units. Each unit of increase in x2 increases the objective function by 3

units. Each unit of increase in x3 decreases the objective function by 1 unit. Thus, we

will increase the value of x1.

Considering the first constraint row, w1 is the decision variable that appears only

in this row. Thus, if we increase x1, then we will make up for the increase in x1 by

a decrease in w1. We can increase x1 up to 6/4, while making sure that w1 remains

non-negative. Considering the second constraint row, w2 is the decision variable that appears

only in this row. Thus, if we increase x1, then we will make up for the increase in x1 by

a decrease in w2. We can increase x1 up to 9/3 = 3, while making sure that w2 remains

non-negative. Considering the third constraint row, w3 is the decision variable that appears

only in this row. Thus, if we increase x1, then we will make up for the increase in x1

by a decrease in w3. We can increase x1 up to 3/4, while making sure that w3 remains

non-negative. By the preceding discussion, since min{6/4, 3, 3/4} = 3/4, we can increase x1

up to 3/4 while making sure that all of the other decision variables remain non-negative.

If we increase x1 up to 3/4, then the new value of x1 is determined by the third constraint

row. Thus, we carry out row operations in the system of equations above to make sure that

x1 appears only in the third constraint row with a coefficient of 1. In other words, the

entering variable is x1 and the leaving variable is w3. So, we multiply the third constraint

row by −5/4 and add it to the objective function row. We multiply the third constraint row

by −1 and add it to the first constraint row. We multiply the third constraint row by −3/4

and add it to the second constraint row. Finally, we multiply the third constraint row by

1/4. In this case, we obtain the system of equations
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The basic variables above are w1, w2 and x1. The non-basic variables are x2, x3 and w3. The

values of the variables are given by

w1 = 3, w2 =
27

4
, x1 =

3

4
, x2 = 0, x3 = 0, w3 = 0, z =

15

4
.

We will now increase the value of x2 since each unit of increase in x2 increases the objective

function by 7/4 units.

Considering the first constraint row, w1 is the decision variable that appears only in

this row. We also observe that x2 appears with a negative constraint coefficient in the first

constraint row. Thus, if we increase x2, then we can make up for the increase in x2 by

increasing w1 to make sure that the first constraint remains satisfied. Thus, we can increase

x2 as much as we want without running into the danger of w1 going negative, which implies

that the first constraint row does not impose any restrictions on how much we can increase

the value of x2.

Considering the second constraint row, w2 is the decision variable that appears only in

this row. Thus, if we increase x2, then we can make up for the increase in x2 by a decrease in

w2. We can increase x2 up to 27
4
/5

4
= 27/5, while making sure that w2 remains non-negative.

Considering the third constraint row, x1 is the decision variable that appears only in this

row. Thus, if we increase x2, then we can make up for the increase in x2 by a decrease in

x1. We can increase x2 up to 3
4
/1

4
= 3, while making sure that x1 remains non-negative. By

the preceding discussion, since min{27/5, 3} = 3, we can increase x2 up to 3.

If we increase x2 up to 3, then the new value of x2 is determined by the third constraint

row. Thus, we carry out row operations in the system of equations above to make sure

that x2 appears only in the third constraint row with a coefficient of 1. In other words, the

entering variable is x2 and the leaving variable is x1. So, we multiply the third constraint

row by −7 and add it to the objective function row. We multiply the third constraint row

by 8 and add it to the first constraint row. We multiply the third constraint row by −5 and

add it to the second constraint row. Finally, we multiply the third constraint row by 4. In

this case, we obtain the system of equations

The basic variables above are w1, w2 and x2. The non-basic variables are x1, x3 and w3. The

values of the variables are given by

w1 = 9, w2 = 3, x2 = 3, x1 = 0, x3 = 0, w3 = 0, z = 9.
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We will increase the value of x3 since each unit of increase in x3 increases the objective

function by 2 units.

Considering the first constraint row, x3 does not appear in this row. Thus, we can

increase x3 as much as we want and the first constraint would remain satisfied. Considering

the second constraint row, w2 is the decision variable that appears only in this row. Thus,

if we increase x3, then we can make up for the increase in x3 with a decrease in w2. We can

increase x3 up to 3/3 = 1 while making sure that w2 remains non-negative.

Considering the third constraint row, x2 is the decision variable that appears only in

this row. We also observe that x3 appears with a negative constraint coefficient in the third

constraint row. Thus, if we increase x3, then we can make up for the increase in x3 by

increasing x2 to make sure that the third constraint remains satisfied. Thus, we can increase

x3 as much as we want without running into the danger of x2 going negative, which implies

that the third constraint row does not impose any restrictions on how much we can increase

the value of x3. By the preceding discussion, we can increase x3 up to 1.

If we increase x3 up to 1, then the new value of x3 is determined by the second constraint

row. Thus, we carry out row operations in the system of equations above to make sure that

x3 appears only in the second constraint row with a coefficient of 1. In other words, the

entering variable is x3 and the leaving variable is w2. We multiply the second constraint row

by −2/3 and add it to the objective function row. We multiply the second constraint row

by 1/3 and add it to the third constraint row. Finally, we multiply the second constraint

row by 1/3. So, we obtain the system of equations

The basic variables above are w1, x3 and x2. The non-basic variables are x1, w2 and w3. The

values of the variables are given by

w1 = 9, x3 = 1, x2 = 4, x1 = 0, w2 = 0, w3 = 0, z = 11.

From the last system of equations, we observe that increasing the value of one of the decision

variables x1, w2 and w3 decreases the objective function value, since these variables have

negative coefficients in the objective function row. So, we stop and conclude that the last

solution above is an optimal solution to the linear program. In other words, the solution

(x1, x2, x3, w1, w2, w3) = (0, 4, 1, 9, 0, 0) is an optimal solution providing the optimal objective

value 11 for the linear program.
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4.4 Simplex Method in General Form

In this section, we describe the steps of the simplex method for a general linear

program. Consider a linear program of the form

max
n∑
j=1

cj xj

st
n∑
j=1

aij xj ≤ bi ∀ i = 1, . . . ,m

xj ≥ 0 ∀ j = 1, . . . , n.

In the linear program above, there are n decision variables given by x1, . . . , xn. The objective

function coefficient of decision variable xj is cj. There m constraints. The right side

coefficient of the i-th constraint is given by bi. The decision variable xj has the coefficient

aij in the left side of the i-th constraint. Using the slack variables w1, . . . , wm, we write the

linear program above equivalently as

max
n∑
j=1

cj xj

st
n∑
j=1

aij xj + wi = bi ∀ i = 1, . . . ,m

xj ≥ 0, wi ≥ 0 ∀ j = 1, . . . , n, i = 1, . . . ,m.

So, the simplex method starts with the system of equations

c1 x1 + c2 x2 + . . . + cn xn = z

a11 x1 + a12 x2 + . . . + a1n xn + w1 = b1

a21 x1 + a22 x2 + . . . + a2n xn + w2 = b2

...
...

... =
...

am1 x1 + am2 x2 + . . . + amn xn + wm = bm.

To make our notation uniform, we label the variables w1, . . . , wm as xn+1, . . . , xn+m, in which

case the system of equations above looks like

c1 x1 + c2 x2 + . . . + cn xn = z

a11 x1 + a12 x2 + . . . + a1n xn + xn+1 = b1

a21 x1 + a22 x2 + . . . + a2n xn + xn+2 = b2

...
...

... =
...

am1 x1 + am2 x2 + . . . + amn xn + xn+m = bm.

At any iteration of the simplex method, the variables x1, . . . , xn+m are classified into two

groups as basic variables and non-basic variables. Let B be the set of basic variables and N
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be the set of non-basic variables. We recall that there are m basic variables and n non-basic

variables so that |B| = m and |N | = n. Thus, the system of equations at any iteration of

the simplex method has the form∑
j∈N

c̄j xj = z − α∑
j∈N

āij xj + xi = b̄i ∀ i ∈ B,

where the first row above corresponds to the objective row and the remaining rows correspond

to the constraint rows. The objective function coefficient of the non-basic variable xj in the

current system of equations is c̄j. There is one constraint row associated with each one of the

basic variables {xi : i ∈ B}. The non-basic variable xj appears with a coefficient of āij in the

constraint corresponding to the basic variable xi. The right side of the constraint associated

with the basic variable xi is b̄i. We can obtain a solution to the system of equations above

by setting xi = b̄i for all i ∈ B, xj = 0 for all j ∈ N and z = α.

If c̄j ≤ 0 for all j ∈ N , then we stop. The solution corresponding to the current

system of equations is optimal. Otherwise, we pick a non-basic variable k ∈ N such that

k = arg max{c̄j : j ∈ N}, which is the non-basic variable with the largest coefficient in the

objective function row. We will increase the value of the non-basic variable xk.

Consider each constraint row i ∈ B. The basic variable xi is the decision variable that

appears only in this row. If āik > 0, then an increase in xk can be made up for by a

decrease in xi. In particular, we can increase xk up to b̄i/āik, while making sure that xi
remains non-negative. If āik < 0, then an increase in xk can be made up for by an increase in

xi. Therefore, if we increase xk, we do not run into the danger xi going negative. If āik = 0,

then increasing xk makes no change in constraint i. Thus, we can increase xk up to

min
i∈B

{ b̄i
āik

: āik > 0
}
,

while making sure that none of the other variables become negative and all of the constraints

remain satisfied. If we increase xk to the value above, then the new value of the decision

variable xk is determined by the constraint ` = arg mini∈B{ b̄iāik : āik > 0}. Thus, the entering

variable is xk and the leaving variable is x`. We carry out row operations such that the

decision variable xk appears with a coefficient of 1 only in constraint row `.
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Initial Feasible Solutions and Linear Programs in General Form

When applying the simplex method on the linear programs that we considered so far, we

could find an initial feasible solution without too much difficulty. In this chapter, we see

that there are linear programs where it may be difficult to find an initial feasible solution for

the simplex method to start with. We give a structured approach to come up with an initial

feasible solution for these linear programs. Also, all of the linear programs we considered

so far involved maximizing an objective function with less than or equal to constraints

and non-negative decision variables. We discuss how we can deal with more general linear

programs that have other types of objective functions, constraints and decision variables. We

will see that we if we can solve linear programs that involves maximizing an objective function

with less than or equal to constraints and non-negative decision variables, then we can

actually deal with much more general linear programs.

5.1 Basic Variables and Spotting an Initial Feasible Solution

Consider the linear program

max 3x1 + 2x2

st x1 + 2x2 ≤ 12

2x1 + x2 ≤ 11

x1 + x2 ≤ 7

x1, x2 ≥ 0.

Using the slack variables w1, w2 and w3 associated with the three constraints above, this

linear program is equivalent to

max 3x1 + 2x2

st x1 + 2x2 + w1 = 12

2x1 + x2 + w2 = 11

x1 + x2 + w3 = 7

x1, x2, w1, w2, w3 ≥ 0.

In this case, the simplex method starts with the system of equations

3x1 + 2 x2 = z

x1 + 2x2 + w1 = 12

2x1 + x2 + w2 = 11

x1 + x2 + w3 = 7.

Recall the following properties of basic variables. First, each basic variable appears in exactly

one constraint row with a coefficient of one. Second, each basic variable appears in a different
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coefficient row. Third, the basic variables do not appear in the objective function row. Due

to these properties, it is simple to spot a solution that satisfies the system of equations that

the simplex method visits.

In the system of equations above, the basic variables are w1, w2 and w3, whereas the

non-basic variables are x1 and x2. The solution corresponding to the system of equations

above is

w1 = 12, w2 = 11, w3 = 7, x1 = 0, x2 = 0.

Also, since the basic variables do not appear in the objective function row and the non-basic

variables take the value 0, we can easily find the value of z that satisfies the system of

equations above. In particular, we have z = 0.

The solution (x1, x2, w1, w2, w3) = (0, 0, 12, 11, 7) is feasible to our linear program. The

simplex method starts with this feasible solution and visits other feasible solutions while

improving the value of the objective function. In the linear program above, it was simple to

find a feasible solution for the simplex method to start with. As we show in the next section,

it may not always be easy to find an initial feasible solution. To deal with this difficulty, we

develop a structured approach to find an initial feasible solution.

5.2 Looking for a Feasible Solution

Consider the linear program

max x1 + x2

st x1 − 3x2 ≤ −28

x2 ≤ 20

− x1 − x2 ≤ −24

x1, x2 ≥ 0.

If we associate slack variables w1, w2 and w3 with the three constraints above, then this

linear program is equivalent to
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The simplex method starts with the system of equations

x1 + x2 = z

x1 − 3x2 + w1 = −28

x2 + w2 = 20

−x1 − x2 + w3 = −24.

In the system of equations above, the basic variables are w1, w2 and w3, whereas the non-basic

variables are x1 and x2. For the system of equations above, we have the solution

w1 = −28, w2 = 20, w3 = −24, x1 = 0, x2 = 0, z = 0.

This solution is not feasible for the linear program above. In fact, we do not even know that

there exists a feasible solution to the linear program! So, we focus on the question of how

we can find a feasible solution to the linear program and how we can use this solution as the

initial solution for the simplex method.

Consider the linear program

We call this linear program as the phase-1 linear program since we will use this linear program

to obtain an initial feasible solution for the simplex method. We call the decision variable u

as the artificial decision variable. The phase-1 linear program always has a feasible solution

since setting u = 28, x1 = 0 and x2 = 0 provides a feasible solution to it. In the objective

function of the phase-1 linear program, we minimize u. So, if possible at all, at the optimal

solution to the phase-1 linear program, we want to set the value of the decision variable u

to 0. Observe that if u = 0 at the optimal solution to the phase-1 linear program, then the

optimal values of the decision variables x1 and x2 satisfy

x1 − 3x2 ≤ −28, x2 ≤ 20, −x1 − x2 ≤ −24, x1 ≥ 0, x2 ≥ 0,

which implies that these values of the decision variables are feasible to the original linear

program that we want to solve. Therefore, if we solve the phase-1 linear program and the

value of the decision variable u is 0 at the optimal solution, then we can use the optimal

values of the decision variables x1 and x2 as an initial feasible solution to the original linear

program that we want to solve.

On the other hand, if we have u > 0 at the optimal solution to the phase-1 linear program,

then it is not possible to set the value of the decision variable to u to 0 and still obtain a
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feasible solution to the phase-1 linear program, which implies that there do not exist x1 and

x2 that satisfy

x1 − 3x2 ≤ −28, x2 ≤ 20, −x1 − x2 ≤ −24, x1 ≥ 0, x2 ≥ 0.

Thus, if we have u > 0 at the optimal solution to the phase-1 linear program, then the

original linear program that we want to solve does not have a feasible solution. In other

words, the original linear program that we want to solve is not feasible.

This discussion shows that to obtain a feasible solution to the linear program that we

want to solve, we can first solve the phase-1 linear program. If we have u = 0 at the optimal

solution to the phase-1 linear program, then the values of the decision variables x1 and x2

provide a feasible solution to the original linear program that we want to solve. If we have

u > 0 at the optimal solution to the phase-1 linear program, then there does not exist a

feasible solution to the original linear program.

So, we proceed to solving the phase-1 linear program. Associating the slack variables

w1, w2 and w3 with the three constraints and moving the decision variable u to the left side

of the constraints, the simplex method starts with the system of equations

In the system of equations above, the basic variables are w1, w2 and w3, whereas the non-

basic variables are x1, x2 and u. The solution corresponding to the system of equations

above is given by

w1 = −28, w2 = 20, w3 = −24, x1 = 0, x2 = 0, u = 0, z = 0.

Note that this solution is not feasible to the phase-1 linear program because x1 − 3x2 =

0 > −28 = −28 + u. However, with only one set of row operations on the system of

equations above, we can immediately obtain an equivalent system of equations such that we

can spot a feasible solution to the phase-1 linear program from the new equivalent system

of equations. In particular, we focus on the constraint row that has the most negative right

side. We subtract this constraint row from every other constraint row and we add this

constraint row to the objective function row. In particular, we focus on the first constraint

row above. We subtract this constraint row from every other constraint row and add it to

the objective function row. Also, we multiply the first constraint row by −1. In this case,

we obtain the system of equations
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Since a system of equations remains equivalent when we apply row operations on it, the last

two systems of equations are equivalent to each other. In the system of equations above, the

basic variables are u, w2 and w3, whereas the non-basic variables are x1, x2 and w1. The

solution corresponding to the system of equations above is

u = 28, w2 = 48, w3 = 4, x1 = 0, x2 = 0, w1 = 0, z = 28.

This solution is feasible for the phase-1 linear program. Now, we can apply the simplex

method as before to obtain an optimal solution to the phase-1 linear program.

Since we are minimizing the objective function in the phase-1 linear program, in the

system of equations above, we pick the decision variable that has the largest negative

objective function coefficient, which is x2 with an objective function coefficient of −3. We

increase the value of this decision variable. Applying the simplex method as before, we can

increase x2 up to min{28/3, 48/4, 4/2} = 2, while making sure that all of the other decision

variables remain non-negative. In this case, the new value of the decision variable x2 is

determined by the third constraint row. Thus, we carry out row operations such that x2

appears only in the third constraint row with a coefficient of 1. In other words, the entering

variable is x2 and the leaving variable is w1. Carrying out the appropriate row operations,

we obtain the system of equations

In the system of equations above, the basic variables are u, w2 and x2, whereas the non-basic

variables are x1, w1 and w3. Noting the objective function row, we increase the value of

x1. We can increase x1 up to min{22/2, 40/3} = 11, while making sure that all of the other

decision variables remain non-negative. In this case, the new value of the decision variable

x1 is determined by the first constraint row. Thus, we carry our row operations such that x1

appears only in the first constraint row with a coefficient of 1. In other words, the entering

variable is x1 and the leaving variable is u. Through appropriate row operations, we obtain

the system of equations
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In this system of equations, all coefficients in the objective function are non-negative, which

implies there are no variables that we can increase to further reduce the value of the objective

function. Thus, we reached the optimal solution for the phase-1 linear program. The basic

variables in the system of equations above are x1, w2 and x2, whereas the non-basic variables

are w1, w3 and u. The solution corresponding to the last system of equations is

x1 = 11, w2 = 7, x2 = 13, w1 = 0, w3 = 0, u = 0, z = 0.

Since we have u = 0 at the optimal solution to the phase-1 linear program, we can use the

values of the decision variables x1 and x2 as an initial feasible solution to the original linear

program. In particular, x1 = 11 and x2 = 13 provides a feasible solution to the original

linear program that we want to solve. We use this solution as an initial feasible solution

when we use the simplex method to solve the original linear program.

5.3 Computing the Optimal Solution

By solving the phase-1 linear program in the previous section, we obtained a feasible solution

to the original linear program that we want to solve. Now, we solve the original linear

program starting from this feasible solution. The iterations of the simplex method in the

previous section started with the system of equations

x1 −3x2 +w1 −u = −28

x2 +w2 −u = 20

−x1 −x2 +w3 −u = −24

for the constraints. After applying a sequence of row operations, we ended up with the

system of equations

x1 +1
4
w1 −3

4
w3 +1

2
u = 11

1
4
w1 +w2 +1

4
w3 −3

2
u = 7

x2 −1
4
w1 −1

4
w3 +1

2
u = 13.
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Putting aside the non-negativity constraints on the variables, the constraints of the original

linear program that we want to solve are given by

x1 −3x2 +w1 = −28

x2 +w2 = 20

−x1 −x2 +w3 = −24

Thus, if we apply the same sequence of row operations that we applied in the previous

section, then we would end up with the system of equations

x1 +1
4
w1 −3

4
w3 = 11

1
4
w1 +w2 +1

4
w3 = 7

x2 −1
4
w1 −1

4
w3 = 13.

Since a system of equations remains equivalent after applying a sequence of row operations,

this discussion implies that the last system of equations above are equivalent to the

constraints of the original linear program. Thus, noting that we maximize x1 + x2 in the

objective function of the original linear program, to solve the original linear program, we

can start with the system of equations

In the system of equations above, we are tempted to identify x1, w2 and x2 as the basic

variables, but we observe that the decision variables x1 and x2 have non-zero coefficients in

the objective function row, while the basic variables need to have a coefficient of 0 in the

objective row. However, with only one set of row operations, we can immediately obtain a

new system of equations that is equivalent to the one above and the decision variables x1,

w2 and x2 appear only in one of the constraints with a coefficient of 1 without appearing

in the objective function row. In particular, we multiply the first constraint row by −1 and

add it to the objective row. We multiply the third constraint row by −1 and add it to the

objective row. Thus, we obtain the system of equations
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Noting that a system of equations remains equivalent when we apply row operations on

it, the last two system of equations are equivalent to each other. In the last system of

equations above, we can now identify x1, w2 and x2 as the basic variables, whereas w1 and

w3 as the non-basic variables. For this system of equations, we have the solution

x1 = 11, w2 = 7, x2 = 13, w1 = 0, w3 = 0, z = 24,

which is a feasible solution to the linear program that we want to solve and this solution

provides an objective value of 24.

Since we are maximizing the objective function in our linear program, noting the objective

function row in the system of equations above, we increase the value of the decision variable

w3. We can increase w3 up to 7/1
4

= 28 while making sure that all of the other decision

variables remain non-negative. In this case, the new value of the decision variable w3 is

determined by the second constraint row. Thus, we carry out row operations such that w3

appears only in the second constraint row with a coefficient of 1. In other words, the entering

variable is w3 and the leaving variable is w2. Applying the appropriate row operations, we

obtain the system of equations

In this system of equations, x1, w3 and x2 are the basic variables, whereas w1 and w3 are

the non-basic variables. The solution corresponding to the system of equations above is

x1 = 32, w3 = 28, x2 = 20, w1 = 0, w2 = 0, z = 52.

Since all of the objective function row coefficients are non-positive, we conclude that the

solution (x1, x2) = (32, 20) is an optimal solution providing an objective value of 52.

5.4 Linear Programs in General Form

All of the linear programs that we considered so far are of the form

max
n∑
j=1

cj xj

st
n∑
j=1

aij xj ≤ bi ∀ i = 1, . . . ,m

xj ≥ 0 ∀ j = 1, . . . , n.
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In particular, we maximize the objective function with less than or equal to constraints and

non-negative decision variables. Not all linear programs have this form, but we can always

bring a linear program into the form above, where we maximize the objective function with

less than or equal to constraints and non-negative decision variables.

If we are minimizing the objective function
∑n

j=1 cj xj in a linear program, then we can

equivalently maximize the objective function −
∑n

j=1 cj xj.

If we have a greater than or equal to constraint of the form
∑n

j=1 aij xj ≥ bi, then we can

equivalently write this constraint as a less than or equal to constraint as −
∑n

j=1 aij xj ≤ −bi.

If we have an equal to constraint of the form
∑n

j=1 aij xj = bi, then we can equivalently

write this constraint as two inequality constraints
∑n

j=1 aij xj ≤ bi and
∑n

j=1 aij xj ≥ bi.

If we have a decision variable xj that takes non-positive values, then we can use a new

decision variable yj that takes non-negative values and replace all occurrences of xj by −yj.

Finally, if we have a non-restricted decision variable xj that takes both positive and

negative values, then we can use two new non-negative decision variables x̂j and x̄j to

replace all occurrences of xj by x̂j − x̄j. By using the transformations above, we can convert

any linear program into a form where we maximize the objective function with less than or

equal to constraints and non-negative decision variables. Consider the linear program

min 5x1 − 9x2 + 3x3 + 4x4

st x1 + 7x2 + 5x3 + 2x4 = 9

2x1 + 3x3 ≥ 7

x2 + 6x4 ≤ 4

x1 ≥ 0, x2 is free, x3 ≤ 0, x4 ≥ 0.

This linear program is equivalent to

which is, in turn, equivalent to
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This discussion shows that it is enough to consider linear programs of the form where we

maximize the objective function with less than or equal to constraints and non-negative

decision variables because we can always convert any linear program into this form.
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Unbounded Linear Programs, Multiple Optima and Degeneracy

There are linear programs where the objective function can be made arbitrarily large

without violating the constraints. We refer to such linear programs as unbounded linear

programs. Also, there are linear programs with multiple optimal solutions. In this chapter, we

discuss how the simplex method can detect whether a linear program is bounded and whether

a linear program has multiple optimal solutions. Furthermore, as the simplex method visits

consecutive solutions, we may run into solutions where some basic variables take value 0. In

such cases, the simplex method can carry out iterations without improving the objective

function value. We refer to this situation as degeneracy.

6.1 Unbounded Linear Programs

For a linear program with a large number of decision variables and constraints, it may not

be easy to see whether the linear program is unbounded. Fortunately, the simplex method

can detect whether a linear program is unbounded. Consider the linear program

max 4x1 + 6x2 − 3x3

st 2x1 + x2 − 2x3 ≤ 3

3x1 + 3x2 − 2x3 ≤ 4

x1, x2, x3 ≥ 0.

The simplex method starts with the system of equations

4x1 + 6 x2 − 3x3 = z

2x1 + x2 − 2x3 + w1 = 3

3x1 + 3 x2 − 2x3 + w2 = 4.

The basic variables above are w1 and w2. The non-basic variables are x1, x2 and x3. This

system of equations has the corresponding solution w1 = 3, w2 = 4, x1 = 0, x2 = 0, x3 =

0, z = 0. We choose to increase the value of the decision variable x2, since x2 has the largest

positive coefficient in the objective function row. We can increase x2 up to min{3/1, 4/3} =

4/3, while making sure that all of the other decision variables remain non-negative. Thus,

we carry out row operations so that x2 appears only in the second constraint row with a

coefficient of 1. These row operations provide the system of equations

In the system of equations above, the basic variables are w1 and x2. The non-basic variables

are x1, x3 and w2. This system of equations yields the solution w1 = 5/3, x2 = 4/3, x1 =
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0, x3 = 0, w2 = 0, z = 8. We increase the value of the decision variable x3 since it has the

largest positive coefficient in the objective function row.

Considering the first constraint row above, since the decision variable x3 appears with

a negative coefficient in this constraint row, if we increase x3, then we can make up for

the increase in x3 by increasing w1. Thus, we can increase x3 as much as we want without

running into the danger of w1 going negative, which implies that the first constraint row

does not impose any restrictions on how much we can increase the value of x3. Similarly,

considering the second constraint row above, if we increase x3, then we can make up for

the increase in x3 by increasing x2. So, we can increase x3 as much as we want without

running into the danger of x2 going negative. This discussion shows that we can increase

x2 as much as we want without running into the danger of any of the other variables going

negative. Also, the objective function row coefficient of x2 in the last system of equations is

positive, which implies that the increase in x2 will make the value of the objective function

larger. Therefore, we can make the objective function value as large as we want without

violating the constraints. In other words, this linear program is unbounded.

The moral of this story is that if the system of equations at any iteration of the simplex

method has a non-basic variable such that this non-basic variable has a positive coefficient

in the objective function row and has a non-positive coefficient in all of the constraint rows,

then the linear program is unbounded.

We note that it is difficult to see a priori that the linear program we want to solve is

unbounded. However, the simplex method detects the unboundedness of the linear program

during the course of its iterations. Once the simplex method detects that the linear program

is unbounded, we can actually provide explanation for the unboundedness. For the linear

program above, for some t ≥ 0, consider the solution

x3 = t, w1 =
5

3
+

4

3
t, x2 =

4

3
+

2

3
t, x1 = 0, w2 = 0.

For any t ≥ 0, we have

2x1 + x2 − 2x3 =

(
4

3
+

2

3
t

)
− 2 t =

4

3
− 4

3
t ≤ 3

3x1 + 3x2 − 2x3 = 3

(
4

3
+

2

3
t

)
− 2 t = 4

x1 = 0, x2 =
4

3
+

2

3
t ≥ 0, x3 = t ≥ 0.

Therefore, the solution above is feasible to the linear program that we want to solve for

any value of t ≥ 0. Also, this solution provides an objective value of 4x1 + 6x2 − 3x3 =

6
(

4
3

+ 2
3
t
)
− 3t = 8 + t. If we choose t arbitrarily large, then the solution above is feasible

to the linear program that we want to solve, but the objective value 8 + t provided by this

solution is arbitrarily large. So, the linear program is unbounded.
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6.2 Multiple Optima

Similar to boundedness, it is difficult to see whether a linear program with a large number

of decision variables and constraints has multiple optimal solutions. Fortunately, the

simplex method also allows us to see whether a linear program has multiple optimal

solutions. Consider the linear program

max 7x1 + 12x2 − 3x3

st 6x1 + 8x2 − 2x3 ≤ 1

− 3x1 − 3x2 + x3 ≤ 2

x1, x2, x3 ≥ 0.

To solve the linear program above, the simplex method starts with the system of equations

7x1 + 12 x2 − 3x3 = z

6x1 + 8x2 − 2x3 + w1 = 1

−3x1 − 3x2 + x3 + w2 = 2.

The basic variables above are w1 and w2. The non-basic variables are x1, x2 and x3. The

solution correspondong to this system of equations is w1 = 1, w2 = 2, x1 = 0, x2 = 0, x3 =

0, z = 0. Since x2 has the largest positive coefficient in the objective function row, we choose

to increase the value of the decision variable x2. We can increase x2 up to 1/8, while making

sure that all of the other decision variables remain non-negative. Thus, we carry out row

operations so that x2 appears only in the first constraint row with a coefficient of 1. Through

these row operations, we obtain the system of equations

In the system of equations above, the basic variables are x2 and w2. The non-basic variables

are x1, x3 and w1. The solution corresponding to this system of equations is

x2 =
1

8
, w2 =

19

8
, x1 = 0, x3 = 0, w1 = 0, z =

3

2
.

Since the objective function row coefficients of all variables are non-positive, increasing any

of the variables does not improve the value of the objective function. Thus, the solution

above is optimal and the optimal objective value of the linear program is 3/2.

Now, the critical observation is that x3 is a non-basic variable whose objective function

row coefficient happened to be 0. If we increase the value of this decision variable, then

the value of the objective function does not increase, but the value of the objective function

does not decrease either! So, it is harmless to try to increase the decision variable x3. Let

45 c© 2016-2021 Huseyin Topaloglu



us go ahead and increase the value of the decision variable x3. We can increase x3 up to
19
8
/1

4
= 19/2. Thus, we do row operations so that x3 appears only in the second constraint

row with a coefficient of 1. We obtain the system of equations

The basic variables are x2 and x3. The non-basic variables are x1, w1 and w2. The solution

corresponding to the system of equations above is

x2 =
5

2
, x3 =

19

2
, x1 = 0, w1 = 0, w2 = 0, z =

3

2
.

In the last system of equations, the objective function row coefficients are non-positive. Thus,

the solution above is also optimal for the linear program and it provides an objective value

of 3/2. The two solutions that we obtained are quite different from each other, but they are

both optimal for the linear program, providing an objective value of 3/2.

The moral of this story is that if the final system of equations in the simplex method

includes a non-basic variable whose coefficient in the objective function row is 0, then we

have multiple optimal solutions to the linear program.

6.3 Degeneracy

In the linear programs that we considered so far, the basic variables always took strictly

positive values. However, it is possible that some basic variables take value 0. In such cases,

we say that there is degeneracy in the current solution and the simplex method may have to

carry out multiple iterations without improving the value of the objective function. Consider

the linear program

max 12x1 + 6x2 + 16x3

st x1 − 4x2 + 4x3 ≤ 2

x1 + 2x2 + 2x3 ≤ 1

x1, x2, x3 ≥ 0.

We start with the system of equations

12x1 + 6x2 + 16 x3 = z

x1 − 4x2 + 4x3 + w1 = 2

x1 + 2x2 + 2x3 + w2 = 1.

The basic variables are w1 and w2. The non-basic variables are x1, x2 and x3. The solution

corresponding to the system of equations above is

w1 = 2, w1 = 1, x1 = 0, x2 = 0, x3 = 0, z = 0.
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We increase the value of the decision variable x3. We can increase x3 up to min{2/4, 1/2} =

2. Note that there is a tie in the last minimum operator. To break the tie, we arbitrarily

assume that the new value of the decision variable x3 is dictated by the first constraint

row. In this case, we carry out row operations so that x3 appears only in the first constraint

row with a coefficient of 1. Thus, we obtain the system of equations

The basic variables are x3 and w2. The non-basic variables are x1, x2 and w1. The solution

corresponding to the system of equations above is given by

x3 =
1

2
, w2 = 0, x1 = 0, x2 = 0, w1 = 0, z = 8.

In the solution above, the basic variable w2 takes value 0. This solution provides an objective

value of 8.

We increase the value of the decision variable x2, whose objective function row coefficient

is 22 in the system of equations above. We can increase x2 up to 0/4 = 0 while making sure

that all of the other decision variables remain non-negative. So, we carry out row operations

so that x2 appears only in the second constraint row with a coefficient of 1. In this case, we

get the system of equations

In this system of equations, the basic variables are x3 and x2, whereas the non-basic variables

are x1, w1 and w2. The solution corresponding to the system of equations above is

x3 =
1

2
, x2 = 0, x1 = 0, w1 = 0, w2 = 0, z = 8.

Now, the basic variable x2 takes value 0. We observe that the values of the decision variables

in the last two solutions we obtained are identical. Only the classification of the variables

as basic and non-basic has changed. Furthermore, the last two solutions both provide an

objective value of 8 for the linear program. Thus, this iteration of the simplex method did

not improve the objective value for the linear program at all.

We increase the decision variable x1. We can increase x1 up to min{1
2
/3

8
, 0/1

8
} = 0. Thus,

the new value of the decision variable x1 is determined by the second constraint. In this

case, we carry out row operations to make sure that x1 appears only in the second constraint

row with a coefficient of 1. We obtain the system of equations
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The basic variables are x3 and x1, whereas the non-basic variables are x2, w1 and w2. The

solution corresponding to the system of equations above is

x3 =
1

2
, x1 = 0, x2 = 0, w1 = 0, w2 = 0, z = 8.

Now, the basic variable x1 takes value 0. Again, the values of the decision variables in

the last three solutions are identical. Only the classification of the variables as basic and

non-basic has changed. All of these three solutions provide an objective value of 8 for the

linear program. In all of the iterations of the simplex method, we have at least one strictly

positive objective function row coefficient. Therefore, we cannot verify that we reached an

optimal solution. However, as we carry out the iterations of the simplex method, we are not

able to improve the value of the objective function either.

We do not give up. Scanning over the objective function row coefficients of the last

system of equations, we decide to increase the decision variable w1. We can increase w1 up

to 1
2
/1

2
= 1. Thus, the new value of w1 is determined by the first constraint row. We carry

out row operations to make sure that w1 appears only in the first constraint row with a

coefficient of 1. These row operations yield the system of equations

The basic variables are w1 and x1, whereas the non-basic variables are x2, x3 and w2. The

solution corresponding to the system of equations above is

w1 = 1, x1 = 1, x2 = 0, x3 = 0, w2 = 0, z = 12.

The objective value provided by the solution above is 12. So, we finally obtained a solution

that improves the value of the objective function from 8 to 12. In the last system of equations,

since the objective function row coefficients of all of the decision variables are non-positive,

the solution above is optimal for the linear program. We can stop.

The moral of this story is that we can have basic variables that take value 0. When we

have basic variables that take value 0, we say that the current solution is degenerate. If we

encounter a degenerate solution, then the simplex method may have to carry out multiple

iterations without improving the value of the objective function.
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Min-Cost Network Flow Problem

In this chapter, we study linear programs with an underlying network structure. Such linear

programs become particularly useful in routing, logistics and matching applications. Along

with formulating a variety of linear programs with numerous application areas, we discuss

the properties of the optimal solutions to these linear programs.

7.1 Min-Cost Network Flow Problem

Consider the figure below depicting a network over which we transport a certain product. At

nodes 1 and 2, we have 5 and 2 units of supply for the product. At nodes 4 and 5, we

have 3 and 4 units of demand for the product. We do not have any supply or demand at

node 3, but we can use this node as a transshipment point. The directed arcs represent the

links over which we can transport the product. For example, we can transport the product

from node 3 to node 2, but we cannot transport from node 2 to node 3. We use the set

{(1, 2), (1, 3), (2, 4), (3, 2), (3, 5), (4, 5), (5, 4)} to denote the set of arcs in the network. If we

transport one unit of product over arc (i, j), then we incur a shipment cost of cij. These

unit shipment costs are indicated on each arc in the figure below. We want to figure out

how to ship the product from the supply nodes to the demand nodes so that we incur the

minimum shipment cost, while making sure that we do not violate the supply availabilities at

the supply nodes and satisfy the demands at the demand nodes. Note that the total supply

in the network is equal to the total demand. Thus, to satisfy the demand at the demand

nodes, all of the supply at the supply nodes must be shipped out.

To formulate this problem as a linear program, we use the decision variable xij to

capture the number of units that we ship over arc (i, j). Thus, our decision variables are

x12, x13, x24, x32, x35, x45 and x54. To understand how we can set up the constraints in our

linear program, the figure below shows one possible feasible solution to the problem. The

labels on the arcs show the number of units shipped on each arc. The arcs that do not have

any flow of product on them are indicated in dotted lines. In particular, for the solution in

the figure below, the values of the decision variables are

x12 = 0, x13 = 5, x24 = 6, x32 = 4, x35 = 1, x45 = 3, x54 = 0.
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Concentrating on the supply node 2 with a supply of 2 units, this node receives 4 units from

node 3. Also, counting the 2 units of supply at node 2, node 2 has now 6 units of product. So,

the flow out of node 2 in the feasible solution is 6. Therefore, the flow in and out of a supply

node i in a feasible solution must satisfy

Total Flow into Node i+ Supply at Node i = Total Flow out of Node i,

which can equivalently be written as

Total Flow out of Node i− Total Flow into Node i = Supply at Node i.

On the other hand, concentrating on the demand node 4 with a demand of 3 units, this node

receives 6 units from node 2. Out of these 6 units, 3 of them are used to serve the demand

at node 4 and the remaining 3 become the flow out of node 4. Thus, the flow in and out of

a demand node i in a feasible solution must satisfy

Total Flow into Node i = Demand at Node i+ Total Flow out of Node i,

which can equivalently be written as

Total Flow into Node i− Total Flow out of Node i = Demand at Node i.

Node 3 is neither a demand node or a supply node. For such a node, the total flow out

of the node must be equal to the total flow into the node. Thus, the linear programming

formulation of the problem is given by
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The problem above is called the min-cost network flow problem. It is common to call

the constraints as the flow balance constraints. The first two constraints are the flow

balance constraints for nodes 1 and 2, which are supply nodes. In these constraints, we

follow the convention that (total flow out) − (total flow in) = (supply of the node). The

last two constraints are the flow balance constraints for nodes 4 and 5, which are demand

nodes. In these constraints, we follow the convention that (total flow in) − (total flow out) =

(demand of the node). The third constraint is the flow balance constraint for node 3, which

is neither a supply nor a demand node. In this constraint, we follow the convention that

(total flow out) − (total flow in) = 0. The formulation above is perfectly fine, but it requires

us to remember two different types of constraints for supply and demand nodes. To avoid

remembering two different types of constraints, we multiply the flow balance constraints for

the demand nodes by −1 to get the equivalent linear program

Now, all of the constraints in this linear program are of the form

Total Flow out of Node i− Total Flow into Node i = Availability at Node i,

where availability is a positive number at supply nodes and a negative number at demand

nodes. The last linear program avoids the necessity to remember two different forms

of constraints for the supply and demand nodes. Our constraints always have the form

(total flow out) − (total flow in) = (availability at the node). We only need to remember

that availability is positive at supply nodes and negative at demand nodes.

An interesting observation for the min-cost network flow problem is that one of the

constraints in the problem is always redundant. For example, assume that we have a solution

that satisfies the first, second, fourth and fifth constraints. If we add the first, second, fourth

and fifth constraints, then we obtain

x12 + x13 = 5

−x12 + x24 − x32 = 2

− x24 + x45 − x54 = −3

− x35 − x45 + x54 = −4

x13 − x32 − x35 = 0,
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which is identical to the third constraint. Thus, if we have a solution that satisfies the

first, second, fourth and fifth constraints, then it must automatically satisfy the third

constraint. We do not need to explicitly impose the third constraint. Similarly, we can

check that if we leave any one of the constraints out and add the four remaining constraints

in the min-cost network flow problem, then we obtain the constraint that is left out. Thus,

we can always omit one of the constraints without changing the optimal solution.

7.2 Integrality of the Optimal Solution

An important property of the min-cost network flow problem is that if all of the demand

and supply quantities are integers, then there exists an optimal solution where all of the

decision variables take on integer values. This property can be quite useful in practice. For

example, if we are shipping cars, then we can be sure that when we solve the min-cost

network flow problem, we obtain a solution where do not ship half a car to one location and

half a car to another, even though we do not explicitly impose the integrality requirement

in our formulation of the min-cost network flow problem.

The integrality of the optimal solution originates from the fact that when we apply

the simplex method on the min-cost network flow problem, we never have to carry out a

division operation and all multiplication operations we have to carry out are multiplications

by −1. To intuitively see this phenomenon, consider the system of equations corresponding to

the constraints of our min-cost network flow problem. Recalling that one of the constraints is

redundant, we omit the third constraint, in which case, the system of equations corresponding

the constraints of our min-cost network flow problem is

x12 + x13 = 5

−x12 + x24 − x32 = 2

− x24 + x45 − x54 = −3

− x35 − x45 + x54 = −4.

We know that in a system of equations with four constraints, we have four basic

variables. Assume that we use the simplex method to solve the min-cost network flow

problem. We want to answer the question of what the system of equations for the constraints

would look like when the basic variables are, for example, x13, x24, x32 and x45. To answer

this question, we carry out row operations in the system of equations above to make sure that

x13, x24, x32 and x45 appear in a different constraint with coefficients of 1. The variable x13

already appears in the first constraint with a coefficient of 1 and nowhere else. We multiply

the second constraint by −1 to get

x12 + x13 = 5

x12 − x24 + x32 = −2

− x24 + x45 − x54 = −3

− x35 − x45 + x54 = −4,
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so that x32 appears only in the second constraint with a coefficient of 1 and nowhere

else. We subtract the third constraint from the second constraint and multiply the third

constraint by −1 to get

x12 + x13 = 5

x12 + x32 − x45 + x54 = 1

x24 − x45 + x54 = 3

− x35 − x45 + x54 = −4.

Thus, x24 appears only in the third constraint with a coefficient of 1 and nowhere else. Finally,

we subtract the fourth constraint from the second and third constraints, and multiply the

fourth constraint by −1 to get

x12 + x13 = 5

x12 + x32 + x35 = 5

x24 + x35 = 7

x35 + x45 − x54 = 4.

So, x45 now appears in the fourth constraint only with a coefficient of 1. Thus, if the simplex

method visited the solution with basic variables x13, x24, x32 and x45, then the values of these

decision variables would be x13 = 5, x24 = 7, x32 = 5 and x45 = 4. Note that we did not

have to carry out a division operation to obtain these values. Also, all of the multiplication

operations were multiplication by −1. As a result, the values of the decision variables x13,

x24, x32 and x45 are obtained by adding and subtracting the supply and demand quantities

in the original min-cost network flow problem. If the supply and demand quantities are

integers, then the values of x13, x24, x32 and x45 are integers as well.

As another example, let us check what the system of equations for the constraints in the

simplex method would look like when the basic variables are x12, x13, x24 and x35. We start

from the last system of equations above. Since this system of equations was obtained from

the original constraints of the min-cost network flow problem by using row operations, this

system of equations is equivalent to the original constraints of the min-cost network flow

problem. The variable x13 appears only in the first constraint only with a coefficient of 1. To

make sure that x12 appears only in the second constraint with a coefficient of 1, we subtract

the second constraint from the first constraint to obtain

x13 − x32 − x35 = 0

x12 + x32 + x35 = 5

x24 + x35 = 7

x35 + x45 − x54 = 4.

The variable x24 already appears only in the third constraint only with a coefficient

of 1. To make sure that x35 appears only in the fourth constraint with a coefficient of 1,

we add the fourth constraint to the first constraint and subtract the fourth constraint from
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the second and third constraints. In this case, we obtain

x13 − x32 + x45 − x54 = 4

x12 + x32 − x45 + x54 = 1

x24 − x45 + x54 = 3

x35 + x45 − x54 = 4.

Thus, if the simplex method visited the solution with basic variables x12, x13, x24 and

x35, then the values of these decision variables would be x12 = 1, x13 = 4, x24 = 3 and

x35 = 4. Again, we only used addition and subtraction to obtain these values. In particular,

we did not use any division operation.

Although this discussion is not a theoretical proof, it convinces us that when we apply

the simplex method on the min-cost network flow problem, we never have to use division

and the only multiplication operation we use is multiplication by −1. So, the values of the

decision variables in any solution visited by the simplex method are obtained by adding and

subtracting the supply and demand quantities in the original problem. Thus, as long as

the supply and demand quantities in the original problem take integer values, the decision

variables will also take integer values in any solution visited by the simplex method. Since

this observation applies to the final solution visited by the simplex method, the optimal

solution to the min-cost network flow problem will be integer valued.

7.3 Min-Cost Network Flow Problem in Compact Form

To formulate the min-cost network flow problem in compact form, we first describe the data

in compact form. We use N to denote the set of nodes and V to denote the set of arcs.

We let Si be the product availability at node i. Note that Si is a positive quantity when

node i is a supply node, but a negative quantity when node i is a demand node. We let Cij
be the cost of shipping a unit of product on arc (i, j). Thus, the data for the problem are

{Si : i ∈ N} and {Cij : (i, j) ∈ V }. We use the decision variable xij to capture the number

of units that we ship on arc (i, j). To compute the total flow out of node i, we look at every

arc that originates at node i and add the flows on these arcs. Thus, the total flow out of

node i is given by
∑

j∈N :(i,j)∈V xij. In the last expression, we compute a sum over all j ∈ N
such that (i, j) is a valid arc in our min-cost network flow problem. Similarly, to compute

the total flow into node i, we look at every arc that terminates at node i and add the flows

on these arcs. Thus, the total flow into node i is given by
∑

j∈N :(j,i)∈V xji. The min-cost

network flow problem can be formulated as
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We observe that the constraints in the problem above are of the form (total flow out) −
(total flow in) = (availability at the node).

In all of our min-cost network flow problems, the total supply in the network is equal to

the total demand. Thus, to satisfy the demand at the demand nodes, all of the supply at the

supply nodes must be shipped out. In certain applications, the total supply in the network

may exceed the total demand, in which case, we do not have to ship out all of the supply at

the supply nodes to satisfy the demand. Consider the min-cost network flow problem that

takes place over the network in the figure below. This problem has the same data as the

earlier min-cost network flow problem, but the supplies at nodes 1 and 2 are now 6 and 3

units. Thus, the total supply is 9, whereas the total demand is 7.
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2"

3"

4"

5"
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1"

2" 2"
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1"
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We want to figure out how to ship the product from the supply nodes to the demand nodes

so that we incur the minimum shipment cost, while making sure that we do not violate the

supply availabilities at the supply nodes and satisfy the demands at the demand nodes, but

we do not need to ship out all the supply from the supply nodes. So, the flow in and out of

a supply node i in a feasible solution must satisfy

Total Flow into Node i+ Supply at Node i ≥ Total Flow out of Node i,

which can equivalently be written as

Total Flow out of Node i− Total Flow into Node i ≤ Supply at Node i.

We only need to adjust our constraints for the supply nodes. The constraints for the other

nodes do not change. Using the decision variable xij with the same interpretation as before,

we can formulate the problem as the linear program

min 5x12 + x13 + x24 + 2x32 + 6x35 + 2x45 + 5x54

st x12 + x13 ≤ 6

x24 − x12 − x32 ≤ 3

x32 + x35 − x13 = 0

x45 − x24 − x54 = −3

x54 − x35 − x45 = −4

x12, x13, x24, x32, x35, x45, x54 ≥ 0.
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Observe that if the total supply is not equal to the total demand, then we have some

inequality constraints in the min-cost network flow problem. In this case, it is not possible to

choose any four of the five constraints and add them up to obtain the left out constraint. In

particular, if we add up a number of inequalities and equalities, then we end up with an

inequality, but the left out constraint could be an equality constraint. Thus, if we have some

inequality constraints in our min-cost network flow problem, then none of the constraints in

the min-cost network flow problem are redundant.

Our observations in the previous section continue to hold for the version of the min-cost

network flow problem where we have some inequality constraints. In particular, even when

the total supply in the network is not equal to the total demand, if all of the demand and

supply quantities are integers, then there exists an optimal solution where all of the decision

variables take on integer values.

The moral of this story is that the min-cost flow problem is a special type of linear

program, where we can obtain integer solutions for free without explicitly imposing

integrality requirements on our decision variables. We emphasize that this property is

delicate and hinges on the fact that the only constraints in the min-cost network flow

problem are of the form (total flow out) − (total flow in) = (availability at a node). If we

impose additional constraints in the min-cost flow problem, then we can lose the integrality

property of the optimal solution.
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Assignment, Shortest Path and Max-Flow Problems

In this chapter, we study assignment, shortest path and max-flow problems, which can be

viewed as special cases of the min-cost network flow problem with important applications.

8.1 Assignment Problem

We have three technicians and three jobs. Not all technicians are suitable for all jobs. If

we assign a certain technician to a certain job, then we generate a reward depending on the

technician we use. The table below shows the reward from assigning each technician to each

job. For example, if we assign technician 2 to job 1, then we generate a reward of 3. Each

job needs exactly one technician and each technician can do at most one job. So, since the

number of jobs is equal to the number of technicians, each technician must be assigned to

exactly one job. We want to figure out how to assign the technicians to the jobs so that we

maximize the total reward obtained from our assignment decisions.

Tech

Job
1 2 3

1 2 4 5

2 3 6 8

3 8 4 9

This problem can be formulated as a special min-cost network flow problem. In the figure

below, we put one node on the left side for each technician. Each one of these nodes is a

supply node with a supply of 1 unit. We put one node on the right side for each job. Each

one of these nodes is a demand node with a demand of 1 unit. There is an arc from each

technician node to each job node. Assigning technicians to jobs is equivalent to shipping out

the supplies from the technician nodes to satisfy the demand at the job nodes. If we ship

the supply at technician node i to satisfy the demand at job node j, then we are assigning

technician i to job j, in which case, we get the reward of assigning technician i to job j.

We use xij to capture the number of units flowing on arc (i, j) in the figure above. We can
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figure out how to ship the supplies from the technician nodes to cover the demand at the

job nodes to maximize the total reward by solving the linear program

In this linear program, we maximize the objective function, but maximizing the objective

function is equivalent to minimizing the negative of this objective function. We kept all of

the constraints of the form (total flow out) − (total flow in) = (availability at the node),

which is the form we used when formulating min-cost network flow problems in the previous

chapter. Thus, this linear program corresponds to the min-cost network flow problem for the

network depicted in the figure above. Since we know that min-cost network flow problems

have integer valued optimal solutions, we do not need to worry about the possibility of

sending half a unit of flow from a technician to one job and half a unit to another job in the

optimal solution. Thus, the optimal solution to the linear program above provides a valid

assignment of the technicians to the jobs. We refer to the problem above as the assignment

problem. It is common to multiply the last three constraints in the formulation above by

−1 and write the assignment problem as

max 2x11 + 4x12 + 5x13 + 3x21 + 6x22 + 8x23 + 8x31 + 4x32 + 9x33

st x11 + x12 + x13 = 1

x21 + x22 + x23 = 1

x31 + x32 + x33 = 1

x11 + x21 + x31 = 1

x12 + x22 + x32 = 1

x13 + x23 + x33 = 1

xij ≥ 0 ∀ i = 1, 2, 3, j = 1, 2, 3,

in which case, the last three constraints ensure that we have a total flow of 1 into the demand

node corresponding to each job. So, each job gets one technician. The first three constraints
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ensure that we have a total flow of 1 out of each supply node corresponding to each tech. So,

each tech is assigned to one job.

The optimal solution to the assignment problem above is given by x∗12 = 1, x∗23 = 1,

x∗31 = 1. The other decision variables are 0 in the optimal solution. Therefore, an optimal

solution to the assignment problem is obtained by assigning technician 1 to job 2, technician

2 to job 3 and technician 3 to job 1 with the corresponding optimal reward of 20.

To give a compact formulation of the assignment problem, assume that there are n

technicians and n jobs. We let Cij be the reward from assigning technician i to job j. We

use the decision variable xij to capture the flow from the supply node corresponding to

technician i to the demand node corresponding to job j. Observe that the total flow out

of the supply node corresponding to technician i is
∑n

j=1 xij. Similarly, the total flow into

the demand node corresponding to job j is
∑n

i=1 xij. Thus, the compact formulation of the

assignment problem is

The moral of this story is that we can find the optimal assignment of technicians to jobs

by a linear program without explicitly imposing the constraint that the assignment decisions

should take integer values. This result follows from the fact that the assignment problem

can be formulated as a min-cost network flow problem.

8.2 Shortest Path Problem

Consider the network in the figure below. We want to go from node 0 to node 5 by moving

over the arcs. Each time we use an arc, we incur the cost indicated on the arc. For example,

as we go from node 0 to node 5, if we use the arc (3, 4), then we incur a cost of 5. We want

to figure out how to go from node 0 to node 5 so that the total cost of the movement is

minimized. In other words, we want to find the shortest path from node 0 to node 5, where

the length of the path is the sum of the costs of the arcs in the path.
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This problem can also be formulated as a special min-cost network flow problem. In

the figure above, we put 1 unit of supply at the origin node 0 and 1 unit of demand at the

destination node 5. If we ship a unit of flow over an arc, then we incur the cost indicated on

the arc. Consider the problem of shipping the unit of supply at node 0 to satisfy the demand

at node 5 while minimizing the cost of the shipment. This unit supply will travel over the

path with the total minimum cost from node 0 to node 5. So, this unit will travel over the

shortest path from node 0 to node 5. Thus, figuring out how to ship the unit of supply from

node 0 to node 5 in the cheapest possible manner is equivalent to finding the shortest path

from node 0 to node 5. We use the decision variable xij to capture the flow on arc (i, j).

The problem of finding the cheapest possible way to ship the unit of supply from node 0 to

node 5 can be solved as the min-cost network flow problem

The problem above is called the shortest path problem. In the constraints, we follow the

convention that (total flow out) − (total flow in) = (availability at the node). The optimal

solution to the problem above is given by x∗03 = 1, x∗31 = 1, x∗12 = 1, x∗24 = 1, x∗45 = 1. The

other decision variables are 0 in the optimal solution. Thus, to go from node 0 to node 5

with the smallest possible cost, we go from node 0 to 3, from node 3 to node 1, from node 1

to node 2, from node 2 to node 4 and from node 4 to node 5.

To give a compact formulation of the shortest path problem, we use N = {0, 1, . . . , n}
to denote the set of nodes and A to denote the set of arcs in the network. We let 0 be the
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origin node and n be the destination node. We use Cij to denote the cost associated with

moving over arc (i, j). The decision variable xij corresponds to the flow on arc (i, j). The

compact formulation of the shortest path problem is

where the first and third constraints are the flow balance constraints for the origin and

destination nodes, whereas the second constraint corresponds the flow balance constraints

for all nodes other than the origin and destination nodes.

8.3 Max-Flow Problem

Consider the network in the figure below. The label on each arc gives the maximum flow

allowed on each arc. For example, we allow at most 6 units of flow passing through arc

(3, 5). We want to figure out the maximum amount of flow we can push from node 0 to node

5, while adhering to the constraints on the maximum flow allowed on each arc. For example,

we can push 8 units of flow from node 0 to node 5, where 4 units of flow follow the path

through the nodes 0, 1, 3 and 5, whereas 4 units of flow follow the path through the nodes

0, 2, 4 and 5. Note that all of these flows satisfy the constraints on maximum flow allowed

on each arc. Is 8 units the best we can do?
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We can find the maximum amount of flow we can push from node 0 to node 5 by using

a special min-cost network flow problem. In the network above, we put t units of supply at
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node 0 and t units of demand at node 5, where t is a decision variable. If we can ship the t

units of supply from node 0 to node 5 while adhering to the maximum flow allowed on each

arc, then we can push t units of flow from node 0 to node 5. So, in our min-cost network

flow problem, we maximize t, while making sure that the flows on the arcs satisfy the flow

balance constraints and we adhere to the maximum flow allowed on each arc. Thus, using

xij to denote the flow on arc (i, j), we solve the problem

This problem is called the max-flow problem. We emphasize that t is a decision variable in

the problem above. The first constraint is the flow balance constraint for node 0. The sixth

constraint is the flow balance constraint for node 5. The second to fifth constraints are the

flow balance constraints for the nodes other than nodes 0 and 5. The last set of constraints

ensures that the flows on the arcs adhere to the maximum flow allowed on each arc.

The optimal solution to the problem above is given by t∗ = 11, x∗01 = 4, x∗02 = 4, x∗03 =

3, x∗13 = 4, x∗24 = 4, x∗34 = 1, x∗35 = 6, x∗45 = 5. The other decision variables are 0 in the

optimal solution. Since t∗ = 11, the maximum amount of flow we can push from node 0 to

node 5 is 11 units.

To give a compact formulation of the max-flow problem, we use N = {0, 1, . . . , n} to

denote the set of nodes and A to denote the set of arcs in the network. We use Uij to denote

the maximum flow allowed on arc (i, j). We want to find the maximum flow we can push

from node 0 to node n. We use the decision variable xij to capture the flow on arc (i, j)
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and the decision variable t to capture the flow that we push from node 0 to node n. The

compact formulation of the max-flow problem is given by

The first and third constraints are the flow balance constraints for nodes 0 and n. The second

set of constraints corresponds to the flow balance constraints for the nodes other than nodes

0 and n. The fourth set of constraints ensures that the flows on the arcs do not exceed the

maximum flow allowed on each arc.
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Using Gurobi to Solve Linear Programs

Gurobi is perhaps the strongest commercial linear programming package. When compared

with building and solving linear programs with AMPL, the advantage of using Gurobi is

that we can call Gurobi within a Python, Java or C++ program. For example, if we are

developing an application that finds the shortest path between any origin and destination

locations chosen by a user over a map, then we can develop the user interface by using

Python, Java or C++. After the user choses the origin and destination locations in the

application, we can call Gurobi within our application to solve the corresponding shortest

path problem. Once Gurobi solves the shortest path problem, we can import the solution

into our application and display the solution in the user interface. In this chapter, we discuss

how to use Gurobi along with Python. By using approaches similar to the one discussed

in this chapter, we can use Gurobi along with Java or C++ as well. Another strong linear

programming package is CPLEX. The principles of working with CPLEX and Gurobi are

essentially identical. Thus, we only go over Gurobi.

9.1 Gurobi as a Standalone Solver

The website for Gurobi is at gurobi.com. Gurobi is free for academic users. To obtain

Gurobi, go to http://user.gurobi.com/download/gurobi-optimizer and make sure to

register as an academic user. After registering, download and install the most recent

version of Gurobi. Once Gurobi is installed, we need to activate the software license. Go

to http://user.gurobi.com/download/licenses/free-academic and click on Request

License. This action provides a license key number. To activate your software license, open

a terminal window and type grbgetkey followed by the license key number. When Gurobi

asks where to store the activated software license, simply choose the default location. Now,

we are ready to use Gurobi.

We can use Gurobi as a standalone linear programming solver by reading the linear

program that we want to solve from a text file. This feature does not require calling Gurobi

within a Python program and it is particularly useful for users who do not know how to

program. To demonstrate how to use Gurobi as a standalone linear programming solver,

consider the following problem. We sell cloud computing services to two classes of customers,

memory-intensive and storage-intensive. Both customer classes are served through yearly

contracts. Each memory-intensive customer takes up 100 GB of RAM and 200 GB of disk

space, whereas each storage-intensive customer takes up 40 GB of RAM and 400 GB of disk

space. From each yearly contract with a memory-intensive customer, we make $2400. From

each yearly contract with a storage-intensive customer, we make $3200. We have 10000 GB

of RAM and 60000 GB of disk space available to sign contracts with the two customer

classes. For technical reasons, we do not want to get in a contract with more than 140

storage-intensive customers. We want to figure out how many yearly contracts to sign with

customers from each class to maximize the yearly revenue. We use the decision variables xm
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and xs to respectively denote the number of contracts we sign with memory-intensive and

storage-intensive customers. The problem we want to solve can be formulated as the linear

program

max 2400xm + 3200xs

st 100xm + 40xs ≤ 10000

200xm + 400xs ≤ 60000

xs ≤ 140

xm, xs ≥ 0.

To solve the linear program above by using Gurobi, we construct a text file with the following

contents and save it in a file named cloud.lp.

Maximize

2400 xm + 3200 xs

Subject To

ramConst : 100 xm + 40 xs <= 10000

stoConst : 200 xm + 400 xs <= 60000

Bounds

xs <= 140

End

The section titled Maximize indicates that we are maximizing the objective function. We

provide the formula for the objective function by using the decision variables. We do not

need to declare the decision variables separately. The section titled Subject To defines

the constraints. We name the first constraints ramConst and provide the formula for this

constraint. We define the second constraint similarly. The section Bounds gives the upper

bounds on our decision variables. The decision variable xs has an upper bound of 140. We

could list the bound on the decision variable xs as another constraint under the section titled

Subject To, but if we list the upper bounds on the decision variables under the section titled

Bounds, then Gurobi deals with the upper bounds more efficiently.

Once we have the text file that includes our linear programming model, we open a

terminal window and type the command gurobi.sh, which runs Gurobi as a standalone

linear programming solver. We can solve the linear program as follows.

gurobi> myModel = read("cloud.lp")

gurobi> myModel.optimize()

The command myModel = read("cloud.lp") reads the linear programming model in the

file cloud.lp and stores this model to the variable myModel. If the file cloud.lp is not stored

under the current working directory, then we need to provide the full path when reading the
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file. The command myModel.optimize() solve sthe linear programming model stored in the

variable myModel. In response to the two commands above, Gurobi displays the following

output.

Optimize a model with 2 rows, 2 columns and 4 nonzeros

Coefficient statistics:

Matrix range [4e+01, 4e+02]

Objective range [2e+03, 3e+03]

Bounds range [1e+02, 1e+02]

RHS range [1e+04, 6e+04]

Presolve time: 0.00s

Presolved: 2 rows, 2 columns, 4 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time

0 2.4000000e+33 1.171875e+30 2.400000e+03 0s

2 5.2000000e+05 0.000000e+00 0.000000e+00 0s

Solved in 2 iterations and 0.00 seconds

Optimal objective 5.200000000e+05

After solving the linear program, Gurobi informs us that the optimal objective value is

520,000. We can explore the optimal solution to the linear program as follows.

gurobi> myModel.printAttr("X")

Variable X

-------------------------

xm 50

xs 125

gurobi> myVars = myModel.getVars()

gurobi> print myVars

[<gurobi.Var xm (value 50.0)>, <gurobi.Var xs (value 125.0)>]

gurobi> print myVars[0].varName, myVars[0].x

xm 50.0

The command myModel.printAttr("X") prints the "X" attribute of the model stored in

the variable myModel. This attribute includes the names and the values of the decision

variables. The command myVars = myModel.getVars() stores the decision variables of the

linear program in the array myVars. We can print this array by using the command print

myVars. Note that printing the array myVars shows the names and the values of the decision

variables. The command print myVars[0].varName, myVars[0].x prints the name and

the value of the first decision variable. In particular, myVars[0] returns the first decision

variable in the array myVars[0] and we access the name and the value of this decision

variable by using the fields varName and x.
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gurobi> myModel.printAttr("pi")

Constraint pi

-------------------------

ramConst 10

stoConst 7

gurobi> myConsts = myModel.getConstrs()

gurobi> print myConsts

[<gurobi.Constr ramConst>, <gurobi.Constr stoConst>]

gurobi> print myConsts[0].constrName, myConsts[0].pi

ramConst 10.0

In a following chapter, we will study duality theory. When we study duality theory, we will

see that there is a dual variable associated with each constraint of a linear program. The

command myModel.printAttr("pi") prints the "pi" attribute of our model. This attribute

includes the names of the constraints and the values of the dual variables associated with

the constraints. From the output above, the optimal value of the dual variable associated

with the first constraint is 10. The command myConsts = myModel.getConstrs() stores

the constraints in the array myConsts. We can print this array by using the command print

myConsts. The output from printing the array myConsts is uninformative. It only shows

the constraint names. The command print myConsts[0].constrName, myConsts[0].pi

prints the name of the first constraint along with the value of the dual variable associated

with this constraint. In particular, myConsts[0] returns the first constraint in the array

myConsts and we access the name of this constraint and the optimal value of the dual

variable associated with this constraint by using the fields constrName and pi.

We can use the following set of commands to open a file and write the names and the

values of the decision variables into the file.

gurobi> outFile = open( "solution.txt", "w" )

gurobi> for curVar in myVars:

....... outFile.write( curVar.varName + " " + str( curVar.x ) + "\n" )

.......

gurobi> outFile.close()

The command outFile = open( "solution.txt", "w" ) opens the file solutions.txt

for writing and assigns this file to the variable outFile. Recall that we stored the decision

variables of our linear program in the array myVars. We use a for loop to go through all

elements of this array and write the varName and x fields of each decision variable into the

file. Lastly, we close the file. As may have been clear by now, interacting with Gurobi is

similar to writing a Python script. Many other constructions that are available for writing

Python scripts are also available when interacting with Gurobi.
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9.2 Calling Gurobi within a Python Program

We continue using the linear program in the previous section to demonstrate how we can

build and solve a linear program by calling Gurobi within a Python program. The following

program builds and solves a linear program in Python.

from gurobipy import *

# create a new model

myModel = Model( "cloudExample" )

# create decision variables and integrate them into the model

xm = myModel.addVar( vtype = GRB.CONTINUOUS , name = "xm" )

xs = myModel.addVar( vtype = GRB.CONTINUOUS , name = "xs" , ub = 140 )

myModel.update()

# create a linear expression for the objective

objExpr = LinExpr()

objExpr += 2400 * xm

objExpr += 3200 * xs

myModel.setObjective( objExpr , GRB.MAXIMIZE )

# create expressions for constraints and add to the model

firstConst = LinExpr()

firstConst += 100 * xm

firstConst += 40 * xs

myModel.addConstr( lhs = firstConst , sense = GRB.LESS_EQUAL , \

rhs = 10000 , name = "ramConst" )

secondConst = LinExpr()

secondConst += 200 * xm

secondConst += 400 * xs

myModel.addConstr( lhs = secondConst , sense = GRB.LESS_EQUAL , \

rhs = 60000 , name = "stoConst" )

# integrate objective and constraints into the model

myModel.update()

# write the model in a file to make sure it is constructed correctly

myModel.write( filename = "testOutput.lp" )

# optimize the model
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myModel.optimize()

# check the status of the model

curStatus = myModel.status

if curStatus in (GRB.Status.INF_OR_UNBD, GRB.Status.INFEASIBLE, \

GRB.Status.UNBOUNDED):

print( "Could not find the optimal solution" )

exit(1)

# print optimal objective and optimal solution

print( "\nOptimal Objective: " + str( myModel.ObjVal ) )

print( "\nOptimal Solution:" )

myVars = myModel.getVars()

for curVar in myVars:

print ( curVar.varName + " " + str( curVar.x ) )

# print optimal dual solution

print( "\nOptimal Dual Solution:" )

myConsts = myModel.getConstrs()

for curConst in myConsts:

print ( curConst.constrName + " " + str( curConst.pi ) )

We start by creating a model and store our model in the variable myModel. Next, we create

the decision variables and add them into our model. When creating a decision variable, we

specify that the variable takes continuous values and give a name for the decision variable. If

there is an upper or a lower bound on the decision variable, then we can specify these bounds

as well. If we do not specify any upper and lower bounds, then the default choices are infinity

for the upper bound and zero for the lower bound. Giving a name to the decision variable is

optional. We store the two decision variables that we create in the variables xm and xs. The

command myModel.update() is easy to overlook, but it is important. It ensures that our

model myModel recognizes the variables xm and xs.

We proceed to creating the objective function and constraints of our model. Both the

objective and the constraints are created by using the call LinExpr(), which creates an

empty linear function. We construct the components of the linear function one by one. For

the objective function, we create a linear function and store this linear function in the

variable objExpr. Next, we indicate the coefficient of each decision variable in the objective

function. Finally, we set the objective function of our model myModel to be the linear function

objExpr. While doing so, we specify that we are maximizing the objective function. We

create the constraints of our model somewhat similarly. For the first constraint, we create a

linear function and store the linear function in the variable firstConst. Next, we indicate

the coefficients of each decision variable in the constraint. Finally, we add the constraint to
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our model myModel. When adding a constraint, the left side of the constraint is the linear

function we created. The sense of the constraint can be GRB.LESS EQUAL, GRB.EQUAL or

GRB.GREATER EQUAL. Giving a name to the constraint is optional. We deal with the second

constraint similarly. Once we create and add the objective function and the constraints

into the model, we use the call myModel.update() to ensure that our model recognizes the

objective function and the constraints.

At this point, we created the full linear programming model. To make sure that nothing

went wrong, we can write the model myModel into a file by using the call myModel.write(

filename = "testOutput.lp" ). By inspecting the linear program that we write into the

file testOutput.lp, we can make sure that we specified the objective function and the

constraints correctly. Next, the call myModel.optimize() finds the optimal solution. By

using curStatus = myModel.status, we store the current status of our model in the variable

curStatus. If the status of our model corresponds to an infeasible or an unbounded solution,

then we print a message and exit the program. In the remaining portion of the program,

we access the optimal objective value, the optimal solution and the optimal dual solution

and print these quantities. The approach that we use to access these quantities is identical

to the approach that we followed when we used Gurobi as a standalone linear programming

solver in the previous section.

9.3 Dealing with Large Linear Programs

When dealing with large linear programs, we use loops to create the decision variables and the

constraints. In this section, we describe how we can use loops to create a linear programming

model in Gurobi. For this purpose, we use the assignment problem that we studied in the

previous chapter. Assume that we have three technicians and three jobs. If we assign a

certain technician to a certain job, then we generate a reward depending on the technician

we use. The table below gives the reward from assigning a certain technician to a certain

job. We want to figure out how to assign the technicians to the jobs so that we maximize

the total reward obtained from our assignment decisions.

Tech

Job
1 2 3

1 2 4 5

2 3 6 8

3 8 4 9
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We know that we can formulate this problem as the linear program

max 2x11 + 4x12 + 5x13 + 3x21 + 6x22 + 8x23 + 8x31 + 4x32 + 9x33

st x11 + x12 + x13 = 1

x21 + x22 + x23 = 1

x31 + x32 + x33 = 1

x11 + x21 + x31 = 1

x12 + x22 + x32 = 1

x13 + x23 + x33 = 1

xij ≥ 0 ∀ i = 1, 2, 3, j = 1, 2, 3,

where the first three constraints ensure that each technician is assigned to one job and the

last three constraints ensure that each job gets one technician. The problem above has nine

decision variables and six constraints. In our Python program, we can certainly create nine

decision variables and six constraints one by one, but this task would be tedious when the

numbers of technicians and jobs get large. In the following Python program, we use loops

to create the decision variables and the constraints. We present each portion of the program

separately. We start by initializing the data for the problem.

from gurobipy import *

# there are 3 techs and 3 jobs

noTechs = 3

noJobs = 3

# initialize the reward data

rewards = [ [ 0 for i in range ( noTechs ) ] for j in range ( noJobs ) ]

rewards[ 0 ][ 0 ] = 2

rewards[ 0 ][ 1 ] = 4

rewards[ 0 ][ 2 ] = 5

rewards[ 1 ][ 0 ] = 3

rewards[ 1 ][ 1 ] = 6

rewards[ 1 ][ 2 ] = 8

rewards[ 2 ][ 0 ] = 8

rewards[ 2 ][ 1 ] = 4

rewards[ 2 ][ 2 ] = 9

The variables noTechs and noJobs keep the numbers of technicians and jobs. Since the

numbers of technicians and jobs are equal to each other, there is really no reason to define

two variables, but having two variables will be useful when we want to emphasize whether we

are looping over the technicians or the jobs in the subsequent portions of our program. We use
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the two-dimensional array rewards to store the reward values so that the (i, j)-th element

of the array rewards includes the reward from assigning technician i to job j. In any

reasonably large application, we would read the data for the problem from a file. To make our

presentation clearer, we embedded the initialization of the data into our program, although

this approach is not ideal when working on a large application.

Next, we create a new model and store it in the variable myModel and proceed to

constructing the decision variables of our linear program.

# create a new model

myModel = Model( "assignmentExample" )

# create decision variables and store them in the array myVars

myVars = [ [ 0 for i in range ( noTechs ) ] for j in range ( noJobs ) ]

for i in range( noTechs ):

for j in range ( noJobs ):

curVar = myModel.addVar( vtype = GRB.CONTINUOUS , \

name = "x" + str( i ) + str( j ) )

myVars[ i ][ j ] = curVar

# integrate decision variables into the model

myModel.update()

We have one decision variable for each technician and job pair. Each one of these decision

variables takes continuous values. We name the decision variables by using the technician

and job to corresponding to each decision variable. Lastly, we store all of the decision

variables in the two-dimensional array myVars, so that the (i, j)-th element of the array

myVars includes the decision variable corresponding to assigning technician i to job j. As

in the previous section, by using the call myModel.update(), we make sure that our model

myModel recognizes the decision variables we created.

After creating the decision variables in our linear program, we move on to defining the

objective function as follows.

# create a linear expression for the objective

objExpr = LinExpr()

for i in range( noTechs ):

for j in range ( noJobs ):

curVar = myVars[ i ][ j ]

objExpr += rewards[ i ][ j ] * curVar

myModel.setObjective( objExpr , GRB.MAXIMIZE )

The call LinExp() above creates a new linear function and we store this linear function

in the variable objExpr. Recalling that there is one decision variable for each technician
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and job pair, we loop over all technicians and jobs. By using the (i, j)-th element of the

array myVars, we access the decision variable corresponding to assigning technician i to job

j. We add this decision variable into the linear function for the objective function with the

appropriate coefficient. Finally, we set the objective function of our model myModel to be

the linear function objExpr.

Next, we create the constraints that ensure that each technician is assigned to one job. We

need one of these constraints for each technician.

# create constraints so that each tech is assigned to one job

for i in range( noTechs ):

constExpr = LinExpr()

for j in range( noJobs ):

curVar = myVars[ i ][ j ]

constExpr += 1 * curVar

myModel.addConstr( lhs = constExpr , sense = GRB.EQUAL , rhs = 1 , \

name = "t" + str( i ) )

We loop over all technicians. For technician i, we need to create a constraint that ensures

that this technician is assigned to one job. We create a linear function that keeps the

left side of this constraint and store this linear function in the variable constExpr. The

decision variables that correspond to assigning technician i to any of the jobs appear in the

constraint with a coefficient of 1. Thus, we loop over each job j and add the decision variable

corresponding to assigning technician i to each job j into the constraint with a coefficient

of 1. Now, we have a linear function corresponding to the left side of the constraint that

ensures that technician i is assigned to one job. We add this constraint into our model as an

equality constraint with a right side of 1. We name the constraint by using the technician

corresponding to the constraint. By following the same approach, we create the constraints

that ensure that each job gets one technician.

# create constraints so that each job gets one tech

for j in range( noJobs ):

constExpr = LinExpr()

for i in range( noTechs ):

curVar = myVars[ i ][ j ]

constExpr += 1 * curVar

myModel.addConstr( lhs = constExpr , sense = GRB.EQUAL , rhs = 1 , \

name = "j" + str( i ) )

# integrate objective and constraints into the model

myModel.update()

After creating the objective function and the constraints, we use the call myModel.update()

73 c© 2016-2021 Huseyin Topaloglu



to ensure that our model recognizes the objective function and the constraints that we

created. Through the discussion so far, we fully built our linear program. In the remaining

portion of the program, we write our linear program into a file to make sure that nothing went

wrong, we solve our linear program and inspect the optimal solution. In the previous section,

we already discussed how to write a linear program into a file, solve the linear program and

inspect the optimal solution. So, the remaining portion of our program is borrowed from the

program in the previous section.

# write the model in a file to make sure it is constructed correctly

myModel.write( filename = "testOutput.lp" )

# optimize the model

myModel.optimize()

# print optimal objective and optimal solution

print( "\nOptimal Objective: " + str( myModel.ObjVal ) )

print( "\nOptimal Solution:" )

allVars = myModel.getVars()

for curVar in allVars:

print ( curVar.varName + " " + str( curVar.x ) )
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Introduction to Duality Theory and Weak Duality

Duality theory allows us to obtain upper bounds on the optimal objective value of a linear

program. Such upper bounds become useful when it is computationally-intensive to obtain

the optimal solution to a linear program and we stop the simplex method with a feasible,

but not necessarily an optimal, solution. In such a case, we can compare the objective value

provided by the feasible solution with the upper bound on the optimal objective value to

get a feel for the optimality gap of the feasible solution on hand. In this chapter, we discuss

how we can use duality theory to obtain an upper bound on the optimal objective value of a

linear program and how we can use such an upper bound to understand the optimality gap

of a feasible solution that we have on hand.

10.1 Motivation for Duality Theory

Assume that we want to solve a large-scale linear program by using the simplex method. As

the iterations of the simplex method proceed, we obtain feasible solutions that provide larger

and larger objective function values. Let us say the linear program is so large that we still

have not obtained the optimal solution after two days of computation and we terminate the

simplex method before it reaches an optimal solution. What we have on hand is a feasible

solution, but we do not know how close this solution is to being optimal. Note that figuring

out how close a feasible solution is to being optimal is not easy because we do not know the

optimal objective value of the problem we want to solve. In the figure below, we depict the

objective value provided by the solution on hand as a function of the iteration number in

the simplex method. As the iterations progress, the objective value provided by the current

solution gets larger and larger.
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provided)by)
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Imagine that we are able to construct another linear program such that this linear

program is a minimization problem and the optimal objective value of this linear program is

greater than or equal to the optimal objective of the original original linear we want to solve.
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For the moment, we refer to this linear program as the upper bounding linear program. As

we solve the original linear program we want to solve, we also solve the upper bounding

linear program on another computer by using the simplex method. Since we minimize the

objective function in the upper bounding linear program, as the iterations of the simplex

method for the upper bounding linear program proceeds, we obtain feasible solutions for

the upper bounding linear program that provides smaller and smaller objective function

values. In the figure below, we depict the objective value provided by the solution on hand

for the upper bounding linear program as a function of the iteration number in the simplex

method. Since the optimal objective value of the upper bounding linear program is greater

than or equal to the optimal objective value of the original linear program we want to solve,

the objective value provided by the current solution in the figure below never dips below the

optimal objective value of the original linear program we want to solve.
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After two days of computation time, we terminate the simplex method for both the

original linear program we want to solve and the upper bounding linear program. We want

to understand how close the solution that we have for the original linear program is to being

optimal. In the figure below, z1 corresponds to the objective value provided by the solution

that we have for the original linear program after two days of computation time. The percent

optimality gap of this solution is (z∗−z1)/z∗. We cannot compute this optimality gap because

we do not know z∗. On the other hand, z2 corresponds to the objective value provided by the

solution that we have for the upper bounding linear program after two days of computation

time. Note that we know z2, which implies that we can compute (z2 − z1)/z1. Furthermore,

since the optimal objective value of the upper bounding linear program is greater than or

equal to the optimal objective value of the original linear program we want to solve, we have

z2 ≥ z∗ ≥ z1. Thus, we obtain

z∗ − z1

z∗
≤ z2 − z1

z1

.
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The percent optimality gap of the solution that we have for the original linear program we

want to solve is given by (z∗ − z1)/z∗, but we cannot compute this quantity. On the other

hand, we can compute the quantity (z2 − z1)/z1. Assume that (z2 − z1)/z1 came out to be

1%. In this case, noting the inequality above, we can conclude that (z∗−z1)/z∗ ≤ 1%, which

is to say that the optimality gap of the solution we have for the original linear program we

want to solve is no larger than %1. In other words, the upper bounding linear program allows

us to check the optimality gap of a solution that we have for the original linear program

before we even obtain the optimal solution.
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Motivated by the discussion above, the key question is how we can come up with an

upper bounding linear program that satisfies two properties. First, the upper bounding

linear program should be a minimization problem. Second, the optimal objective value of

the upper bounding linear program should be an upper bound on the optimal objective value

of the original linear program we want to solve.

10.2 Upper Bounds on the Optimal Objective Value

We want to solve the linear program

max 5x1 + 3x2 − x3

st 3x1 + 2x2 + x3 ≤ 9

4x1 + x2 − x3 ≤ 3

x1, x2, x3 ≥ 0.

For the sake of illustration, assume that this linear program is large enough that we cannot

obtain its optimal objective value in reasonable computation time and we want to obtain

an upper bound on its optimal objective value. Let (x∗1, x
∗
2, x
∗
3) be the optimal solution to

the linear program providing the optimal objective value 5x∗1 + 3x∗2 − x∗3. Since (x∗1, x
∗
2, x
∗
3)
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is the optimal solution to the linear program, it should satisfy the constraints of the linear

program, so that we have

3x∗1 + 2x∗2 + x∗3 ≤ 9, 4x∗1 + x∗2 − x∗3 ≤ 3, x∗1 ≥ 0, x∗2 ≥ 0, x∗3 ≥ 0.

We multiply the first constraint above by 1 and the second constraint above by 2 and add

them up to obtain

Also, since x∗1 ≥ 0, x∗2 ≥ 0 and x∗3 ≥ 0, we have 11 x∗1 ≥ 5x∗1, 4x∗2 ≥ 3x∗2 and −x∗3 ≥
−x∗3. Adding these inequalities yield

Combining the two displayed inequalities above, we get 5x∗1 + 3x∗2−x∗3 ≤ 11x∗1 + 4x∗2−x∗3 ≤
15. Since the optimal objective value of the linear program is 5x∗1 + 3 x∗2 − x∗3, the last

inequality shows that 15 is an upper bound on the optimal objective value.

The key to the argument here is to combine the constraints by multiplying them with

positive numbers in such a way that the coefficient of each variable in the combined constraint

dominates its corresponding coefficient in the objective function.

A natural question is whether we can obtain an upper bound tighter than 15 by

multiplying the two constraints with numbers other than 1 and 2. To answer this question, we

generalize the idea by multiplying the constraints with generic numbers y1 ≥ 0 and y2 ≥ 0,

instead of 1 and 2 As before, since (x∗1, x
∗
2, x
∗
3) is the optimal solution to the linear program,

it should satisfy the constraints of the linear program, so that we have

3x∗1 + 2x∗2 + x∗3 ≤ 9, 4x∗1 + x∗2 − x∗3 ≤ 3, x∗1 ≥ 0, x∗2 ≥ 0, x∗3 ≥ 0.

We multiply the first constraint by y1 ≥ 0 and the second constraint by y2 ≥ 0 and add

them up. Thus, if y1 ≥ 0 and y2 ≥ 0, then we have
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Note that multiplying the constraints by positive y1 and y2 ensures we do not change the

direction of the inequalities. Also, noting that x∗1 ≥ 0, if 3 y1 + 4 y2 ≥ 5, then we have

(3 y1 + 4 y2)x∗1 ≥ 5x∗1. Similarly, since x∗2 ≥ 0, if 2 y1 + y2 ≥ 3, then we have (2 y1 + y2)x∗2 ≥
3x∗2. Finally, since x∗3 ≥ 0, if y1 − y2 ≥ −1, then we have (y1 − y2)x∗3 ≥ −x∗3. Therefore, if

3 y1 + 4 y2 ≥ 5, 2 y1 + y2 ≥ 3 and y1 − y2 ≥ −1, then we have

Considering the last two displayed inequalities, the first one holds under the assumption that

y1 ≥ 0 and y2 ≥ 0, whereas the second one holds under the assumption that 3 y1 + 4 y2 ≥ 5,

2 y1 + y2 ≥ 3 and y1 − y2 ≥ −1. Combining these two inequalities, it follows that if

y1 ≥ 0, y2 ≥ 0, 3 y1 + 4 y2 ≥ 5, 2 y1 + y2 ≥ 3, y1 − y2 ≥ −1,

then we have

5x∗1 + 3x∗2 − x∗3 ≤ (3 y1 + 4 y2)x∗1 + (2 y1 + y2)x∗2 + (y1 − y2)x∗3 ≤ 9 y1 + 3 y2.

Thus, since the optimal objective value of the linear program we want to solve is 5 x∗1 +

3x∗2 − x∗3, the last inequality above shows that 9 y1 + 3 y2 is an upper bound on the optimal

objective value of the linear program.

This discussion shows that as long as y1 and y2 satisfy the conditions y1 ≥ 0, y2 ≥ 0,

3 y1 + 4 y2 ≥ 5, 2 y1 + y2 ≥ 3 and y1 − y2 ≥ −1, the quantity 9 y1 + 3 y2 is an upper

bound on the optimal objective value of the linear program we want to solve. To obtain the

tightest possible upper bound on the optimal objective value, we can push the upper bound

9 y1 + 3 y2 as small as possible while making sure that the conditions imposed on y1 and y2

are satisfied. In other words, we can obtain the tightest possible upper bound on the optimal

objective value by solving the linear program

min 9 y1 + 3 y2

st 3 y1 + 4 y2 ≥ 5

2 y1 + y2 ≥ 3

y1 − y2 ≥ −1

y1, y2 ≥ 0.

The optimal objective value of the linear program above is an upper bound on the optimal

objective value of the original linear program we want to solve. Furthermore, this linear

program is a minimization problem. Therefore, we can use the linear program above as the

upper bounding linear program as discussed in the previous section! In linear programming

vocabulary, we refer to the upper bounding linear program above as the dual problem. We

refer to the original linear program we want to solve as the primal problem.
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10.3 Primal and Dual Problems

The primal and dual problems for the example in the previous section are

max 5x1 + 3x2 − x3

st 3x1 + 2x2 + x3 ≤ 9 (y1)

4x1 + x2 − x3 ≤ 3 (y2)

x1, x2, x3 ≥ 0,

min 9 y1 + 3 y2

st 3 y1 + 4 y2 ≥ 5 (x1)

2 y1 + y2 ≥ 3 (x2)

y1 − y2 ≥ −1 (x3)

y1, y2 ≥ 0.

By the discussion in the previous section, we can use the dual problem as the upper bounding

linear program when we solve the primal problem. Note that for each constraint in the primal

problem, we have a dual decision variable yi. For each decision variable xj in the primal

problem, we have a constraint in the dual problem. The objective coefficient of dual variable

yi in the dual problem is the same as the right side of the primal constraint corresponding

to variable yi. The right side of dual constraint corresponding to variable xj is the objective

coefficient of primal variable xj in the primal problem. The constraint coefficient of variable

yi in the dual constraint corresponding to variable xj is the same as the constraint coefficient

of variable xj in the primal constraint corresponding to variable yi.

Using the slack variables w1 and w2 for the primal constraints and the slack variables z1,

z2 and z3 for the dual constraints, we also can write the primal and dual problems as

max 5x1 + 3x2 − x3

st 3x1 + 2x2 + x3 + w1 = 9 (y1)

4x1 + x2 − x3 + w2 = 3 (y2)

x1, x2, x3, w1, w2 ≥ 0,

min 9 y1 + 3 y2

st 3 y1 + 4 y2 − z1 = 5 (x1)

2 y1 + y2 − z2 = 3 (x2)

y1 − y2 − z3 = −1 (x3)

y1, y2, z1, z2, z3 ≥ 0.

Recall that for each constraint in the primal problem, we have a dual decision variable

yi. Also, for each constraint in the primal problem, we have a primal slack variable wi. So,

each dual decision variable yi is associated with a primal slack variable wi. On the other

hand, for each decision variable xj in the primal problem, we have a constraint in the dual

problem. Also, for each constraint in the dual problem, we have a dual slack variable zj. So,

each primal decision variable xj is associated with a dual slack variable zj.

Another way to look at the relationship between the primal and dual problems is to write

these problems in matrix notation. We define the matrices and the vectors

c =

 5

3

−1

 A =

[
3 2 1

4 1 −1

]
b =

[
9

3

]
x =

 x1

x2

x3

 y =

[
y1

y2

]
.
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Using At to denote the transpose of a matrix A, the primal and dual problems considered

in this section can be written in matrix notation as

max ct x min bt y

st Ax ≤ b st At y ≥ c

x ≥ 0, y ≥ 0.

We can use the template above to write the dual problem corresponding to any general

primal problem. Consider a primal problem in the general form

max
n∑
j=1

cj xj

st
n∑
j=1

aij xj ≤ bi ∀ i = 1, . . . ,m

xj ≥ 0 ∀ j = 1, . . . , n.

Defining the matrices and the vectors

c =


c1

c2

...

cn

 A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

am1 am2 . . . amn

 b =


b1

b2

...

bm

 x =


x1

x2

...

xn

 y =


y1

y2

...

ym

 ,
the primal problem above is of the form max ct x subject to Ax ≤ b and x ≥ 0, which implies

that the dual problem corresponding to this primal problem has the form min bt y subject

to At y ≥ c and y ≥ 0. We can write the last problem equivalently as

min
m∑
i=1

bi yi

st
m∑
i=1

aij yi ≥ cj ∀ j = 1, . . . , n

yi ≥ 0 ∀ i = 1, . . . ,m.

Thus, in general form, a primal problem and its corresponding dual problem are given by

max
n∑
j=1

cj xj

st
n∑
j=1

aij xj ≤ bi ∀ i = 1, . . . ,m

xj ≥ 0 ∀ j = 1, . . . , n,

min
m∑
i=1

bi yi

st
m∑
i=1

aij yi ≥ cj ∀ j = 1, . . . , n

yi ≥ 0 ∀ i = 1, . . . ,m.
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10.4 Weak Duality

Weak duality states that the objective value of the dual problem at a feasible solution is at

least as large as the objective value of the primal problem at a feasible solution. To see this

relationship, consider the primal and dual problems

max 5x1 + 3x2 − x3

st 3x1 + 2x2 + x3 ≤ 9

4x1 + x2 − x3 ≤ 3

x1, x2, x3 ≥ 0,

min 9 y1 + 3 y2

st 3 y1 + 4 y2 ≥ 5

2 y1 + y2 ≥ 3

y1 − y2 ≥ −1

y1, y2 ≥ 0.

Let (x̂1, x̂2, x̂3) be a feasible solution to the primal problem and (ŷ1, ŷ2) be a feasible solution

to the dual problem. Since (x̂1, x̂2, x̂3) is a feasible solution to the primal problem, we have

9 ≥ 3 x̂1 + 2 x̂2 + x̂3 and 3 ≥ 4 x̂1 + x̂2 − x̂3. Also, ŷ1 ≥ 0 and ŷ2 ≥ 0, since (ŷ1, ŷ2) is a

feasible solution to the dual problem. Therefore, we have

ŷ1 9 ≥ ŷ1 (3 x̂1 + 2 x̂2 + x̂3)

+ ŷ2 3 ≥ ŷ2 (4 x̂1 + x̂2 − x̂3)

9 ŷ1 + 3 ŷ2 ≥ (3 ŷ1 + 4 ŷ2) x̂1 + (2 ŷ1 + ŷ2) x̂2 + (ŷ1 − ŷ2) x̂3.

On the other hand, since (ŷ1, ŷ2) is a feasible solution to the dual problem, we have 3 ŷ1 +

4 ŷ2 ≥ 5, 2 ŷ1 + ŷ2 ≥ 3 and ŷ1 − ŷ2 ≥ −1. Also, x̂1 ≥ 0, x̂2 ≥ 0 and x̂3 ≥ 0, since (x̂1, x̂2, x̂3)

is a feasible solution to the primal problem. In this case, we obtain

(3 ŷ1 + 4 ŷ2) x̂1 ≥ 5 x̂1

(2 ŷ1 + ŷ2) x̂2 ≥ 3 x̂2

+ (ŷ1 − ŷ2) x̂3 ≥ −x̂3

(3 ŷ1 + 4 ŷ2) x̂1 + (2 ŷ1 + ŷ2) x̂2 + (ŷ1 − ŷ2) x̂3 ≥ 5 x̂1 + 3 x̂2 − x̂3.

Combining the two displayed inequalities we get

9 ŷ1 + 3 ŷ2 ≥ (3 ŷ1 + 4 ŷ2) x̂1 + (2 ŷ1 + ŷ2) x̂2 + (ŷ1 − ŷ2) x̂3 ≥ 5 x̂1 + 3 x̂2 − x̂3.

So, we got 9 ŷ1 + 3 ŷ2 ≥ 5 x̂1 + 3 x̂2− x̂3, saying that the objective value of the dual problem

at the feasible dual solution (ŷ1, ŷ2) is at least as large as the objective value of the primal

problem at the feasible primal solution (x̂1, x̂2, x̂3), which is exactly what weak duality says!

The moral of this story is that the objective value of the dual problem at any feasible

solution to the dual problem is at least as large as the objective value of the primal problem

at any feasible solution to the primal problem. This result is called weak duality. As

discussed in the next section, weak duality has an important implication that allows us to

check whether a pair of feasible solutions to the primal and dual problems are optimal to

their respective problems.
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10.5 Implication of Weak Duality

Assume that (x̂1, x̂2, x̂3) is a feasible solution to the primal problem, whereas (ŷ1, ŷ2) is a

feasible solution to the dual problem in the previous section and these solutions yield the

same objective function values for their respective problems in the sense that 5 x̂1+3 x̂2−x̂3 =

9 ŷ1 + 3 ŷ2. In this case, amazingly, we can use weak duality to immediately conclude that

the solution (x̂1, x̂2, x̂3) is optimal to the primal problem and the solution (ŷ1, ŷ2) is optimal

to the dual problem.

To see this result, let (x∗1, x
∗
2, x
∗
3) be the optimal solution to the primal problem. Since

(x̂1, x̂2, x̂3) is a feasible, but not necessarily an optimal, solution to the primal problem, the

objective value provided by the solution (x̂1, x̂2, x̂3) for the primal problem cannot exceed

the objective value provided by the optimal solution (x∗1, x
∗
2, x
∗
3). So we have

On the other hand, let (y∗1, y
∗
2) be the optimal solution to the dual problem. Note that we

minimize the objective function in the dual problem. Thus, since (ŷ1, ŷ2) is a feasible, but

not necessarily an optimal, solution to the dual problem, the objective value provided by the

solution (ŷ1, ŷ2) for the dual problem cannot dip below the objective value provided by the

optimal solution (y∗1, y
∗
2). So, we also have

Lastly, since (x∗1, x
∗
2, x
∗
3) is optimal to the primal problem, it is also a feasible solution to the

primal problem. By the same reasoning, (y∗1, y
∗
2) is a feasible solution to the dual problem.

Thus, since (x∗1, x
∗
2, x
∗
3) is a feasible solution to the primal problem and (y∗1, y

∗
2) is a feasible

solution to the dual problem, by weak duality, (y∗1, y
∗
2) provides an objective value for the

dual problem that is at least as large as the objective value provided by (x∗1, x
∗
2, x
∗
3) for the

primal problem. In other words, we have

Combining the three displayed inequalities above, we obtain
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If the solutions (x̂1, x̂2, x̂3) and (ŷ1, ŷ2) provide the same objective function values for their

respective problems in the sense that 5 x̂1 +3 x̂2− x̂3 = 9 ŷ1 +3 ŷ2, then the left and right side

of the inequalities above are the same. So, all of the terms in the inequalities have to be equal

to each other. Thus, we get 5 x̂1+3 x̂2−x̂3 = 5x∗1+3 x∗2−x∗3 = 9 y∗1 +3 y∗2 = 9 ŷ1+3 ŷ2. Having

5 x̂1 + 3 x̂2 − x̂3 = 5x∗1 + 3x∗2 − x∗3 implies that the objective value provided by the solution

(x̂1, x̂2, x̂3) for the primal problem is the same as the objective value provided by the optimal

solution. In other words, the solution (x̂1, x̂2, x̂3) is optimal for the primal problem. Likewise,

having 9 y∗1+3 y∗2 = 9 ŷ1+3 ŷ2 implies that the objective value provided by the solution (ŷ1, ŷ2)

for the dual problem is the same as the objective value provided by the dual solution. That

is, the solution (ŷ1, ŷ2) is optimal for the dual problem. This result is exactly what we set

out to show!

The moral of this story is that if we have a feasible solution to the primal problem

and a feasible solution to the dual problem and these feasible solutions provide the same

objective function values for their respective problems, then the feasible solution we have for

the primal problem is optimal for the primal problem and the feasible solution we have for

the dual problem is optimal for the dual problem.
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Strong Duality and Complementary Slackness

In the previous chapter, we saw an important implication of weak duality. In particular, if

we have a feasible solution to the primal problem and a feasible solution to the dual problem

and these feasible solutions provide the same objective function values for their respective

problems, then the feasible solution we have for the primal problem is optimal for the primal

problem and the feasible solution we have for the dual problem is optimal for the dual

problem. In this chapter, we show that we automatically obtain the optimal solution to the

dual problem when we solve the primal problem by using the simplex method.

11.1 Optimal Dual Solution from the Simplex Method

A surprising result is that if we solve the primal problem by using the simplex method, then

we can automatically obtain the optimal solution for the dual problem by using the last

system of equations that the simplex method reaches. To see this result, consider a primal

linear problem and its corresponding dual given by

max 5x1 + 3x2 − x3

st 3x1 + 2x2 + x3 ≤ 9

4x1 + x2 − x3 ≤ 3

x1, x2, x3 ≥ 0,

min 9 y1 + 3 y2

st 3 y1 + 4 y2 ≥ 5

2 y1 + y2 ≥ 3

y1 − y2 ≥ −1

y1, y2 ≥ 0.

For reference, we also write the versions of these linear programs with slack variables. Using

the slack variables w1 and w2 for the primal constraints and the slack variables z1, z2 and z3

for the dual constraints, the linear programs above are equivalent to

max 5x1 + 3x2 − x3

st 3x1 + 2x2 + x3 + w1 = 9

4x1 + x2 − x3 + w2 = 3

x1, x2, x3, w1, w2 ≥ 0,

min 9 y1 + 3 y2

st 3 y1 + 4 y2 − z1 = 5

2 y1 + y2 − z2 = 3

y1 − y2 − z3 = −1

y1, y2, z1, z2, z3 ≥ 0.

Consider solving the primal problem by using the simplex method. We start with the system

of equations

5x1 + 3 x2 − x3 = ζ

3x1 + 2 x2 + x3 + w1 = 9

4x1 + x2 − x3 + w2 = 3.

We increase x1 up to min{9/3, 3/4} = 3/4. Thus, the entering variable is x1 and the leaving

variable is w2. Doing the appropriate row operations, the next system of equations is
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7
4
x2 + 1

4
x3 − 5

4
w2 = ζ − 15

4
5
4
x2 + 7

4
x3 + w1 − 3

4
w2 = 27

4

x1 + 1
4
x2 − 1

4
x3 + 1

4
w2 = 3

4
.

We increase x2 up to min{27
4
/5

4
, 3

4
/1

4
} = 3. So, the entering variable is x2 and the leaving

variable is x1. Appropriate row operations yield the system of equations

−7x1 + 2 x3 − 3w2 = ζ − 9

−5x1 + 3 x3 + w1 − 2w2 = 3

4x1 + x2 − x3 + w2 = 3.

We increase x3 up to 3/3 = 1. In this case, the entering variable is x3 and the leaving

variable is w1. Carrying out the necessary row operations gives

−11
3
x1 − 2

3
w1 − 5

3
w2 = ζ − 11

−5
3
x1 + x3 + 1

3
w1 − 2

3
w2 = 1

−7
3
x1 + x2 + 1

3
w1 + 1

3
w2 = 4.

We reached the optimal solution. The solution (x∗1, x
∗
2, x
∗
3, w

∗
1, w

∗
2) = (0, 4, 1, 0, 0) is optimal

for the primal linear program yielding the optimal objective value of 11.

Consider a possible solution (y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) to the dual problem constructed as

follows. The values of the dual variables y1 and y2 are set to the negative of the objective

function row coefficients of w1 and w2 in the final system of equations that the simplex

method obtains. The values of the dual slack variables z1, z2 and z3 are set to the

negative of the objective function row coefficients of x1, x2 and x3. Therefore, the solution

(y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) is given by

y∗1 =
2

3
, y∗2 =

5

3
, z∗1 =

11

3
, z∗2 = 0, z∗3 = 0.

Note that this solution satisfies

Thus, the solution (y∗1, y
∗
2) is feasible to the dual problem and it provides the objective value

of 9 y∗1 + 3 y∗2 = 9× 2
3

+ 3× 5
3

= 11 for the dual problem.
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The solution (x∗1, x
∗
2, x
∗
3) = (0, 4, 1) is optimal for the primal problem providing an

objective value of 11 for the primal problem. Therefore, (x∗1, x
∗
2, x
∗
3) = (0, 4, 1) is a feasible

solution to the primal problem proving an objective value of 11 for the primal problem. The

solution (y∗1, y
∗
2) = (2/3, 5/3) is a feasible solution to the dual problem providing an objective

value of 11 for the dual problem. So, we have a feasible solution to the primal problem and

a feasible solution to the dual problem such that these feasible solutions provide the same

objective function values for their respective problems. In this case, weak duality implies

that the feasible solution we have for the primal problem is optimal for the primal problem

and the feasible solution we have for the dual problem is optimal for the dual problem. Thus,

the solution (x∗1, x
∗
2, x
∗
3) = (0, 4, 1) is optimal for the primal problem and the solution

(y∗1, y
∗
2) = (2/3, 5/3) is optimal for the dual problem. The fact that (x∗1, x

∗
2, x
∗
3) = (0, 4, 1) is

optimal for the primal problem is no news to us. We knew that this solution is optimal for

the primal problem. However, we now know that the solution (y∗1, y
∗
2) = (2/3, 5/3) is optimal

for the dual problem! Amazingly, we were able to just look at the objective function row

coefficients of the final system of equations in the simplex method and construct an optimal

solution to the dual problem by using these objective function row coefficients.

Also, consider the version of the dual problem with slack variables. For the solution

(y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) = (2/3, 5/3, 11/3, 0, 0) constructed above, we have

3 y∗1 + 4 y∗2 − z∗1 = 3× 2

3
+ 4× 5

3
− 11

3
=

26

3
− 11

3
= 5

2 y∗1 + y∗2 − z∗2 = 2× 2

3
+

5

3
− 0 = 3

y∗1 − y∗2 − z∗3 =
2

3
− 5

3
− 0 = −1.

Therefore, the solution (y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) = (2/3, 5/3, 11/3, 0, 0) is feasible to the version of

the dual problem with slack variables. In other words, the values of the dual slack variables

z1, z2 and z3 obtained by using the negative of the objective function row coefficients of the

decision variables x1, x2 and x3 give us the correct values of the slack variables in the dual

solution (y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3).

It seems magical to be able to use the objective function row coefficients in the final

iteration of the simplex method to obtain an optimal solution to the dual problem. In the

next section, we understand why we are able to obtain an optimal solution to the dual

problem from the last system of equations that the simplex method reaches.

11.2 Strong Duality

In the previous section, we used the simplex method to obtain the optimal solution

(x∗1, x
∗
2, x
∗
3, w

∗
1, w

∗
2) = (0, 4, 1, 0, 0) to the primal problem. The corresponding optimal

objective value for the primal problem was 11. We used the final system of equations obtained

by the simplex method to construct a solution (y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) to the dual problem. In this

solution, the values of the dual variables y1 and y2 are set to the negative of the objective
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function row coefficients of the primal slack variables w1 and w2 in the final system of

equations. The values of the dual slack variables z1, z2 and z3 are set to the negative of

the objective function row coefficients of the primal variables x1, x2 and x3. The solution

(y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) obtained in this fashion is given by

y∗1 =
2

3
, y∗2 =

5

3
, z∗1 =

11

3
, z∗2 = 0, z∗3 = 0.

We showed that this solution satisfies three properties.

• First, the solution (y∗1, y
∗
2) is feasible to the dual problem, satisfying all of the constraints

in the dual problem.

• Second, the solution (y∗1, y
∗
2) provides an objective value of 11 for the dual problem,

which is the objective value provided by the solution (x∗1, x
∗
2, x
∗
3) for the primal problem.

• Third, the solution (y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) is feasible to the version of the dual problem with

slack variables.

Using the first two properties, we were able to conclude that the solution (y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3)

constructed by using the objective function row coefficients in the final iteration of the

simplex method is optimal to the dual problem. In this section, we understand why the

three properties above hold. The simplex method started with the system of equations

5x1 + 3 x2 − x3 = ζ

3x1 + 2 x2 + x3 + w1 = 9

4x1 + x2 − x3 + w2 = 3.

The last system of equations in the simplex method was

−11
3
x1 − 2

3
w1 − 5

3
w2 = ζ − 11

−5
3
x1 + x3 + 1

3
w1 − 2

3
w2 = 1

−7
3
x1 + x2 + 1

3
w1 + 1

3
w2 = 4.

The last system of equations is obtained by carrying out row operations starting from the

initial system of equations. Therefore, we have to be able to obtain the objective function

row in the last system of equations by multiplying the equations in the initial system of

equations with some constants and adding them up.

In the objective function row in the last system of equations, w1 appears with a coefficient

of −2/3. Thus, if we are to obtain the objective function row in the last system of equations

by multiplying the equations in the initial system of equations with some constants and

adding them up, then we must multiply the first constraint row in the initial system of

equations by −2/3 because w1 appears nowhere else in the initial system of equations

and there is no other way of having a coefficient of −2/3 for w1 in the final system of
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equations. By the same reasoning, we must multiply the second constraint row in the initial

system of equations by −5/3. This argument indicates that if we are to obtain the objective

function row in the last system of equations by multiplying the equations in the initial

system of equations with some constants and adding them up, then we must multiply the

first constraint row in the initial system of equations by −2/3 and the second constraint row

by −5/3 and add them to the objective function row in the initial system of equations. We

can check whether this assertion is actually correct. In particular, we can simply go ahead

and multiply the first constraint row by −2/3 and the second constraint row by −5/3 and

add them to the objective function row in the initial system of equations to see whether we

get the objective function row in the last system of equations. Doing this calculation, we

indeed obtain

5x1 + 3x2 − x3 = ζ

−2
3
× (3x1 + 2x2 + x3 + w1 ) = −2

3
× 9

+ −5
3
× (4x1 + x2 − x3 + w2) = −5

3
× 3

−11
3
x1 + 0x2 + 0 x3 − 2

3
w1 − 5

3
w2 = ζ − 11,

which is exactly the objective function row in the final system of equations. The calculation

above shows that the objective function row coefficient of x1 in the final system of equations

is obtained by multiplying the coefficients of x1 in the two constraints in the initial system of

equations by −2/3 and −5/3 and adding them to the objective function coefficient of x1. We

obtain the objective function row coefficients of x2 and x3 in the final system of equations by

using a similar computation. Also, inspecting the calculation above, the objective function

value of 11 in the final system of equations is obtained by multiplying the right side of the

two constraints by 2/3 and 5/3 and adding them up. Therefore, we have

5− 2

3
× 3− 5

3
× 4 = −11

3

3− 2

3
× 2− 5

3
× 1 = 0

−1− 2

3
× 1− 5

3
× (−1) = 0

2

3
× 9 +

5

3
3 = 11.

If we let y∗1 = 2/3, y∗2 = 5/3, z∗1 = 11/3, z∗2 = 0 and z∗3 = 0, then we can write the equalities

above as

5− 3 y∗1 − 4 y∗2 = −z∗1
3− 2 y∗1 − y∗2 = −z∗2
−1− y∗1 + y∗2 = −z∗3

9 y∗1 + 3 y∗2 = 11.

Thus, rearranging the terms in the equalities above, if we let y∗1 and y∗2 be the negative of

the objective function row coefficients of primal slack variables w1 and w2 in the final system
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of equations and z∗1 , z∗2 and z∗3 be the negative of the objective function row coefficients of

primal variables x1, x2 and x3, then (y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) satisfies

3 y∗1 + 4 y∗2 − z∗1 = 5

2 y∗1 + y∗2 − z∗2 = 3

y∗1 − y∗2 − z∗3 = −1

9 y∗1 + 3 y∗2 = 11.

The first three equalities above show that (y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) satisfies the constraints in the

version of the dual problem with slack variables. In addition, we note that the objective

function row coefficients are all non-positive in the final iteration of the simplex method. Since

the values of the decision variables (y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) are set to the negative of the objective

function row coefficients, they are all non-negative. Thus, the solution (y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) is

feasible to the version of the dual problem with slack variables, which establishes the third

property that we set out to prove at the beginning of this section. On the other hand, the

last equality above shows that the solution (y∗1, y
∗
2) provides the objective value of 11 for

the dual problem, which is the objective value provided by the solution (x∗1, x
∗
2, x
∗
3) for the

primal problem, showing the second property at the beginning of this section. Finally, since

z∗1 ≥ 0, z∗2 ≥ 0 and z∗3 ≥ 0, the first three equalities above yield

3 y∗1 + 4 y∗2 = 5 + z∗1 ≥ 5

2 y∗1 + y∗2 = 3 + z∗2 ≥ 3

y∗1 − y∗2 = −1 + z∗3 ≥ −1.

Thus, the solution (y∗1, y
∗
2) is feasible to the dual problem, which establishes the first property

at the beginning of this section.

As long as the simplex method terminates with an optimal solution, the objective function

row coefficients in the final iteration will be all non-positive. In this case, we can always

use the trick described in this chapter to construct an optimal solution to the dual problem

by using the negative objective function row coefficients in the final iteration of the simplex

method. The objective value provided by the solution that we obtain for the dual problem is

always the same as the objective value provided by the solution that we have for the primal

problem. We note that these observations will not hold when the simplex method does not

terminate with an optimal solution, which is the case when there is no feasible solution to

the problem or the problem is unbounded.

The moral of this story is the following. Consider a linear program with n decision

variables and m constraints. Assume that the simplex method terminates with an optimal

solution (x∗1, . . . , x
∗
n, w

∗
1, . . . , w

∗
m) providing the optimal objective value of ζ∗ for the primal

problem. We construct a solution (y∗1, . . . , y
∗
m, z

∗
1 , . . . , z

∗
n) to the dual problem by letting y∗i

be the negative of the objective function row coefficient of w∗i in the final iteration of the

simplex method and z∗j be the negative of the objective function row coefficient of x∗j in the
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final iteration of the simplex method. In this case, the solution (y∗1, . . . , y
∗
m, z

∗
1 , . . . , z

∗
n) is

optimal for the dual problem. Furthermore, the solution (y∗1, . . . , y
∗
m, z

∗
1 , . . . , z

∗
n) provides an

objective value of ζ∗ for the dual problem. Thus, the optimal objective values of the primal

and dual problems are equal. The last property is called strong duality.

In the previous chapter, we set out to construct to the dual problem to obtain an upper

bound on the optimal objective value of the linear program we want to solve. Indeed, weak

duality says that the objective value provided by any feasible solution to the dual problem

is greater than or equal to the objective value provided by any feasible solution to the

primal problem. This relationship holds for any pair of feasible solutions to the primal and

dual problems. Strong duality, on the other hand, says that the objective value provided

by the optimal solution to the dual problem is the same as the objective value provided

by the optimal solution to the primal problem. Of course, strong duality holds when the

primal problem has an optimal solution. That is, the primal problem is not infeasible or

unbounded. Thus, strong duality says that as long as the primal problem is not infeasible

or unbounded, the primal and dual problems have the same optimal objective values.

11.3 Complementary Slackness

Consider the primal and dual problem pair written with the slack variables (w1, w2) for the

primal problem and (z1, z2, z3) for the dual problem,

max 5x1 + 3x2 − x3

st 3x1 + 2x2 + x3 + w1 = 9

4x1 + x2 − x3 + w2 = 3

x1, x2, x3, w1, w2 ≥ 0,

min 9 y1 + 3 y2

st 3 y1 + 4 y2 − z1 = 5

2 y1 + y2 − z2 = 3

y1 − y2 − z3 = −1

y1, y2, z1, z2, z3 ≥ 0.

Assume that we have a solution (x̂1, x̂2, x̂3, ŵ1, ŵ2) to the primal problem and a solution

(ŷ1, ŷ2, ẑ1, ẑ2, ẑ3) to the dual problem satisfying the following three properties.

• The solution (x̂1, x̂2, x̂3, ŵ1, ŵ2) is feasible for the primal problem and the solution

(ŷ1, ŷ2, ẑ1, ẑ2, ẑ3) is feasible for the dual problem.

• We have x̂j × ẑj = 0 for all j = 1, 2, 3.

• We have ŷi × ŵi = 0 for all i = 1, 2.

It turns out satisfying the three properties above ensures that the solution (x̂1, x̂2, x̂3, ŵ1, ŵ2)

is optimal for the primal problem and the solution (ŷ1, ŷ2, ẑ1, ẑ2, ẑ3) is optimal for the

dual problem. To see this result, it is enough to show that the objective value provided

by the solution (x̂1, x̂2, x̂3, ŵ1, ŵ2) for the primal problem is equal to the objective value
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provided by the solution (ŷ1, ŷ2, ẑ1, ẑ2, ẑ3) for the dual problem. In this case, we have the

solutions (x̂1, x̂2, x̂3, ŵ1, ŵ2) and (ŷ1, ŷ2, ẑ1, ẑ2, ẑ3) such that these solutions are feasible for

the primal and dual problems and they provide the same objective value for their respective

problems. Therefore, by the implication of weak duality discussed at the end of the previous

chapter, it must be the case that (x̂1, x̂2, x̂3, ŵ1, ŵ2) is optimal for the primal problem and

the solution (ŷ1, ŷ2, ẑ1, ẑ2, ẑ3) is optimal for the dual problem.

We proceed to showing that if the solutions (x̂1, x̂2, x̂3, ŵ1, ŵ2) and (ŷ1, ŷ2, ẑ1, ẑ2, ẑ3) satisfy

the three properties above, then they provide the same objective value for their respective

problems. We have the chain of equalities

The first equality above uses the fact that (ŷ1, ŷ2, ẑ1, ẑ2, ẑ3) is feasible to the dual problem

because of the first property above, which is to say that 3 ŷ1 +4 ŷ2− ẑ1 = 5, 2 ŷ1 + ŷ2− ẑ2 = 3

and ŷ1 − ŷ2 − ẑ3 = −1. The second equality follows by arranging the terms. The third

equality uses the fact that x̂1 ẑ1 = x̂2 ẑ2 = x̂3 ẑ3 = ŷ1 ŵ1 = ŷ2 ŵ2 = 0 by the second and third

properties above. The fourth equality can be obtained by rearranging the terms. The last

equality uses the fact that (x̂1, x̂2, x̂3, ŵ1, ŵ2) is feasible to the primal problem by the first

property above, which is to say that 3 x̂1+2 x̂2+x̂3+ŵ1 = 9 and 4 x̂1+x̂2−x̂3+ŵ2 = 3. So, the

chain of equalities shows that the solutions (x̂1, x̂2, x̂3, ŵ1, ŵ2) and (ŷ1, ŷ2, ẑ1, ẑ2, ẑ3) provide

the same objective value for their respective problems. By the discussion in the previous

paragraph, it must be the case that the solution (x̂1, x̂2, x̂3, ŵ1, ŵ2) is optimal for the primal

problem and the solution (ŷ1, ŷ2, ẑ1, ẑ2, ẑ3) is optimal for the dual problem.

The moral of this story is the following. Consider a linear program with n decision

variables and m constraints. Assume that we have a feasible solution (x̂1, . . . , x̂n, ŵ1, . . . , ŵm)

to the primal problem and a feasible solution (ŷ1, . . . , ŷm, ẑ1, . . . , ẑn) to the dual problem. If

these solutions satisfy

x̂j × ẑj = 0 ∀ j = 1, . . . , n

ŷi × ŵi = 0 ∀ i = 1, . . . ,m,

then the solution (x̂1, . . . , x̂n, ŵ1, . . . , ŵm) must be optimal for the primal problem and the

solution (ŷ1, . . . , ŷm, ẑ1, . . . , ẑn) must be optimal for the dual problem. This result is known as

complementary slackness. Note that the first equality above can be interpreted as whenever

x̂j takes a strictly positive value, ẑj is 0, and whenever ẑj takes a strictly positive value, x̂j
is 0. A similar interpretation holds for the second equality above.
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Why is complementary slackness useful? We can use complementary slackness to

construct an optimal solution to the dual problem by using an optimal solution to the

primal problem. In particular, assume that we solve the primal problem and see that

(x∗1, x
∗
2, x
∗
3, w

∗
1, w

∗
2) = (0, 1, 4, 0, 0) is the optimal solution. Furthermore, x2 and x4 are the

basic variables in the optimal solution. By using this information, we want to construct

the optimal dual solution (y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) to the problem. To construct the optimal

dual solution, by complementary slackness, it is enough to find (y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) such that

(y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) is feasible to the dual problem and we have

x∗1 z
∗
1 = 0, x∗2 z

∗
2 = 0, x∗3 z

∗
3 = 0, y∗1 w

∗
1 = 0, y∗2 w

∗
2 = 0.

Since x∗1 = w∗1 = w∗2 = 0, we immediately have x∗1 z
∗
1 = 0, y∗1 w

∗
1 = 0 and y∗2 w

∗
2 = 0,

irrespective of the values of z∗1 , y∗1 and y∗2. Since x∗2 = 1 and x∗3 = 4, to satisfy x∗2 z
∗
2 = 0 and

x∗3 z
∗
3 = 0, we must have z∗2 = 0 and z∗3 = 0. Also, since we want (y∗1, y

∗
2, z
∗
1 , z
∗
2 , z
∗
3) to be a

feasible solution to the dual problem, we must have

Since we must have z∗2 = 0 and z∗3 = 0, the system of equations above is equivalent to

The system of equations above has three unknowns and three equations. Solving this

system of equations, we obtain y∗1 = 2/3, y∗2 = 5/3 and z∗1 = 11/3. Thus, the

solution (x∗1, x
∗
2, x
∗
3, w

∗
1, w

∗
2) = (0, 1, 4, 0, 0) is feasible for the primal problem, the solution

(y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) = (2

3
, 5

3
, 11

3
, 0, 0) is feasible for the dual problem and these solutions satisfy

x∗1 z
∗
1 = x∗2 z

∗
2 = x∗3 z

∗
3 = y∗1 w

∗
1 = y∗2 w

∗
2 = 0. In this case, by complementary slackness, it

follows that the solution (x∗1, x
∗
2, x
∗
3, w

∗
1, w

∗
2) = (0, 1, 4, 0, 0) is optimal for the primal problem

and the solution (y∗1, y
∗
2, z
∗
1 , z
∗
2 , z
∗
3) = (2

3
, 5

3
, 11

3
, 0, 0) is optimal for the dual problem.

Although we will not prove explicitly, it is possible to show that the converse of the

statement in complementary slackness also holds. In particular, assume that we have a

feasible solution (x∗1, . . . , x
∗
n, w

∗
1, . . . , w

∗
m) to the primal problem and a feasible solution

(y∗1, . . . , y
∗
m, z

∗
1 , . . . , z

∗
n) to the dual problem. If these solutions are optimal for their respective

problems, then it must be the case that x̂j × ẑj = 0 for all j = 1, . . . , n and ŷi × ŵi = 0 for

all i = 1, . . . ,m.
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Economic Interpretation of the Dual Problem

One use of the dual problem is in finding an upper bound on the optimal objective value of

a linear program we want to solve. In a previous chapter, we discussed how such an upper

bound becomes useful when we try to understand the optimality gap of a feasible solution

we have on hand before the simplex method reaches the optimal solution. In this chapter,

we discuss another use of the dual problem. In particular, we see that the optimal solution

to the dual problem can be used to understand how much the optimal objective value of

the primal problem changes when we perturb the right sides of the constraints in the primal

problem by small amounts. This information can be used to assess how valuable different

resources are.

12.1 Motivation for Economic Analysis

Consider the following example. We sell cloud computing services to two classes of customers,

memory-intensive and storage-intensive. Both customer classes are served through yearly

contracts. Each memory-intensive customer takes up 100 GB of RAM and 200 GB of disk

space, whereas each storage-intensive customer takes up 40 GB of RAM and 400 GB of disk

space. From each yearly contract with a memory-intensive customer, we make $2400. From

each yearly contract with a storage-intensive customer, we make $3200. We have 10000 GB

of RAM and 60000 GB of disk space available to sign contracts with the two customer

classes. For technical reasons, we do not want to get in a contract with more than 140

storage-intensive customers. We want to figure out how many yearly contracts to sign with

customers from each class to maximize the yearly revenue. We can formulate this problem as

a linear program. We use the decision variables x1 and x2 to respectively denote the number

of contracts we sign with memory-intensive and storage-intensive customers. The problem

we want to solve can be formulated as the linear program

z0 = max 2400x1 + 3200x2

st 100x1 + 40x2 ≤ 10000

200x1 + 400x2 ≤ 60000

x2 ≤ 140

x1, x2 ≥ 0.

We use z0 to denote the optimal objective value of the problem above, which corresponds to

the optimal revenue we can obtain from yearly contracts in the current situation.

Assume that we can purchase additional disk space to enlarge our cloud computing

business. We have a supplier that offers us to sell additional disk space at a cost of $5 per

GB for each year of use. Should we be willing to consider this offer? To answer this question,

we assume that we have 60000 + ε GB of disk space rather than 60000, where ε is a small

amount. When we have 60000 + ε GB of disk space, we can compute optimal revenue from
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yearly contracts by solving the linear program

zε = max 2400x1 + 3200x2

st 100x1 + 40x2 ≤ 10000

200x1 + 400x2 ≤ 60000 + ε

x2 ≤ 140

x1, x2 ≥ 0.

We use zε to denote the optimal objective value of the problem above, which corresponds to

the optimal revenue we can obtain from yearly contracts when we have 60000 + ε GB of disk

space. If we have zε − z0 ≥ 5 ε, then the increase in our yearly revenue with ε GB of extra

disk space exceeds the cost of the ε GB of extra disk space we get from our supplier. Thus,

we should be willing to consider the offer from our supplier, at least for a few GB of disk

space. On the other hand, if we have zε − z0 < 5 ε, then the increase in our yearly revenue

with ε GB of extra disk space is not worth the cost of the extra disk space. So, we should

not consider the offer from our supplier. Note that zε − z0 corresponds to the change in the

optimal objective value of the linear program when we increase the right side of the second

constraint by a small amount ε.

The approach described above is a reasonable approach to assess the offer from our

supplier, but it requires solving two linear programs, one to compute z0 and one to compute

zε. Perhaps solving two linear programs is not a big deal, but assume that an airline solves a

linear program to assess the optimal revenue that it can obtain when it operates a certain set

of flight legs with certain capacities on them. The airline wants to understand the revenue

improvement from increasing the capacity on each one of its flight legs. If there are L flight

legs in the network that the airline operates, then the airline may need to solve 1 +L linear

programs, where the first linear program corresponds to the current situation and each one

of the remaining L linear programs corresponds the case where we increase the capacity on

each of the L flight legs by a small amount. If the airline network is large, then L can be

large and solving these linear programs can consume a lot of time.

A natural question is whether we can get away with solving a single linear program to

assess how much the optimal objective value of a linear program changes when we increase

the right side of a constraint by a small amount. To answer this question, consider the linear

program for the cloud computing example and its dual given by

max 2400x1 + 3200x2

st 100x1 + 40x2 ≤ 10000 (y1)

200x1 + 400x2 ≤ 60000 (y2)

x2 ≤ 140 (y3)

x1, x2 ≥ 0,

min 10000 y1 + 60000 y2 + 140 y3

st 100 y1 + 200 y2 ≥ 2400

40 y1 + 400 y2 + y3 ≥ 3200

y1, y2, y3 ≥ 0.

The dual variables y1, y2 and y3 are respectively associated with the first, second and third
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constraints in the primal problem. We are interested in understanding how much the optimal

objective value of the primal problem above changes when we increase the right side of the

second constraint by a small amount ε. We use (y∗1, y
∗
2, y
∗
3) to denote the optimal solution

to the dual problem. In the next section, we show that y∗2 ε is equal to the change in the

optimal objective value of the primal problem above when we increase the right side of the

second constraint by a small amount ε. Similarly, y∗1 ε and y∗3 ε respectively correspond to

the change in the optimal objective value of the primal problem above when we increase the

right side of the first and third constraints by a small amount ε.

Thus, we can solve the primal problem once by using the simplex method. From the

previous chapter, we know how to obtain the optimal solution to the dual problem by using

the final system of equations obtained by the simplex method. Letting (y∗1, y
∗
2, y
∗
3) be the

optimal solution to the dual problem, y∗1 ε, y
∗
2 ε and y∗3 ε respectively correspond to the change

in the optimal objective value of the primal problem when we increase the right side of the

first, second and third constraints by a small amount ε. This discussion implies that we can

solve the primal problem only once to figure out how much the optimal objective value of

this problem would change when we increase the right side of any one of the constraints by

a small amount!

12.2 Economic Analysis from the Dual Solution

Consider the primal and dual problems given by

max 2400x1 + 3200x2

st 100x1 + 40x2 ≤ 10000 (y1)

200x1 + 400x2 ≤ 60000 (y2)

x2 ≤ 140 (y3)

x1, x2 ≥ 0,

min 10000 y1 + 60000 y2 + 140 y3

st 100 y1 + 200 y2 ≥ 2400

40 y1 + 400 y2 + y3 ≥ 3200

y1, y2, y3 ≥ 0.

Let (y∗1, y
∗
2, y
∗
3) be the optimal solution to the dual problem. Our goal is to understand

why y∗2 ε corresponds to the change in the optimal objective value of the primal problem

when we increase the right side of the second constraint in the primal problem by a small

amount ε. Consider solving the primal problem by using the simplex method. Using the

slack variables w1, w2 and w3 for the constraints in the primal problem, we start with the

system of equations

2400x1 + 3200x2 = z

100x1 + 40 x2 + w1 = 10000

200x1 + 400x2 + + w2 = 60000

x2 + + w3 = 140.

We increase x2 up to min{10000/40, 60000/400, 140} = 140. Thus, the entering variable is

x2 and the leaving variable is w3. Doing the appropriate row operations, the next system of
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equations is

2400x1 − 3200w3 = z − 448000

100x1 + w1 − 40w3 = 4400

200x1 + w2 − 400w3 = 4000

x2 + w3 = 140.

We increase x1 up to min{4400/100, 4000/200} = 20. So, the entering variable is x1 and the

leaving variable is w2. The necessary row operations yield the system of equations

− 12w2 + 1600w3 = z − 496000

w1 − 1
2
w2 + 160w3 = 2400

x1 + 1
200

w2 − 2w3 = 20

x2 + w3 = 140.

We increase w3 up to min{2400/160, 140} = 15. In this case, the entering variable is w3 and

the leaving variable is w1. Appropriate row operations give the system of equations

− 10w1 − 7w2 = z − 520000
1

160
w1 − 1

320
w2 + w3 = 15

x1 + 1
80
w1 − 1

800
w2 = 50

x2 − 1
160

w1 + 1
320

w2 = 125.

All coefficients in the objective function row are non-positive. Thus, we obtained the

optimal solution, which is given by (x∗1, x
∗
2) = (50, 125). The optimal objective value is

520000. Furthermore, we know that if we define the solution (y∗1, y
∗
2, y
∗
3) such that y∗1, y∗2 and

y∗3 are respectively the negative of the objective function row coefficients of w1, w2 and w3 in

the final system of equations, then the solution (y∗1, y
∗
2, y
∗
3) is optimal to the dual. Therefore,

the solution (y∗1, y
∗
2, y
∗
3) with

y∗1 = 10, y∗2 = 7, y∗3 = 0

is optimal to the dual problem. We want to understand why y∗2 ε = 7 ε gives how much the

optimal objective value of the primal problem changes when we increase the right side of the

second constraint by a small amount ε.

Let us reflect on the row operations in the execution of the simplex method above. We

started with the system of equations

2400x1 + 3200x2 = z

100x1 + 40 x2 + w1 = 10000

200x1 + 400x2 + w2 = 60000

x2 + w3 = 140.
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After applying a sequence of row operations in the simplex method, we obtained the system

of equations

− 10w1 − 7w2 = z − 520000
1

160
w1 − 1

320
w2 + w3 = 15

x1 + 1
80
w1 − 1

800
w2 = 50

x2 − 1
160

w1 + 1
320

w2 = 125.

Consider replacing all of the appearances of w2 in the two systems of equations above with

w2 − ε. Therefore, if we start with the system of equations

and apply the same sequence of row operations on this system, then we would obtain the

system of equations

Moving all of the terms that involve an ε to the right side, it follows that if we start with

the system of equations

2400x1 + 3200x2 = z

100x1 + 40 x2 + w1 = 10000

200x1 + 400x2 + w2 = 60000 + ε

x2 + w3 = 140

and apply the same sequence of row operations that we did in the simplex method, then we

would obtain the system of equations
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− 10w1 − 7w2 = z − 520000− 7 ε
1

160
w1 − 1

320
w2 + w3 = 15− 1

320
ε

x1 + 1
80
w1 − 1

800
w2 = 50− 1

800
ε

x2 − 1
160

w1 + 1
320

w2 = 125 + 1
320

ε.

Note that w2 and ε have the same coefficient in each equation above.

Now, consider solving the linear program after we increase the right side of the second

constraint by a small amount ε. The simplex method starts with the system of equations

2400x1 + 3200x2 = z

100x1 + 40 x2 + w1 = 10000

200x1 + 400x2 + + w2 = 60000 + ε

x2 + + w3 = 140.

Starting from the system of equations above, let us apply the same sequence of row operations

in the earlier execution of the simplex method. These row operations may or may not exactly

be the ones followed by the simplex method when we solve the problem after we increase

the right side of the second constraint by ε. Nevertheless, applying these row operations is

harmless in the sense that we know that a system of equations remains unchanged when we

apply a sequence of row operations on it. If we apply these row operations, then by the just

preceding argument, we would obtain the system of equations

− 10w1 − 7w2 = z − 520000− 7 ε
1

160
w1 − 1

320
w2 + w3 = 15− 1

320
ε

x1 + 1
80
w1 − 1

800
w2 = 50− 1

800
ε

x2 − 1
160

w1 + 1
320

w2 = 125 + 1
320

ε.

The objective function row coefficients are all non-positive in the system of equations above,

which means that we reached the optimal solution. Thus, if we increase the right side of the

second constraint by ε, then the optimal solution is given by (x∗1, x
∗
2) = (50− 1

800
ε, 125+ 1

320
ε)

and the optimal objective value is 520000+7 ε. As long as ε is small, we have x∗1 = 50− 1
800
ε ≥

0 and x∗2 = 125 + 1
320

ε ≥ 0. Also, for small ε, observe that
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Thus, the solution (x∗1, x
∗
2) = (50 − 1

800
ε, 125 + 1

320
ε) is feasible to the linear program when

we increase the right side of the second constraint by a small amount ε.

If we increase the right side of the second constraint by a small amount ε, then the optimal

objective value is 520000 + 7 ε. If we do not change the right side of the second constraint

at all, then the optimal objective value is 520000. Thus, 7 ε corresponds to the change in

the optimal objective value when we increase the right side of the second constraint by a

small amount ε. In the last system of equations the simplex method reaches, the coefficients

of w2 and ε in the objective function row are identical. Since y∗2 is given by the negative of

the objective function row coefficient of w2, we have y∗2 = 7, which is also the negative of

the coefficient of ε in the objective function row. Thus, if we increase the right side of the

second constraint by a small amount ε, then the change in the optimal objective value of the

problem is given by 7 ε = y∗2 ε.

Roughly speaking, the moral of this story is the following. Consider a linear program

with m constraints and let (y∗1, . . . , y
∗
m) be the optimal solution to the dual of this linear

program. In this case, if we increase the right side of the i-th constraint by a small amount

ε, then the optimal objective value of the linear program changes by ε y∗i .

12.3 An Exception to the Moral of the Story

There is an exception to the moral of this story. When we solved the original linear program

by using the simplex method, the last system of equations was

− 10w1 − 7w2 = z − 520000
1

160
w1 − 1

320
w2 + w3 = 15

x1 + 1
80
w1 − 1

800
w2 = 50

x2 − 1
160

w1 + 1
320

w2 = 125.

Also, when we increased the right side of the second constraint by a small amount ε and

solved the linear program by using the simplex method, the last system of equations was

− 10w1 − 7w2 = z − 520000− 7 ε
1

160
w1 − 1

320
w2 + w3 = 15− 1

320
ε

x1 + 1
80
w1 − 1

800
w2 = 50− 1

800
ε

x2 − 1
160

w1 + 1
320

w2 = 125 + 1
320

ε.

The two systems of equations differ only in the right side of the equations. Now, assume that

a basic variable, say x1, took value 0 in the optimal solution in the first system of equations
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above. In this case, the right side of the second constraint row in the first system of equations

would be 0 instead of 50, whereas the right side of the second constraint row in the second

system of equations would be 0− 1
800

ε = − 1
800
ε instead of 50− 1

800
ε. So, no matter how small

ε is, setting x1 = − 1
800
ε would yield a negative value for this decision variable and such a

value for x1 would be infeasible to the problem when we increase the right side of the second

constraint by ε. Thus, we get into trouble when a basic variable at the optimal solution takes

value 0. In other words, the moral of this story does not work when the optimal solution is

degenerate.

Therefore, we need to refine the moral of this story as follows. Consider a linear program

with n decision variables and m constraints. Let (x∗1, . . . , x
∗
n) be the optimal solution to

the linear program and let (y∗1, . . . , y
∗
m) be the optimal solution to the dual of the linear

program. Assume that (x∗1, . . . , x
∗
n) is not a degenerate solution. In this case, if we increase

the right side of the i-th constraint by a small amount ε, then the optimal objective value

of the linear program changes by ε y∗i .
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Modeling Power of Integer Programming

Integer programs involve optimizing a linear objective function subject to linear constraints

and with integrality requirements on the decision variables. Integer programs become useful

when we deal with an optimization problem that includes indivisible quantities. For example,

if we are building an optimization model to decide how many cars to ship from different

production plants to different retailers, then we need to impose integrality constraints on

our decision variables since a solution where we ship fractional numbers of cars would not

be sensible. More importantly perhaps, integer programs become useful when we need to

capture logical relationships between the decision variables. For example, we may be allowed

to take an action only if we have taken another action earlier. Out of a certain number of

actions available, we may be allowed to take only one of them. In this chapter, we use a

number of examples to demonstrate how we can use integer programs to model optimization

problems that fall outside the scope of linear programming.

13.1 Covering Problems

An ambulance organization of a city operates 2 ambulances. These ambulances can be

stationed at any one of the 3 bases in the city. There are 5 districts in the city that needs

coverage. The table below shows which bases provide coverage to which districts, where an

entry of 1 corresponding to base i and district j indicates that an ambulance stationed at

base i can cover district j. For example, if we station an ambulance at base 2, then we

can cover districts 1, 3 and 5 with this ambulance. The populations of the 5 districts are

respectively 1500, 3500, 2500, 3000 and 2000. We assume that covering a district with more

than one ambulance does not bring any additional advantage over covering the district with

a single ambulance. In other words, having one ambulance stationed at a based that covers

a district is adequate to cover the population of the district. We want to decide where to

station the ambulances so that we maximize the total population under coverage.

Base

Dist.
1 2 3 4 5

1 1 1 0 1 0

2 1 0 1 0 1

3 0 1 0 0 1

To formulate the problem as an integer program, we use two sets of decision variables. The

first set of decision variables captures whether we station an ambulance at each base. Thus,

for all i = 1, 2, 3, we define the decision variable

xi =

{
1 if we station an ambulance at base i

0 otherwise.
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The second set of decision variables captures whether a district is under coverage. Therefore,

for all j = 1, 2, 3, 4, 5, we define the decision variable

yj =

{
1 if we cover district j

0 otherwise.

We have a logical relationship between the two types of decision variables. For example,

district 5 can be covered only from bases 2 and 3, which implies that if we do not have an

ambulance at bases 2 and 3, then district 5 is not covered. We can represent this relationship

by the constraint y5 ≤ x2 + x3. Thus, if x2 = 0 and x3 = 0 so that we do not have an

ambulance at bases 2 and 3, then it must be the case that y5 = 0, which indicates that we

cannot cover district 5. Using similar logical relationships for the coverage of other districts,

we can figure out where to station the ambulances to maximize the total population under

coverage by solving the integer program

In the objective function, we add up the populations of the districts that we cover. The

first five constraints above ensure that if we do not have ambulances at any of the stations

that cover a district, then we do not cover the district. For example, consider the constraint

y5 ≤ x2 +x3. District 5 can be covered only from bases 2 and 3. If x2 = 0 and x3 = 0 so that

there are no ambulances at bases 2 and 3, then the right side of the constraint y5 ≤ x2 + x3

is 0, which implies that we must have y5 = 0. Thus, we do not cover district 5. On the

other hand, if x2 = 1 or x5 = 1, then the right side of the constraint y5 ≤ x2 + x3 is

at least 1, which implies that we can have y5 = 1 or y5 = 0. Since we are maximizing the

objective function, the optimal solution would set y5 = 1, which implies that we cover district

5. The last constraint in the problem above ensures that since we have 2 ambulances, we can

station an ambulance at no more than 2 bases. We impose the requirement xi ∈ {0, 1} on

the decision variable xi for all i = 1, 2, 3. This requirement is equivalent to 0 ≤ xi ≤ 1 and

xi is an integer. The same argument holds for the decision variable yj. Thus, the problem
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above optimizes a linear objective function subject to linear constraints and with integrality

requirements on the decision variables.

The integer program above is a specific instance of a covering problem. To give a compact

formulation of covering problems, we consider the case where we have m possible actions

and n goals. We can take at most k of the m possible actions. If we take action i, then we

can satisfy a subset of the goals. To indicate which goals each action satisfies, we use

aij =

{
1 if taking action i satisfies goal j

0 otherwise.

If we satisfy goal j, then we make a reward of Rj. Thus, the data for the problem is

{aij : i = 1, . . . ,m, j = 1, . . . , n} and {Rj : j = 1, . . . , n}. We want to figure out which

actions to take to maximize the reward from the satisfied goals while making sure that we

do not take more than k actions. To draw parallels with our previous example, action i

corresponds to stationing an ambulance at base i and goal j corresponds to covering district

j. In the data, aij indicates whether an ambulance at base i covers district j or not, whereas

Rj corresponds to the population of district j. To formulate the problem as an integer

program, we define the decision variables

xi =

{
1 if we take action i

0 otherwise,

yj =

{
1 if we satisfy goal j

0 otherwise.

In this case, the compact formulation of the covering problem is given by

max
n∑
j=1

Rj yj

st yj ≤
m∑
i=1

aij xi ∀ j = 1, . . . , n

m∑
i=1

xi ≤ k

xi ∈ {0, 1}, yj ∈ {0, 1} ∀ i = 1, . . . ,m, j = 1, . . . , n.

Note that aij takes value 1 if action i satisfies goal j, otherwise aij takes value 0. Thus, the

sum
∑m

i=1 aij xi on the right side of the first constraint corresponds to the number of actions

that we take satisfying goal j. If we do not take any actions that satisfy goal j so that∑m
i=1 aij xi = 0, then we must have yj = 0, indicating that we cannot satisfy goal j. The

second constraint ensures that we take at most k actions.
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13.2 Fixed Charge Problems

We need to produce a product to satisfy a demand of 1000 units. There are 4 facilities that

we can use to produce the product. If we use a certain facility to produce the product, then

we pay a fixed charge for our usage of the facility, which does not depend on how many units

we produce. Along with the fixed charge, we also incur a per unit production cost for each

produced unit. The table below shows the fixed change and the per unit production cost

when we produce the product at each one of the 4 facilities. For example, if we decide to

produce the product in facility 1, then we incur a fixed charge of $500 and for each unit that

we produce at facility 1, we incur a per unit production cost of $4. There is a production

capacity of 500 at each facility, which is to say that we cannot produce more than 500 units

at any one of the facilities. We want to figure out how many units to produce at each facility

to minimize the total production cost, while making sure that we produce enough to satisfy

the demand of 1000 units.

Facility 1 2 3 4

Fixed Charge 500 1200 800 500

Per Unit Cost 4 2 3 5

We formulate the problem by using a mixture of integer and continuous decision

variables. For all j = 1, 2, 3, 4, we define the decision variable

xj =

{
1 if we use facility j for production

0 otherwise.

Also, for all j = 1, 2, 3, 4, we define the decision variable

yj = Production quantity at facility j.

If xj = 0, which means that we do not use facility j for production, then we must have

yj = 0 as well, indicating that the amount produced at facility j must be 0. On the other

hand, if xj = 1, meaning that we use facility j for production, then yj is upper bounded by

the capacity at the production facility, which is 500. Thus, we can represent the relationship

between xj and yj by using the constraint yj ≤ 500xj. In this case, we can figure out how

many units to produce at each facility by solving the integer program
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In the objective function above, we use the decision variable xj to account for the fixed

charge of using facility j and the decision variable yj to account for the cost incurred for the

units that we produce at facility j. The last constraint ensures that the total production

quantity is enough to cover the demand.

The integer program above is a fixed charge problem, where we incur a fixed charge to

produce a product at a particular facility. To give a compact formulation for a fixed charge

problem, consider the case where we have n facilities. The fixed charge for using facility j is

fj and the per unit production cost at facility j is cj. We use Uj to denote the production

capacity of facility j. We need to produce enough to cover a demand of D units. We want

to decide how much to produce at each facility to minimize the total fixed charges and

production costs. Using the decision variables xj and yj as defined earlier in this section,

the compact formulation of the fixed charge problem is given by

min
n∑
j=1

fj xj +
n∑
j=1

cj yj

st yj ≤ Uj xj ∀ j = 1, . . . , n
n∑
j=1

yj ≥ D

xj ∈ {0, 1}, yj ≥ 0 ∀ j = 1, . . . , n.

If there is no production capacity at facility j, then we can replace the constraint yj ≤ Uj xj
with yj ≤M xj for some large number M . In the problem above, we know that we will never

produce more than D units at a production facility. So, using M = D suffices.

13.3 Problems with Either-Or Constraints

We can purchase a product from 4 different suppliers. The total amount we want to purchase

from these 4 suppliers is 100. The price charged by each supplier is different. Furthermore,

the distance from each supplier to our business is different and we want to make sure that

the average distance that all of our purchases travel is no larger than 400 miles. Lastly, the

suppliers are not willing to supply intermediate amounts of product. Our purchase quantities

should be either rather small or rather large. In particular, the amount that we purchase

from each supplier should either be smaller than a low threshold or larger than a high

threshold. The table below shows the prices charged by the suppliers and their distances

from our business, along with the low thresholds and high thresholds for the purchase

quantities. For example, supplier 1 charges a price of $5 for each unit of product, it is

located 450 miles from our business and the purchase quantity from supplier 1 should be

either less than 10 or larger than 50. We want to figure out how many units to purchase
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from each supplier so that we minimize the total cost of the purchases, while making sure

that we purchase a total of at least 100 units, the average distance traveled by all purchases

is no larger than 400 miles and the purchase quantity from each supplier is either smaller

than the low threshold or larger than the high threshold. It is important to observe that

this problem requires modeling constraints that have either-or form, since the quantity that

we purchase from a supplier has to be either smaller than the low threshold or larger than

the high threshold.

Supplier 1 2 3 4

Price 5 6 3 7

Distance 450 700 800 200

Low Thresh. 10 15 5 10

High Thresh. 50 40 30 45

We formulate the problem by using a mixture of integer and continuous decision

variables. For all j = 1, 2, 3, 4, we define the decision variable

xj =

{
1 if the purchase quantity from supplier j is smaller than the low threshold

0 otherwise.

Also, for all j = 1, 2, 3, 4, we define the decision variable

yj = Purchase quantity from supplier j.

Consider the amount that we purchase from supplier 1. If x1 = 1, then the purchase

quantity from supplier 1 is smaller than the low threshold, which implies that we must have

y1 ≤ 10. On the other hand, if x1 = 0, then the purchase quantity from supplier 1 is larger

the high threshold, which implies that we must have y1 ≥ 50. To capture this relationship

between the decision variables x1 and y1, we use the two constraints

y1 ≤ 10 +M (1− x1) and y1 ≥ 50−Mx1,

where M is a large number. In this case, if x1 = 1, then the two constraints above take the

form y1 ≤ 10 and y1 ≥ 50−M . Since M is a large number, 50−M is a small number. Thus,

y1 ≥ 50−M is always satisfied. Thus, if x1 = 1, then we must have y1 ≤ 10, as desired. On

the other hand, if x1 = 0, then the two constraints above take the form y1 ≤ 10 + M and

y1 ≥ 50. Since M is a large number, y1 ≤ 10 + M is always satisfied. Thus, if x1 = 0,

then we must have y1 ≥ 50, as desired. We can follow a similar reasoning to ensure that

the purchase quantities from the other suppliers are either smaller than the low threshold or

larger than the high threshold.

Another constraint we need to impose on our decisions is that the average distance that

all of our purchases travels is no larger than 400 miles. The average distance traveled by all of
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our purchases is given by (450 y1 +700 y2 +800 y3 +200 y4)/(y1 +y2 +y3 +y4). Thus, we want

to ensure that (450 y1 + 700 y2 + 800 y3 + 200 y4)/(y1 + y2 + y3 + y4) ≤ 400. This constraint

appears to be nonlinear since we have a fraction on the left side, but we can write this

constraint equivalently as 450 y1 +700 y2 +800 y3 +200 y4 ≤ 400 (y1 +y2 +y3 +y4). Collecting

all terms on one side of the inequality, we can ensure that the average distance that all of

our purchases travels is no larger than 400 miles by using the constraint

50 y1 + 300 y2 + 400 y3 − 200 y4 ≤ 0.

Putting the discussion so far together, we can figure out how may units to purchase from

each supplier by solving the integer program

The objective function above accounts for the total cost of the purchases. The first eight

constraints ensure that the purchase quantity from each supplier should be either smaller

than the low threshold or larger than the high threshold. The last two constraints ensure

that the average distance traveled by our orders is no larger than 400 miles and the total

quantity we purchase is at least the desired amount of 100.

The integer program above involves either-or constraints. In particular, out of two

constraints, we need to satisfy either one constraint or the other but not necessarily

both. To describe a more general form of either-or constraints, consider a linear program

with n non-negative decision variables {yj : j = 1, . . . , n}. In the objective function of
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the linear program, we maximize
∑n

j=1 cj yj for appropriate objective function coefficients

{cj : j = 1, . . . , n}. For all i = 1, . . . ,m, we have the constraints

n∑
j=1

aij xj ≤ bi

for appropriate constraint coefficients {aij : i = 1, . . . ,m, j = 1, . . . , n} and constraint right

sides {bi : i = 1, . . . ,m}. Out of the m constraints above, we want at least k of them to

be satisfied. Therefore, our goal is to maximize the objective function
∑n

j=1 cj yj subject to

the constraint that at least k out of the m constraints above are satisfied. To formulate this

problem as an integer program, in addition to the decision variables {yj : j = 1, . . . , n}, we

define the decision variables {xi : i = 1, . . . ,m} such that

xi =

{
1 if the constraint

∑n
j=1 aij yj ≤ bi is satisfied

0 otherwise.

In our integer program, letting M be a larger number, we replace the constraint
∑n

j=1 aij yj ≤
bi with the constraint

n∑
j=1

aij yj ≤ bi +M (1− xi).

In this case, we can maximize the objective function
∑n

j=1 cj yj subject to the constraint

that at least k out of the m constraints are satisfied by solving the integer program

max
n∑
j=1

cj yj

st
n∑
j=1

aij yj ≤ bi +M (1− xi) ∀ i = 1, . . . ,m

m∑
i=1

xi ≥ k

xi ∈ {0, 1}, yj ≥ 0 ∀ i = 1, . . . ,m, j = 1, . . . , n.

In the problem above, consider the constraint
∑n

j=1 aij yj ≤ bi +M (1− xi). If xi = 1, then

the constraint takes the form
∑n

j=1 aij yj ≤ bi. Thus, if xi = 1, then we ensure that the

decision variables {yj : j = 1, . . . , n} satisfy the constraint
∑n

j=1 aij yj ≤ bi. If xi = 0, then

the constraint takes the form
∑n

j=1 aij yj ≤ bi + M , which is a constraint that is always

satisfied since bi+M is a large number. Thus, if xi = 0, we do not care whether the decision

variables {yj = 1, . . . , n} satisfy the constraint
∑n

j=1 aij yj ≤ bi. The second constraint above

imposes the condition that the decision variables {yj = 1, . . . , n} must satisfy at least k of

the constraints
∑n

j=1 aij yj ≤ bi for all i = 1, . . . ,m.
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13.4 Problems with Nonlinear Objectives

We are generating power at 2 power plants, plants A and B. We want to generate a total

of 100 units of power from the 2 plants. The cost of power generated at a power plant

is a nonlinear function of the amount of power that we generate at the plant. The figure

below shows the cost of power generated at each one of the 2 plants as a function of the

power generated. For example, for plant A, for the first 35 units of power generated,

each additional unit of power generation costs $2. For the next 25 units of power

generated, each additional unit of power generation costs $4. Lastly, for the next 40 units of

power generated, each additional unit of power generation costs $1. We want to figure out

how much power to generate at each plant to minimize the cost of generation, while making

sure that we generate a total of 100 units of power. Note that the cost of power is nonlinear

in the power generated. So, this problem involves minimizing a nonlinear function.
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To understand the decision variables that we need, we focus on plant A and take a closer

look at the graph in the figure above that gives the cost of generation as a function of the

power generated. There are three segments in the horizontal axis of the graph and these

three segments are labeled as 1, 2 and 3. For each one of the segments i = 1, 2, 3, we define

the decision variable

xiA =

{
1 if the power generated at plant A utilizes segment i

0 otherwise.

For example, if we generate 45 units of power at plant A, then x1A = 1, x2A = 1 and x3A = 0.

Also, for each one of the segments i = 1, 2, 3, we define the decision variable

yiA = Portion of segment i utilized by the power generated at plant A.
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For example, if we generate 45 units of power at plant A, then the decision variables y1A,

y2A and y3A take the values y1A = 35, y2A = 10 and y3A = 0.

Note that as a function of the decision variables y1A, y2A and y3A, the total amount of

power generated at plant A is given by

y1A + y2A + y3A.

For each unit of power generated in segment 1, we incur an additional cost of $2. For each

unit of power generated in segment 2, we incur an additional cost of $4. Finally, for each unit

of power generated in segment 3, we incur an additional cost of $1. Therefore, we can write

the total cost of power generated at plant A as

2 y1A + 4 y2A + 1 y3A.

On the other hand, if x1A = 1, then we use segment 1 when generating power at plant A. In

this case, noting that the width of segment 1 is 35, we must have y1A ≤ 35. If x1A = 0,

then we do not use segment 1 when generating power at plant A. In this case, we must have

y1A = 0. To capture this relationship, we use the constraint y1A ≤ 35x1A. Note that since

x1A ∈ {0, 1}, this constraint implies that we always have y1A ≤ 35. Furthermore, if x2A = 1,

then we use segment 2 when generating power at plant A, which means that we must have

use segment 1 in its entirety. Therefore, if x2A = 1, then we must have y1A ≥ 35. To capture

this relationship, we use the constraint y1A ≥ 35x2A. Thus, the decision variable y1A is

connected to the decision variables x1A and x2A through the constraints

y1A ≤ 35x1A and y1A ≥ 35x2A.

By using the same argument for segment 2, the decision variable y2A is connected to the

decision variables x2A and x3A through the constraints

y2A ≤ 25x2A and y2A ≥ 25x3A.

Lastly, if x3A = 1, then we use segment 3 when generating power at plant A so that y3A ≤
40. If x3A = 0, then we do not use segment 3 when generating power at plant A so that we

must have y3A = 0. To capture this relationship, we use the constraint

y3A ≤ 40x3A.

We can use the same approach to capture the cost of power generation at plant B. For

each one of the segments i = 1, 2, 3, we define the decision variable

xiB =

{
1 if the power generated at plant B utilizes segment i

0 otherwise.

Also, for each one of the segments i = 1, 2, 3, we define the decision variable
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yiB = Portion of segment i utilized by the power generated at plant B.

In this case, the total amount of power generated at plant B is given by y1B + y2B + y3B,

whereas the total cost of power generated at plant B is given by 1 y1B + 5 y2B + 1 y3B. By

using the same approach that we used for plant A, the decision variables y1B, y2B and y3B

are connected to the decision variables x1B, x2B and x3B through the constraints

y1B ≤ 40x1B, y1B ≥ 40x2B, y2B ≤ 20x2B, y2B ≥ 20x3B, y3B ≤ 40x3B.

Collecting all of our discussion so far together, if we want to figure out how much power

to generate at each plant to generate a total of 100 units of power with minimum generation

cost, then we can solve the integer program

The integer program above provides an approach for dealing with single-dimensional

piecewise-linear objective functions in our optimization problems. Any single-dimensional

nonlinear function can be approximated arbitrarily well with a piecewise-linear

function. Therefore, by using the approach described in this section, we can use rather

accurate approximations of single-dimensional nonlinear functions as objective functions in

our optimization problems.
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Branch-and-Bound Method for Solving Integer Programs

In the previous chapter, we discussed a variety of optimization problems that can be modeled

as integer programs. In this chapter, we discuss the branch-and-bound method for solving

integer programs. The branch-and-bound method obtains the optimal solution to an integer

program by solving a sequence of linear programs. Since the branch-and-bound method

obtains the optimal solution to an integer program by solving a sequence of linear programs,

it allows us to build on the theory and the algorithms that we already have for solving linear

programs.

14.1 Key Idea of the Branch-and-Bound Method

Consider the integer program

max 5x1 + 4x2 + 4x3 + 3x4

st 2x1 + 4x2 + 3x3 + 2x4 ≤ 20

6x1 + 5x2 + 4x3 + 5x4 ≤ 25

x1 + x2 + x3 + x4 ≥ 5

x2 + 2x3 ≤ 7

x1, x2, x3, x4 ≥ 0

x1, x2, x3 are integers.

Note that the decision variables x1, x2 and x3 in the problem above are restricted to be

integers but the decision variable x4 can take fractional values. In the branch-and-bound

method, we start by solving the integer program above without paying attention to any of

the integrality requirements. In particular, we start by solving the problem

max 5x1 + 4x2 + 4x3 + 3x4

st 2x1 + 4x2 + 3x3 + 2x4 ≤ 20

6x1 + 5x2 + 4x3 + 5x4 ≤ 25

x1 + x2 + x3 + x4 ≥ 5

x2 + 2x3 ≤ 7

x1, x2, x3, x4 ≥ 0.

The problem above is referred to as the linear programming relaxation of the integer program

we want to solve. Since there are no integrality requirements on the decision variables, we

can solve the problem above by using the simplex method. The optimal objective value of

the problem above is 23.167 with the optimal solution

x1 = 1.833, x2 = 0, x3 = 3.5, x4 = 0.
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The solution above satisfies the first four constraints in the integer program because these

constraints are already included in the linear program that we just solved. However, the

solution above is not a feasible solution to the integer program that we want to solve because

the decision variables x1 and x3 take fractional values in the solution, whereas our integer

program imposes integrality constraints on these decision variables. We focus on one of

these decision variables, say x1. We have x1 = 1.833 in the solution above. Note that in the

optimal solution to the integer program, we must have either x1 ≤ 1 or x1 ≥ 2. Thus, based

on the optimal solution of the linear program that we just solved, we consider two cases. The

first case focuses on x1 ≤ 1 and the second case focuses on x1 ≥ 2. These two cases yield two

linear programs to consider, where the first linear program imposes the additional constraint

x1 ≤ 1 and the second linear program imposes the additional constraint x1 ≥ 2. Thus, these

two linear programs are given by

max 5x1 + 4x2 + 4x3 + 3x4 max 5x1 + 4x2 + 4x3 + 3x4

st 2x1 + 4x2 + 3x3 + 2x4 ≤ 20 st 2 x1 + 4x2 + 3x3 + 2x4 ≤ 20

6x1 + 5x2 + 4x3 + 5x4 ≤ 25 6 x1 + 5x2 + 4x3 + 5x4 ≤ 25

x1 + x2 + x3 + x4 ≥ 5 x1 + x2 + x3 + x4 ≥ 5

x2 + 2x3 ≤ 7 x2 + 2x3 ≤ 7

x1 ≤ 1 x1 ≥ 2

x1, x2, x3, x4 ≥ 0 x1, x2, x3, x4 ≥ 0.

An important observation is that the optimal solution to either of the two linear programs

above will necessarily be different from the optimal solution to the linear program that we

just solved because noting the constraints x1 ≤ 1 and x1 ≥ 2 in the two linear programs

above, having x1 = 1.833 in a solution would be infeasible to either of the two linear

programs. Solving the linear program on the left above, the optimal objective value is 22.333

with the optimal solution

x1 = 1, x2 = 1.667, x3 = 2.667, x4 = 0.

We summarize our progress so far in the figure below. We started with the linear

programming relaxation to the original integer program that we want to solve. This linear

programming relaxation corresponds to node 0 in the figure. The optimal solution to

the linear program at node 0 is (x1, x2, x3, x4) = (1.833, 0, 3.5, 0) with the objective value

23.167. Observe how we display this solution and the objective value at node 0 in the figure

below. Examining this solution, since the integer decision variable x1 takes the fractional

value 1.833 in the solution, we branch into two cases, x1 ≤ 1 and x1 ≥ 2. Branching into

these two cases gives us the linear programs at nodes 1 and 2 in the figure. The linear

program at node 1 includes all of the constraints in the linear program at node 0, along with

the constraint x1 ≤ 1. The linear program at node 2 includes all of the constraints in the

linear program at node 0, along with the constraint x1 ≥ 2. Solving the linear program at
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node 1, we obtain the optimal solution (x1, x2, x3, x4) = (1, 1.667, 2.667, 0) with the objective

value 22.333.

Node%1%
Obj.%=%22.333%

(1,%1.667,%2.667,%0)%

Node%0%
Obj.%=%23.167%

(1.833,%0,%3.5,%0)%

Node2%

x1%≥%2%x1%≤%1%

The solution (x1, x2, x3, x4) = (1, 1.667, 2.667, 0) provided by the linear program at node

1 is not feasible to the integer program we want to solve because the decision variables x2

and x3 take fractional values in this solution, but our integer program imposes integrality

constraints on these decision variables. We choose one of these decision variables, say x2. We

have x2 = 1.667 in the solution at node 1, but in the optimal solution to the integer program,

we must have either x2 ≤ 1 and x2 ≥ 2. Thus, at node 1, we branch into two cases, x2 ≤ 1

and x2 ≥ 2. Branching into these two cases at node 1 gives us the linear programs at nodes 3

and 4 shown in the figure below. The linear program at node 3 includes all of the constraints

in the linear program at node 1, plus the constraint x2 ≤ 1. The linear program at node 4

includes all of the constraints in the linear program at node 1, plus the constraint x2 ≥ 2. In

other words, the linear program at node 3 includes all of the constraints in the linear program

at node 0, along with the constraints x1 ≤ 1 and x2 ≤ 1. The linear program at node 4

includes all of the constraint in the linear program at node 0, along with the constraints

x1 ≤ 1 and x2 ≥ 2.

Node%1%
Obj.%=%22.333%

(1,%1.667,%2.667,%0)%

Node%0%
Obj.%=%23.167%

(1.833,%0,%3.5,%0)%

Node2%

Node%3% Node%4%

x1%≥%2%x1%≤%1%

x2%≥%2%x2%≤%1%

If node i lies immediately below node j, then we say that node i is a child of node j. If

node j lies immediately above node i, then we say that node j is the parent of node i. For

example, node 3 and node 4 in the figure above are the children of node 1 and node 1 is the
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parent of node 3 and node 4. An important observation is that the optimal objective value

of the linear program at a particular node is no larger than the optimal objective value of

the linear program at its parent node. This observation holds because the linear program

at a particular node includes all of the constraints in the linear program at its parent node,

plus one more constraint. Thus, the linear program at a particular node has more constraints

than the linear program at its parent node, which implies that the optimal objective value of

the linear program at a particular node must be no larger than the optimal objective value

of the linear program at its parent node. For example, the optimal objective value of the

linear program at node 3 must be no larger than the optimal objective value of the linear

program at its parent node, which is node 1.

At this point, the linear programs at nodes 2, 3 and 4 are yet unsolved. Note that the

nodes we constructed so far form a tree. When choosing the next linear program to solve,

we use the depth-first strategy. In other words, when choosing the next linear program to

solve, we choose the deepest linear program in the tree that is yet unsolved. We discuss

other options for choosing the next linear program to solve later in this chapter. Following

the depth-first strategy, we need to solve the linear program at node 3 or node 4. Breaking

the tie arbitrarily, we solve the linear program at node 3. Solving the linear program at node

3, we obtain the optimal objective value of 22.2 and the optimal solution is

x1 = 1, x2 = 1, x3 = 3, x4 = 0.4.

The decision variables x1, x2 and x3 take integer values in this solution. So, this solution is

feasible to the integer program we want to solve. Thus, we obtained a feasible solution to

the integer program providing an objective value of 22.2. There is no need to explore any

child nodes of node 3 further, since by the argument in the previous paragraph, the linear

programs at the children of node 3 will give us objective values that are no better than 22.2

and we already have a solution to the integer program that provides an objective value of

22.2. Therefore, we can stop exploring the tree further below node 3. The best feasible

solution we found so far for the integer program provides an objective value of 22.2.

The linear programs at nodes 2 and 4 are yet unsolved. Following the depth-first strategy,

we solve the linear program at node 4. Solving the linear program at node 4, we obtain the

optimal objective value of 22.167 and the optimal solution is

x1 = 0.833, x2 = 2, x3 = 2.5, x4 = 0.

The solution above is not feasible to the integer program we want to solve, because x1 and

x3 take fractional values in this solution, whereas the integer program we want to solve

requires these decision variables to be integer. However, the key observation is that the

optimal objective value of the linear program at node 4 is 22.167. We know that if we

explore the tree further below node 4, then the linear programs at the children of node 4

will give us objective values that are no better than 22.167. On the other hand, we already
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have a feasible solution to the integer program that provides an objective value of 22.2!

Recall that this solution was obtained at node 3. So, we have no hope of finding a better

solution by exploring the children of node 4, which means that we can stop searching the

tree further below node 4. This reasoning to stop the search at node 4 is critical for the

success of the branch-and-bound method. In particular, if we have a good feasible solution

to the integer program providing a high objective value, then we can stop the search at many

nodes since the objective value provided by the linear program at a node would likely be

worse than the objective value provided by the feasible solution to the integer program we

have on hand. Being able to stop the search at many nodes would speed up the progress

of the branch-and-bound method significantly. We show our progress so far in the figure

below. Note that we decided to stop exploring the children of nodes 3 and 4.

Node%1%
Obj.%=%22.333%

(1,%1.667,%2.667,%0)%

Node%0%
Obj.%=%23.167%

(1.833,%0,%3.5,%0)%

Node2%

Node%3%
Obj.%=%22.2%
(1,%1,%3,%0.4)%

Node%4%
Obj.%=%22.167%

(0.833,%2,%2.5,%0)%

x1%≥%2%x1%≤%1%

x2%≥%2%x2%≤%1%

Stop% Stop%

The moral of the discussion in this section is that we can stop the search at the current

node for two reasons. First, if the linear program at the current node provides a feasible

solution to the integer program we want to solve, satisfying all integrality requirements, then

we can stop the search at the current node. Second, as our search proceeds, we keep the

best feasible solution to the integer program we have found so far. If the optimal objective

value of the linear program at the current node is worse than the objective value provided

by the best feasible solution we have found so far, then we can stop the search at the current

node. Recall that the best feasible solution we have found so far for the integer program

provides an objective value of 22.2. In the figure above, only the linear program at node 2

is unsolved. We explore node 2 and its children in the next section.

14.2 Another Reason to Stop the Search

Solving the linear program at node 2 in the last figure of the previous section, we obtain the

optimal solution

x1 = 2, x2 = 0, x3 = 3.25, x4 = 0.
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with the corresponding optimal objective value of 23. Note that the solution above does not

satisfy the integrality requirements of the integer program we want to solve. Furthermore,

the best feasible solution to the integer program we have found so far provides an objective

value of 22.2. The optimal objective value of the linear program at node 2 is 23, which

is not worse than the objective value provided by the best feasible solution we have found

so far. Therefore, none of the two reasons at the end of previous section is satisfied, which

implies that we do not have a reason to stop the search at node 2. So, we proceed to exploring

the children of node 2.

The solution (x1, x2, x3, x4) = (2, 0, 3.25, 0) provided by the linear program at node 2 is

not feasible to the integer program we want to solve because the decision variable x3 takes

the fractional value 3.25 in this solution. Based on this solution at node 2, we branch into

two cases, x3 ≤ 3 and x3 ≥ 4. Branching into these two cases at node 2 gives us the

linear programs at nodes 5 and 6 shown in the figure below. The linear program program

at node 5 includes all of the constraints in the linear program at node 2, plus the constraint

x3 ≤ 3. The linear program at node 6 includes all of the constraints in the linear program

at node 2, plus the constraint x3 ≥ 4. In other words, the linear program at node 5 includes

all of the constraints in the linear program at node 0, along with the constraints x1 ≥ 2 and

x3 ≤ 3. The linear program at node 6 includes all of the constraint in the linear program at

node 0, along with the constraint x1 ≥ 2 and x3 ≥ 4.

Node%1%
Obj.%=%22.333%

(1,%1.667,%2.667,%0)%

Node%0%
Obj.%=%23.167%

(1.833,%0,%3.5,%0)%

Node2%
Obj.%=%23%

(2,%0,%3.25,%0)%

Node%3%
Obj.%=%22.2%
(1,%1,%3,%0.4)%

Node%4%
Obj.%=%22.167%

(0.833,%2,%2.5,%0)%

Node%5% Node%6%

x1%≥%2%x1%≤%1%

x2%≥%2%x2%≤%1% x3%≥%4%x3%≤%3%

Stop% Stop%

Following the depth-first strategy, we need to solve the linear program either at node 5

or at node 6. Breaking the tie arbitrarily, we proceed to solving the linear program at node

5. The optimal solution to the linear program at node 5 is

x1 = 2.167, x2 = 0, x3 = 3, x4 = 0

with the corresponding optimal objective value 22.833. This solution does not satisfy the

integrality requirements in the integer program we want to solve. Furthermore, the optimal
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objective value of the linear program at node 5 is not worse than the objective value provided

by the best feasible solution to the integer program we have found so far. Thus, we have no

reason to stop the search at node 5 and we continue exploring the children of node 5. The

solution (x1, x2, x3, x4) = (2.167, 0, 3, 0) provided by the linear program at node 5 is not

feasible to the integer program we want to solve because the decision variable x1 takes a

fractional value in this solution. Based on the solution at node 5, we branch into two cases,

x1 ≤ 2 and x1 ≥ 3. Branching into these two cases at node 5 gives us the linear programs at

nodes 7 and 8 shown in the figure below. The linear program at node 7 includes all of the

constraints in the linear program at node 5, along with the constraint x1 ≤ 2. The linear

program at node 8 includes all of the constraints in the linear program at node 5, along with

the constraint x1 ≥ 3. Note that we branched into the case x1 ≥ 2 right before node 2. Right

before node 7, we branch into the case x1 ≤ 2. Thus, the linear program at node 7 in effect

fixes the value of x1 at the value 2.
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(1.833,%0,%3.5,%0)%

Node2%
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(2,%0,%3.25,%0)%

Node%3%
Obj.%=%22.2%
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Node%4%
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(0.833,%2,%2.5,%0)%

Node%5%
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(2.167,%0,%3,%0)%

Node%6%
%

Node%7% Node%8%
%

x1%≥%2%x1%≤%1%

x2%≥%2%x2%≤%1% x3%≥%4%x3%≤%3%

x1%≥%3%x1%≤%2%
Stop% Stop%

Now, the linear programs at nodes 6, 7 and 8 are yet unsolved. Following the depth-first

strategy, we need to solve the linear program either at node 7 or node 8. Breaking the tie

arbitrarily, we choose to solve the linear program at node 8. Note that the linear program

at node 8 includes all of the constraints in the linear program at node 5, along with the

constraint x1 ≥ 3. Solving the linear program at node 8, we find out that this linear

program is infeasible. Since the linear programs at the children of node 8 will include all of

the constraints in the linear program at node 8, the linear programs at the children of node

8 will also be infeasible. Thus, we can stop searching the tree further below node 8.

At the end of the previous section, we discussed two reasons for stopping the search at

a particular node. First, if the linear program at the current node provides a solution that
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satisfies the integrality requirements in the integer program we want to solve, then we can

stop the search at the current node. Second, if the optimal objective value of the linear

program at the current node is worse than the objective value provided by the best feasible

solution to the integer program we have found so far, then we can stop the search at the

current node. The discussion in this section provides a third reason to stop the search at a

particular node. If the linear program at the current node is infeasible, then we can stop the

search at the current node. We summarize our progress so far in the figure below.
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Stop%

14.3 Completing the Branch-and-Bound Method

In the last figure of the previous section, the linear programs at nodes 6 and 7 are yet

unsolved. Following the depth-first strategy, we solve the linear program at node 7. The

solution to the linear program at node 7 is

x1 = 2, x2 = 0.2, x3 = 3, x4 = 0

with the corresponding optimal objective value 22.8. The solution above does not satisfy the

integrality requirements in the integer program we want to solve. Also, the optimal objective

value of the linear program at node 7 is not worse than the objective value provided by the

best feasible solution to the integer program we have found so far. So, we have no reason

to stop the search at node 7. The decision variable x2 needs to take an integer value in the

integer program we want to solve, but we have x2 = 0.2 in the solution to the linear program

at node 7. Based on the solution of the linear program at node 7, we branch into the cases

x2 ≤ 0 and x2 ≥ 1. Branching into these cases yields the linear programs at nodes 9 and

10 shown in the figure below. The linear program at node 9 includes all of the constraints
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in the linear program at node 7 and the constraint x2 ≤ 0. The linear program at node 10

includes all of the constraints in the linear program at node 7 and the constraint x2 ≥ 1.
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Now, the linear programs at nodes 6, 9 and 10 are unsolved. By the depth-first strategy,

we solve the linear program at node 9 or node 10. Breaking the tie arbitrarily, we solve the

linear program at node 9. The optimal solution to the linear program at node 9 is

x1 = 2, x2 = 0, x3 = 3, x4 = 0.2

with the corresponding optimal objective value 22.6. This solution satisfies all of the

integrality requirements in the integer program we want to solve. So, we do not need to

explore the children of node 9. The solution provided by the linear program at node 9 is a

feasible solution to the integer program we want to solve. Before node 9, the best feasible

solution we had for the integer program provided an objective value of 22.2. However, the

solution that we obtained at node 9 is feasible to the integer program we want to solve and

it provides an objective value of 22.6. Thus, we update the best feasible solution we have

found so far as the solution obtained at node 9.

At this point, the linear programs at nodes 6 and 10 are unsolved. Following the

depth-first strategy, we solve the linear program at node 10. The optimal objective value of

this linear program is 22 and the optimal solution is

x1 = 2, x2 = 1, x3 = 2, x4 = 0.
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This solution satisfies all of the integrality requirements in the integer program we want to

solve. Therefore, there is no reason to explore the children of node 10. We can stop searching

the tree below node 10.

The only unsolved linear program left is at node 6. Solving this linear program, we see

that the linear program at node 6 is infeasible. Thus, there is no reason to explore the

children of node 6. The figure below shows our current progress.
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There are no unsolved linear programs in the figure above. So, our search is complete! The

best feasible solution to the integer program is the solution that we obtained at node

9. Therefore, we can conclude that the solution (x1, x2, x3, x4) = (2, 0, 3, 0.2) is optimal

to the integer program we want to solve.

14.4 Summary of the Branch-and-Bound Method

It is worthwhile to summarize some of the important points about the branch-and-bound

method. As our search over the tree progresses, we keep track of the best feasible solution

to the integer program we have found so far. After solving the linear program at the current

node, we can stop the search at the current node for one of three reasons.

• The solution to the linear program at the current node provides a feasible solution
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to the integer program we want to solve, satisfying all integrality requirements in the

integer program.

• The optimal objective value of the linear program at the current node is worse than

the objective value provided by the best feasible solution to the integer program we

have found so far.

• The linear program at the current node is infeasible.

If none of the three reasons above hold and we cannot stop the search at the current node,

then we branch into two cases, yielding two more linear programs to solve. The second reason

above is critical to the success of the branch-and-bound method. In particular, if we have a

good feasible solution to the integer program on hand, then the optimal objective value of

the linear program at the current node is more likely to be worse than the objective value

provided by the feasible solution we have on hand. Thus, we can immediately terminate

the search at the current node. The good feasible solution to the integer program we have

on hand could either be obtained during the course of the search in the branch-and-bound

method or be obtained by using a separate heuristic solution algorithm.

Throughout this chapter, we used the depth-first strategy when selecting the next linear

program to solve. The advantage of the depth-first strategy is that it allows us to obtain

a feasible solution to the integer program quickly. In particular, the nodes towards the

beginning of the tree do not have many constraints added in them. Thus, they are less likely

to provide feasible solutions satisfying the integrality requirements in the integer program

we want to solve. On the other hand, the nodes towards the bottom of the tree have many

constraints added in them and they are likely to provide solutions that satisfy the integrality

requirements. As discussed in the previous paragraph, having a good feasible solution on

hand is critical to the success of the branch-and-bound method. Another approach for

selecting the next linear program to solve is to focus on the node that includes the linear

program with the largest optimal objective value and solve the linear program corresponding

to one of its children.

After solving the linear program at a particular node, there may be several variables that

violate the integrality requirements of the integer program we are interested in solving. In

this case, we can use any one of these decision variables to branch on. For example, if the

decision variables x1 and x2 are restricted to be integers, but we have x1 = 2.5 and x2 = 4.7

in the optimal solution to the linear program at the current node, then we two options for the

decision variable to branch on. First, we can branch on the decision variable x1 and use the

two cases x1 ≤ 2 and x1 ≥ 3 to construct the child nodes of the current node. Second, we can

branch on the decision variable x2 and use the two cases x2 ≤ 4 and x2 ≥ 5 to construct the

child nodes of the current node. The choice of a good variable to branch on is hard to figure

out a priori, but choosing a good variable to branch on may have dramatic impact on the

size of the search tree. A general rule of thumb is that if there is some hierarchical ordering
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between the decisions, then one should first branch on the decision variables that represent

higher order decisions. For example, if we have decision variables on which facilities to open

and decision variables on which demand points the open facilities should serve, then we

should probably first branch on the decision variables that represent which facilities to open.

Nevertheless, in many practical decision-making problems, it is hard to see a hierarchical

ordering between the decisions and one branching strategy that works well in one problem

setting may not work well in other settings. The choice of the next node to focus on and

the choice of the decision variable to branch on are two of the reasons that make integer

programs substantially more difficult to solve than linear programs.
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Modeling in Logistics

Numerous problems in the field of logistics can be formulated either as linear programs or

as integer programs. In this chapter, we discuss uses of linear and integer programs for

modeling problems in logistics.

15.1 Facility Location Problem

We want to locate facilities to serve the demand at a number of demand points scattered over

a geographical region. The set of possible locations for the facilities is F . The set of demand

points is D. If we open a facility at location j, then we incur a fixed cost of fj. The cost of

serving demand point i from a facility at location j is cij. Each demand point must be served

from one facility. We want to figure out where to open facilities and which facilities to use

to serve each demand point to minimize the total cost of opening the facilities and serving

the demand points. The data for the problem are the set F of possible locations for the

facilities, the set D of demand points, the fixed costs {fj : j ∈ F} of opening facilities at

different locations and the costs {cij : i ∈ D, j ∈ F} of serving different demand points from

facilities at different locations. To formulate the problem as an integer program, we make

use of the decision variables

xj =

{
1 if we open a facility at location j

0 otherwise,

yij =

{
1 if we serve demand point i from a facility at location j

0 otherwise.

Note that if xj = 0, meaning that we do not have a facility at location j, then we cannot

serve demand point i from a facility at location j, meaning that we must have yij = 0. To

capture this relationship between the decision variables xj and yij, we use the constraint

yij ≤ xj. Thus, to choose the locations for facilities and to decide which facilities to use to

serve each demand point, we can solve the integer program

The objective function accounts for the total cost of opening the facilities and serving the
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demand points. Noting the definition of the decision variable yij above,
∑

j∈F yij in the

first constraint corresponds to the number of facilities that serve demand point i. Thus,

the first constraint ensures that each demand point i is served by one facility. The second

constraint ensures that if we do not have a facility at location j, then we cannot use a facility

at location j to serve demand point i. The problem above is known as the uncapacitated

facility location problem. In particular, our formulation assumes that as long as we have

a facility at a certain location, we can serve as many demand points as we like from that

location. So, our formulation of the facility location problem assumes that there is infinite

capacity at the facilities. That is, the facilities are uncapacitated.

There is a capacitated version of the facility location problem. The setup for the

capacitated facility location is the same as before. The only difference is that demand point i

has a demand of di units. The total demand served by any facility cannot exceed U . Similar

to our formulation of the uncapacitated facility location problem, we continue assuming

that each demand point is served by one facility. We want to figure out the locations for

facilities and the facilities used to serve each demand point, while making sure that the total

demand served by a facility does not exceed the capacity at the facility. This problem can

be formulated as the integer program

The objective function and the first constraint are identical in the uncapacitated and

capacitated facility location problems. If we have xj = 0, then the second constraint above

reads
∑

i∈D di yij ≤ 0. To satisfy this constraint, we must set yij = 0 for all i ∈ D. Thus,

if we have xj = 0, meaning that we do not have a facility at location j, then we must

have yij = 0 for all i ∈ D, meaning that no demand point can be served from a facility at

location j. If we have xj = 1, then the second constraint above reads
∑

i∈D di yij ≤ U . Note

that
∑

i∈D di yij is the total demand at the demand points served by the facility at location

j. Thus, if we have xj = 1, meaning that we have a facility at location j, then we must have∑
i∈D di yij ≤ U , meaning that the total demand at the demand points served by the facility

at location j must be no larger than the capacity of the facility.

In our formulation of the capacitated facility location problem above, we could add the

constraints yij ≤ xj for all i ∈ D, j ∈ F . These constraints would be redundant because
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the constraint
∑

i∈D di yij ≤ U xj already ensures that if a facility is not open at location

j, then we cannot serve any demand point from a facility at location j. Thus, the optimal

objective value of the capacitated facility location problem would not change when we add

the constraints yij ≤ xj for all i ∈ D, j ∈ F . However, the optimal objective value of

the linear programming relaxation of the capacitated facility location problem could change

when we add the constraints yij ≤ xj for all i ∈ D, j ∈ F . So, although adding these

constraints increases the number of constraints in the formulation, there can be some value

adding these constraints into the formulation, because practical solvers such as Gurobi use

linear programming relaxations when solving the problem through the branch-and-bound

method. Adding these constraints into the formulation may help the branch-and-bound

method obtain integer solutions substantially faster.

15.2 Dynamic Driver Assignment Problem

We are managing drivers in a transportation network during the course of T days. The set of

locations in the transportation network is N . At the beginning of day 1, we have si drivers

at location i. On day t, we have dijt loads available that should be carried from location

i to j. To carry a load from location i to j on day t, we must have a driver available at

location i on day t. Each driver carries one load at a time. The travel time between each

pair of locations is a single day. In particular, if a driver at location i at the beginning of

day t carries a load to location j, then he becomes available at location j at the beginning

of day t + 1. We have the option of letting a driver stay at his current location. If a driver

at location i stays at this location on day t, then this driver is available at location i at the

beginning of day t+1 to carry a load. If we carry a load from location i to j, then we generate

a revenue of rij. We want to figure out how many loads to carry between each location pair

on each day to maximize the total revenue. The data for the problem are the number T of

days in the planning horizon, the set N of locations, the numbers {si : i ∈ N} of drivers

at different locations at the beginning of day 1, the numbers {dijt : i, j ∈ N, t = 1, . . . , T}
of loads to be carried between different location pairs on different days and the associated

revenues {rij : i, j ∈ N}. We use the following decision variables.

xijt = Number of drivers that carry a load from location i to j on day t.

zit = Number of drivers that stay at location i on day t.

To decide which loads to carry during the course of T days, we can solve the problem
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The objective function accounts for the total revenue collected from the loads carried between

all location pairs and on all days. In the first constraint,
∑

j∈N xij1 corresponds to the

number of drivers leaving location i on day 1. Thus,
∑

j∈N xij1 + zi1 on the left side of the

first constraint corresponds to the total number of drivers leaving location i or staying at

location i on day 1. In this case, the first constraint ensures that the total number of number

of drivers leaving location i or staying at location i on day 1 should be equal to the number

of drivers available at location i at the beginning of day 1.

Similarly,
∑

j∈N xijt + zit on the left side of the second constraint corresponds to the

total number of drivers leaving location i or staying at location i on day t. On the other

hand,
∑

j∈N xji,t−1 in the second constraint corresponds to the number of drivers that started

moving towards location i on day t− 1. These drivers will be available at location i at the

beginning of day t. Similarly, zi,t−1 is the number of drivers that stay at location on day

t − 1. These drivers will be available at location i at the beginning of day t as well. Thus,∑
j∈N xji,t−1 + zi,t−1 on the right side of the second constraint gives the total number of

drivers that are available at location i at the beginning of day t. In this case, the second

constraint ensures that the total number of number of drivers leaving location i or staying

at location i on day t should be equal to the total number of drivers available at location i at

the beginning of day t. The third set of constraints ensures that the number of drivers that

carry a load from location i to j on day t cannot exceed the number of loads between this

location pair on this day. We observe that our formulation of the problem assumes that if a

load that needs to be carried on day t cannot be carried on that day, then the load is lost. In

particular, the load cannot be carried on a future day. Also, our formulation assumes that

there can be loads that need to be carried from location i to location i.

We will refer to the problem above as the dynamic driver assignment problem. There

are a few important lessons to derive from our formulation of the dynamic driver assignment

problem. This formulation captures a problem that takes place over time. An important
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approach for formulating problems that takes place over time is to create copies of the decision

variables that correspond to the decisions made at different time periods. For example, we

have a decision variable xijt for each day t that captures the number of drivers that carry a

load from location i to j on each day. The objective function accounts for the reward or the

cost over the whole planning horizon as a function of the decisions over the whole planning

horizon. We have some constraints that capture the relationship between the decisions made

at different time periods. For example, the drivers that carry loads and that stay at their

current locations on day t− 1 dictate the numbers of drivers available at different locations

at the beginning of day t. We capture this relationship by using the second set of constraints

in our formulation of the dynamic driver assignment problem. There are also constraints

on the decisions made at each time period. For example, the number of drivers that carry

a load from location i to j on day t cannot exceed the number of loads available between

this location pair on day t. We capture this constraint by the third set of constraints in

our formulation. The idea of dividing a planning horizon into a number of time periods

and creating copies of the decision variables that capture the decisions made at different

time periods plays a crucial role in many optimization models used in practice today. In

the dynamic driver assignment problem, we divided the planning horizon into days, but if

the decisions are made more frequently than once per day, then we can divide the planning

horizon into 4-hour time periods, hours or even minutes!

Another important point about our formulation of the dynamic driver assignment

problem is that it corresponds to a min-cost network flow problem taking place over a

special network. Consider the network in the figure below. In this network, we assume that

the set of locations is N = {A,B,C} and the number of days is T = 4. We have one node

for each location-day pair. Therefore, we can index the nodes by (i, t), where i ∈ N and

t = 1, . . . , T . For days t = 1, . . . , T − 1, the decision variable xijt corresponds to the flow on

an arc from node (i, t) to node (j, t + 1). The flow on this arc corresponds to the number

of drivers that carry a load from location i to j on day t. These drivers become available

at location j at the beginning of day t + 1. For days t = 1, . . . , T − 1, the decision variable

zit corresponds to the flow on an arc from node (i, t) to node (i, t + 1). The flow on this

arc corresponds to the number of drivers that we keep at location i on day t. These drivers

become available at location i at the beginning of day t+ 1. For the last day T , the decision

variable xijT corresponds to the flow on an arc from node (i, T ) to the special sink node. The

flow on this arc corresponds to the number of drivers that carry a load from location i to

j on day T . Since the planning horizon ends on day T , we do not need to worry about the

destinations of the drivers that carry loads on day T . Thus, the arcs on day T all terminate

at the same sink node. Similarly, the decision variable ziT corresponds to the flow on an arc

from node (i, T ) to the sink node. In the figure below, the arcs corresponding to the decision

variables {xijt : i, j ∈ N, t = 1, . . . , T} are in solid lines and the arcs corresponding to the

decision variables {zit : i ∈ N, t = 1, . . . , T} are in dashed lines.
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Noting the discussion in the previous paragraph, the decision variable xijt corresponds to

the flow on an arc that goes from node (i, t) to (j, t+1). The decision variable zit corresponds

to the flow on an arc that goes from node (i, t) to (i, t+ 1). Thus, the total flow out of node

(i, t) is
∑

j∈N xijt + zit. On the other hand, the decision variable xji,t−1 corresponds to the

flow on an arc that goes from node (j, t − 1) to (i, t). Similarly, the decision variable zi,t−1

corresponds to the flow on an arc that goes from node (i, t− 1) to (i, t). Thus, the total flow

into node (i, t) is
∑

j∈N xji,t−1+zi,t−1. Therefore, the second set of constraints in the dynamic

driver assignment problem captures the flow balance constraints for the node (i, t) for all

i ∈ N and t = 2, . . . , T . The node (i, 1) does not have any incoming arcs, but the node (i, 1)

has a supply of si units, which is the number of drivers available at node i at the beginning of

day 1. Thus, the first set of constraints in the dynamic driver assignment problem captures

the flow balance constraints for the node (i, 1) for all i ∈ N . We have an upper bound of dijt
on the flow over the arc corresponding to the decision variable xijt. Our formulation of the

dynamic driver assignment problem does not include a flow balance constraint for the sink

node in the figure above, but we know that in a min-cost network flow problem, the flow

balance constraint of one node is always redundant. Thus, our formulation of the dynamic

driver assignment problem omits the flow balance constraint for the sink node. Lastly, the

dynamic driver assignment problem maximizes its objective function rather than minimizing

as in a min-cost network flow problem, but we can always minimize the negative of the

objective function in the dynamic driver assignment problem. Thus, the dynamic driver

assignment problem corresponds to a min-cost network flow problem over the network shown

above with upper bounds on the flows over some of the arcs.

Recall that if all of the demand and supply data in a min-cost network flow problem

are integer-valued, then there exists an integer-valued optimal solution even when we do not

impose integrality requirements on the decision variables. It turns out this result continues to

hold when we have upper bounds on the flows over some of the arcs and these upper bounds

are also integer-valued. Therefore, it follows that if the numbers of drivers at different

locations at the beginning of day 1 are integers and the numbers of loads that need to be
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carried between different location pairs on different days are integers, then there exists an

integer-valued optimal solution to the dynamic driver assignment problem even when we do

not impose the integrality requirements on the decision variables. In this case, we can drop

all of the integrality constraints to solve the linear programming relaxation of the dynamic

driver assignment problem and still get an integer-valued optimal solution.

The network in the figure above is called a state-time network, where the state captures

the locations of the drivers and the time captures the different days in the planning

horizon. State-time networks are powerful tools for modeling logistics problems. They have

been successfully used in freight applications as discussed in this section. State-time networks

also play an important role in optimization models that airlines use when assigning aircraft

to flights. When assigning aircraft to flights, the state corresponds to the location of an

aircraft and the time corresponds to the departure and arrival times of the flights.

15.3 Traveling Salesman Problem

We have a set N of cities. There is an arc between every pair of cities. We denote the arc

from city i to city j as arc (i, j). The distance associated with arc (i, j) is cij. Starting from

one of the cities, we want to find a tour of cities with minimum total distance such that the

tour travels each city exactly once and returns back to the starting city. This problem is

known as the traveling salesman problem. To formulate the traveling salesman problem as

an integer program, we use the decision variable

xij =

{
1 if arc (i, j) is included in the tour

0 otherwise.

In an acceptable tour, we must depart each city i exactly once. In other words, we must use

exactly one of the arcs that go out of each city i. We can represent this requirement by using

the constraint
∑

j∈N xij = 1. Similarly, we must enter each city i exactly once. So, we must

use exactly one of the arcs that go into each city i. This requirement can be represented

by using the constraint
∑

j∈N xji = 1. In this case, we can formulate the traveling salesman

problem as the integer program

131 c© 2016-2021 Huseyin Topaloglu



In the objective function, we account for the total distance of the arcs included in the

tour. The first constraint ensures that we depart each city exactly once, whereas the second

constraint ensures that we enter each city exactly once. It turns out these two sets of

constraints are not adequate to find an acceptable tour. For example, consider the 7 cities in

the figure below. In the tour on the left side of the figure, we depart each city exactly once

and we enter each city exactly once, but the solution is not a single tour that starts from

one of the cities and ends at the same starting city. In particular, there are subtours in the

solution. The third set of constraints above is known as subtour elimination constraints. The

subtour elimination constraints state that if we partition the cities into two subsets S and

N \S, then to avoid having subtours in the solution, we must use at least one arc that directly

connects a city in set S to a city in set N \ S. That is, any partition of the cities should

be connected to each other. Otherwise, the solution would include subtours. For example,

the tour on the left side of the figure below includes subtours because if we partition the

cities into the sets S = {1, 3, 4} and N \ S = {2, 5, 6, 7}, then the tour in the figure does

not use an arc that directly connects a city in set S to a city in N \ S. As a result, the

tour includes subtours. The tour on the right side of the figure below does not include any

subtours because if we partition the cities into any two sets S and N \ S, then the tour on

the right side always includes an arc that directly connects a city in S to a city in N \S. For

example, the tour on the right side of the figure below does include an arc that directly

connects a city in the set S = {1, 3, 4} and to a city in the set N \ S = {2, 5, 6, 7}, which is

arc (4, 6). As a minor detail, note that our formulation includes a decision variable xii for

each city i, which implies that there is an arc that goes from city i back to city i. We can

set the cost cii of this arc large so that this arc is never used in the optimal solution.
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We have one subtour elimination constraint for each subset of the cities. Thus, if there are

n cities, then there are 2n subtour elimination constraints, which can easily get large. With

this many constraints, our formulation of the traveling salesman problem appears to be

useless! The trick to using our formulation is to add the subtour elimination constraints as

needed. To illustrate the idea, consider the 10 cities on the left side of the figure below. On

the right side, we show the distance from city i to city j for all i, j ∈ N .
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i

j
1 2 3 4 5 6 7 8 9 10

1 · 7 4 6 9 7 8 9 9 11

2 7 · 4 4 3 7 6 5 6 7

3 4 4 · 2 4 4 4 5 5 7

4 6 4 2 · 3 3 2 3 3 4

5 9 3 4 3 · 5 4 2 4 4

6 7 7 4 3 5 · 1 4 3 4

7 8 6 4 2 4 1 · 3 2 4

8 9 5 5 3 2 4 3 · 1 2

9 9 6 5 3 4 3 2 1 · 1

10 11 7 7 4 4 4 4 2 1 ·

We begin by solving the formulation of the traveling salesman problem without any

subtour elimination constraints. In particular, we minimize the objective function in the

traveling salesman problem subject to the constraints
∑

j∈N xij = 1 for all i ∈ N and∑
j∈N xji = 1 for all i ∈ N only. The figure below shows the optimal solution that we

obtain when we solve the formulation of the traveling salesman problem without any subtour

elimination constraints. In particular, we have x13 = x31 = x24 = x48 = x85 = x52 = x67 =

x76 = x9,10 = x10,9 = 1 in the optimal solution and the other decision variables are zero.

In the solution in the figure above, we have a subtour that includes the set of cities

S = {1, 3}. That is, the solution above does not include an arc that connects a city in

S = {1, 3} directly to a city in N \ S = {2, 4, 5, 6, 7, 8, 9, 10}. Thus, we add the subtour

elimination constraint corresponding to the set S = {1, 3} into our formulation. Note that

this subtour elimination constraint is given by

x12 + x14 + x15 + x16 + x17 + x18 + x19 + x1,10

+ x32 + x34 + x35 + x36 + x37 + x38 + x39 + x3,10 ≥ 1.

In the constraint above, the first index of the decision variables is a city in set S and the
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second index of the decision variables is a city in the set N \ S. Similarly, the solution

above has a subtour that includes the set of cities S = {2, 4, 5, 8}. We add the subtour

elimination constraint corresponding to this set S as well. The subtour elimination constraint

corresponding to the set S = {2, 4, 5, 8} can be written as

x21 + x23 + x26 + x27 + x29 + x2,10 + x41 + x43 + x46 + x47 + x49 + x4,10

+ x51 + x53 + x56 + x57 + x59 + x5,10 + x81 + x83 + x86 + x87 + x89 + x8,10 ≥ 1.

There is another subtour in the solution above that includes the set of cities S =

{6, 7}. We add the subtour elimination constraint corresponding to this set S into our

formulation. Lastly, the solution above has one more subtour that includes the set of cities

S = {9, 10}. We add the subtour elimination constraint corresponding to this set of

cities as well. The subtour elimination constraints corresponding to the sets S = {6, 7}
and S = {9, 10} can be written by using an argument similar to the one used in the

two subtour elimination constraints above. Therefore, we added 4 subtour elimination

constraints. Solving our formulation of the traveling salesman problem with these 4 subtour

elimination constraints, we obtain the solution in the figure below.

The solution in the figure above includes three subtours. Noting the cities involved in each

one of these subtours, we further add the 3 subtour elimination constraints corresponding to

the sets S = {1, 3, 4, 6, 7}, S = {2, 5} and S = {8, 9, 10} into our formulation of the traveling

salesman problem. Considering the 4 subtour elimination constraints that we added earlier,

we now have a total of 7 subtour elimination constraints. Solving the formulation of the

traveling salesman problem with these 7 subtour elimination constraints, we obtain the

solution given in the figure below.
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The solution above does not include any subtours. By adding 7 subtour elimination

constraints into the formulation of the traveling salesman problem, we obtained a solution

that does not have any subtours. Since this solution does not include any subtours, it must

be the optimal solution when we solve the traveling salesman problem with all subtour

elimination constraints. Therefore, the solution shown above is the optimal solution for the

traveling salesman problem. The total distance of this tour is 27. Note that the traveling

salesman problem we dealt with involves 10 cities. Thus, if we constructed all of the subtour

elimination constraints at the beginning, then we would have to construct 210 = 1024 subtour

elimination constraints. By generating the subtour elimination constraints as needed, we

were able to obtain the optimal solution to the traveling salesman problem by generating

only 7 subtour elimination constraints. For a problem with 10 cities, constructing all of the

1024 subtour elimination constraints may not be difficult. However, if we have a problem with

100 cities, then there are 2100 ≈ 1030 subtour elimination constraints and it is impossible to

construct all of these subtour elimination constraints. Although it is not possible to construct

all of the subtour elimination constraints, traveling salesman problems with hundreds of cities

are routinely solved today. Lastly, we emphasize that the idea of adding the constraints to

an optimization problem as needed is an effective approach to tackle problems with a large

number of constraints. In this section, we used this approach to solve the traveling salesman

problem, but we can use the same approach when dealing with other optimization problems

with large numbers of constraints.
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Designing Heuristics

In the previous chapter, we discussed problems in logistics that can be modeled as integer

programs. In many cases, we can solve the integer programs by using available optimization

software. However, when the problem gets too large or too complicated, we may have to

resort to heuristic methods to obtain a solution. Heuristic methods are designed to find a

good solution to the problem on hand, but they have no guarantee of finding the optimal

solution. Also, during our discussion of the branch-and-bound method, we saw how a good

feasible solution to the problem may allow us to stop the search process quickly at different

nodes of the tree. Therefore, obtaining a good solution by using a heuristic method may

also be useful when we subsequently try to obtain the optimal solution to the problem by

using the branch-and-bound method.

16.1 Prize-Collecting Traveling Salesman Problem

To demonstrate the fundamental ideas in designing heuristics, we use the prize-collecting

traveling salesman problem. We have a set N of cities. There is an arc between every pair

of cities. We denote the arc from city i to city j as arc (i, j). The distance associated with

arc (i, j) is cij. Associated with each city i, there is a reward of ri. The profit from a tour

of cities is given by the difference between the total reward collected at the cities visited in

the tour and the total distance of the arcs included in the tour. We start our tour from a

given city 0 ∈ N . We are interested in finding a tour that visits a subset of the cities such

that the tour starts and ends at city 0 and the profit from the tour is maximized.

To design a heuristic method to obtain a good solution to the prize-collecting traveling

salesman problem, we begin by thinking about how we can denote a possible solution to the

problem. We denote a solution by keeping a sequence of cities. In particular, we denote a

possible solution to the problem as (j0, j1, . . . , jn), where n is the number of cities in the

tour, the first city j0 in the tour is city 0 and the subsequent cities visited in the tour are

j1, j2, . . . , jn. Since city 0 must always be visited, we choose not to count city 0 in the number

of cities visited in the tour, but this choice is simply a matter of notational convention. Next,

we think about how we can compute the objective value corresponding to a solution. The

profit from the solution (j0, j1, . . . , jn) is given by

f(j0, j1, . . . , jn) = rj1 + . . .+ rjn − cj0,j1 − cj1,j2 − . . .− cjn−1,jn − cjn,j0 .

In the profit expression above, we do not include a reward for city 0 because we know that this

city must be visited in any tour anyway. Also, since we must go back to city 0 after visiting

the last city jn, we include the cost cjn,j0 in the profit expression above. Generally speaking,

there are two classes of heuristics, construction heuristics and improvement heuristics. In

the next two sections, we discuss these two classes of heuristics within the context of the

prize-collecting traveling salesman problem.
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16.2 Construction Heuristics

In a construction heuristic, we start with an empty solution. What we mean by an empty

solution depends on the specific problem on hand. For the prize-collecting traveling salesman

problem, an empty solution could correspond to the tour where we only visit city 0 to collect

a profit of 0. In a construction heuristic, we start with an empty solution and progressively

construct better and better solutions. A common idea to design a construction heuristic

is to be greedy and include an additional component into the solution that provides the

largest immediate increase in the objective value. In the prize-collecting traveling salesman

problem, this idea could result in inserting a city into the current tour such that the inserted

city provides the largest immediate increase in the profit of the current tour.

To give the details of a construction heuristic for the prize-collecting traveling salesman

problem, assume that the current tour on hand is (j0, j1, . . . , jn). We consider each city k

that is not in the current tour. We try inserting city k into the current tour at each possible

position and check the increase in the profit. We choose the city that provides the largest

increase in the profit of the current tour and insert this city into the tour at the position

that provides the largest increase in the profit. In particular, assume that we currently have

the solution (j0, j1, . . . , jn) with n cities in it. We consider a city k ∈ N \{j0, j1, . . . , jn} that

is not in the current tour. If we add city k into the the current tour after the `-th city, then

the increase in the profit is given by

∆`
k(j0, j1, . . . , jn) = f(j0, j1, . . . , j`, k, j`+1, . . . , jn)− f(j0, j1, . . . , j`, j`+1, . . . , jn).

We note that the increase in the profit given above can be a negative quantity. We choose

the city k∗ and the position `∗ that maximizes the increase in the profit. That is, the city

k∗ and the position `∗ is given by

(k∗, `∗) = arg max{∆`
k(j0, j1, . . . , jn) : k ∈ N \ {j0, j1, . . . , jn}, ` = 0, 1, . . . , n}.

If inserting city k∗ at the position `∗ into the current tour yields a positive increase in the

profit of the current tour, then we insert city k∗ at the position `∗. In this case, we have the

tour (j0, j1, . . . , j`∗ , k
∗, j`∗+1, . . . , jn) with n+ 1 cities in it. Starting from the new tour with

n + 1 cities, we try to find another city to insert into the current tour until we cannot find

a city providing a positive increase in the profit of the current tour.

The chart on the left side of the figure below shows 15 cities over a 10× 10 geographical

region. The distance associated with arc (i, j) is the Euclidean distance between cities i and

j. The reward associated with visiting each city is indicated in brackets next to label of the

city. For example, if we visit city 4, then we collect a reward of 2.1. We apply the greedy

heuristic described above on the prize-collecting traveling salesman problem that takes place

over these cities. The output of the greedy heuristic is shown on the right side of the figure

below. The total profit from the tour is 23.06. The tour in the figure below may look

reasonable, but we can improve this tour with simple inspection. For example, if we connect
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city 4 to city 13, city 13 to city 0, city 0 to city 3 and city 3 to city 10, while keeping the

rest of the tour unchanged, the profit from the new tour is 23.90. Note that this tour skips

cities 12 and 14.

Construction heuristics are intuitive and they are not computationally intensive, but they

often end up with solutions that are clearly suboptimal. In the figure above, since the portion

of the tour that visits the cities 0, 3, 4, 12, 13 and 14 has a crossing and the distances of the

arcs are given by the Euclidean distances between the cities, it was relatively simple to spot

that we could improve this tour. In the next section, we discuss improvement heuristics that

are substantially more powerful than construction heuristics.

16.3 Improvement Heuristics

In an improvement heuristic, we start with a certain solution. This solution could have been

obtained by using a construction heuristic. We consider all solutions that are within the

neighborhood of the current solution we have on hand. What we mean by a neighborhood of

a solution depends on the specific problem we are working on and we shortly give examples

within the context of the prize-collecting traveling salesman problem. Considering all

solutions within the neighborhood of the current solution on hand, we pick the best solution

within the neighborhood. If this best solution is not better than the current solution on hand,

then we conclude that there are no better solutions within the neighborhood of the current

solution and we stop. On the other hand, if this best solution is better than the current

solution, then we update our current solution on hand to be this best solution. Starting from

the new current solution on hand, we consider all solutions within the neighborhood of the

new current solution on hand and the process repeats itself.

For the prize-collecting traveling salesman problem, we can define the neighborhood of

a solution in many different ways. We may say that a solution (i0, i1, . . . , im) is in the

neighborhood of the solution (j0, j1, . . . , jn) if the solution (i0, i1, . . . , im) can be obtained by

inserting one more city into the solution (j0, j1, . . . , jn). That is, the neighborhood of the
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solution (j0, j1, . . . , j`, j`+1, . . . , jn) is defined by all solutions of the form

(j0, j1, . . . , j`, k, j`+1, . . . , jn)

for all choices of k ∈ N \ {j0, j1, . . . , jn} and ` = 0, 1, . . . , n. For example, if the set of cities

is N = {0, 1, 2, 3, 4, 5} and the current solution we have on hand visits the cities (0, 2, 3, 5),

then the solutions in the neighborhood of this solution are

(0, 1, 2, 3, 5), (0, 2, 1, 3, 5), (0, 2, 3, 1, 5), (0, 2, 3, 5, 1), (0, 4, 2, 3, 5),

(0, 2, 4, 3, 5), (0, 2, 3, 4, 5), (0, 2, 3, 5, 4).

Note that all of the solutions above are obtained by adding one more city into the current

solution (0, 2, 3, 5) we have on hand.

Similarly, we may say that a solution (i0, i1, . . . , im) is in the neighborhood of

the solution (j0, j1, . . . , jn) if the solution (i0, i1, . . . , im) can be obtained by removing

one city from the solution (j0, j1, . . . , jn). Therefore, the neighborhood of the solution

(j0, j1, . . . , j`−1, j`, j`+1, . . . , jn) is defined by all solutions of the form

(j0, j1, . . . , j`−1, j`+1, . . . , jn)

for all choices of ` = 1, 2, . . . , n. Following this definition of a neighborhood, if the set of cities

is N = {0, 1, 2, 3, 4, 5} and the current solution we have on hand visits the cities (0, 2, 3, 5),

then the solutions in the neighborhood of this solution are given by

(0, 3, 5), (0, 2, 5), (0, 2, 3).

We can join the two possible definitions of a neighborhood and say that a solution

(i0, i1, . . . , im) is in the neighborhood of the solution (j0, j1, . . . , jn) if the solution

(i0, i1, . . . , im) can be obtained by either inserting one more city into or removing one city

from the solution (j0, j1, . . . , jn). In this case, if the set of cities is N = {0, 1, 2, 3, 4, 5} and

the current solution we have on hand visits the cities (0, 2, 3, 5), then the solutions in the

neighborhood of this solution are

(0, 1, 2, 3, 5), (0, 2, 1, 3, 5), (0, 2, 3, 1, 5), (0, 2, 3, 5, 1), (0, 4, 2, 3, 5),

(0, 2, 4, 3, 5), (0, 2, 3, 4, 5), (0, 2, 3, 5, 4), (0, 3, 5), (0, 2, 5), (0, 2, 3).

We check the performance of an improvement heuristic on the prize-collecting traveling

salesman problem instance given in the previous section. First, we obtain an initial tour by

using the greedy heuristic discussed in the previous section. Starting from this initial tour,

we apply the improvement heuristic, assuming that a solution is in the neighborhood of the

current solution if the solution can be obtained from the current solution by inserting a city

into or removing a city from the current solution. The figure below shows the tour obtained

by this improvement heuristic. The profit from this tour is 24.75. Recall that the profit

from the tour obtained by the greedy heuristic alone was 23.06. The improvement heuristic

provides about 7% more profit than the greedy heuristic alone.
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16.4 More Elaborate Neighborhoods

More elaborate definitions of a neighborhood may allow us to search better and better

solutions in our improvement heuristics. For example, for the prize-collecting traveling

salesman problem, we may say that a solution (i0, i1, . . . , im) is in the neighborhood of the

solution (j0, j1, . . . , jn) if the solution (i0, i1, . . . , im) can be obtained by choosing a portion

of the tour (j0, j1, . . . , jn) and reversing the order of the cities in this portion. In other

words, the neighborhood of the solution (j0, j1, . . . , jk, jk+1, . . . , j`−1, j`, . . . , jn) is defined by

all solutions of the form

(j0, j1, . . . , j`, j`−1, . . . , jk+1, jk, . . . , jn)

for all choices of k, ` = 1, 2, . . . , n with k < `. For example, if the set of cities is N =

{0, 1, 2, 3, 4, 5} and the current solution we have on hand visits the cities (0, 2, 3, 5), then the

solutions in the neighborhood of this solution are given by

(0, 3, 2, 5), (0, 5, 3, 2), (0, 2, 5, 3).

The first tour above is obtained by reversing the portion (2, 3) in the tour (0, 2, 3, 5), the

second tour above is obtained by reversing the portion (2, 3, 5) in the tour (0, 2, 3, 5) and the

third tour above is obtained by reversing the portion (3, 5) of the tour (0, 2, 3, 5).

In general, the definition of a neighborhood requires some insight into the problem on

hand. For example, the definition of a neighborhood given above can be useful to remove

crossings in a tour. To see how this, assume that the current solution we have on hand

corresponds to the tour given on the left side of the figure below. The sequence of the cities

visited in this tour is (0, 1, 2, 3, 4, 5, 6, 7). This tour has a crossing. If we focus on the portion

(3, 4, 5, 6) of the tour and reverse the order of the cities visited in this portion, then we obtain

the tour (0, 1, 2, 6, 5, 4, 3, 7). We show this tour on the right side of the figure below. Note

that the tour on the right side of the figure does not have the crossing on the left side. If the

distances on the arcs are given by the Euclidean distances between the cities, then the length
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of the tour on the right side must be shorter than the length of the tour on the left side. Since

these two tours visit the same cities, they collect the same rewards. Thus, the profit from the

tour on the right side is larger than the profit from the tour on the left side. In this example,

we defined the neighborhood of a current solution on hand as all solutions that are obtained

by reversing a certain portion of the tour in the current solution. In this case, if the current

solution on hand has a crossing, then we can always find a solution in its neighborhood that

provides better profit. Note that coming up with this neighborhood definition used some

knowledge about the prize-collecting traveling salesman problem. In particular, we know

that if the distances on the arcs are given by the Euclidean distances between the cities,

then removing crossings in the tour improves the profit.
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We check the performance of another improvement heuristic on the prize-collecting

traveling salesman problem instance given earlier in this chapter. First, we obtain an initial

tour by using the greedy heuristic. Starting from this initial tour, we apply the improvement

heuristic, assuming that a solution is in the neighborhood of the current solution if the

solution can be obtained from the current solution by inserting a city into or removing a

city from the current solution or if the solution can be obtained by reversing a portion of the

tour in the current solution. The figure below shows the tour obtained by this improvement

heuristic. The profit of this tour is 26.08, which corresponds to 12% more profit than the

greedy heuristic alone!
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16.5 Final Remarks on Heuristics

How we define the neighborhood of a solution is a critical factor for the success of an

improvement heuristic. In an improvement heuristic, we consider all solutions within the

neighborhood of the current solution on hand. On one hand, the neighborhood of a solution

should include a large number of other solutions because we want to consider a large number

of possible solutions to improve the current solution on hand. On the other hand, we

need to check the objective value provided by all solutions in the neighborhood. If the

number of solutions in the neighborhood is astronomically large, then we cannot check the

objective value provided by all solutions within the neighborhood of the solution we have on

hand. Keeping the neighborhood of a solution rich enough is critical to find better solutions,

but if we keep the neighborhood too rich, then checking the objective value of all solutions

in the neighborhood gets time consuming.

In our discussion of improvement heuristics, we stated that an improvement heuristic

checks all of the solutions in the neighborhood of the current solution on hand. If the

best solution in the neighborhood is not better than the current solution on hand, then the

improvement heuristic stops. Note that a good solution may not be in the neighborhood

of the current solution on hand. Thus, an improvement heuristic has the risk stopping

prematurely without obtaining a good solution. It is important to always remember that

although heuristics tend to provide good solutions, they are not guaranteed to provide

the optimal solution or even a good solution! There are more sophisticated improvement

heuristics that that check all solutions within the neighborhood of the current solution on

hand and update the current solution on hand to be the best solution in the neighborhood

even if the best solution in the neighborhood is not better than the current solution

on hand. The idea is that although we cannot find a better solution in the immediate

neighborhood of the current solution on hand, there can be better solutions a few steps

away in the neighborhood of the neighborhood of the current solution. Such improvement

heuristics are generally known as simulated annealing and tabu search methods. They are

precisely directed to address the possibility that a good solution may not be in the immediate

neighborhood of the current solution on hand.

One of the frustrating shortcomings of heuristics is that they provide a solution, but

we usually have no idea about how far this solution is from the optimal solution. This

shortcoming is often overlooked in practice because if the solution provided by a heuristic is

better than the status quo, then there is no reason not to implement the solution provided

by the heuristic. Nevertheless, if we do not know how far the solution provided by a heuristic

is from the optimal solution, then we can never be sure about when we should stop looking

for a better solution or a more sophisticated heuristic. For this reason, proper optimization

algorithms always have tremendous value. If we can formulate and solve a problem by using

a proper optimization algorithm, then we should definitely choose that option over using

heuristics. Sometimes, we can formulate a problem as an integer program, but we cannot
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obtain the optimal solution in a reasonable amount of time. Even in those cases, we can

solve the linear programming relaxation of the problem we formulated. The optimal objective

value of the linear programming relaxation would be an upper bound on the optimal objective

value of the problem we want to solve. In this case, we can try to compare the objective

value provided by a heuristic solution with the upper bound on the optimal objective value

of the problem. If the gap between the upper bound on the optimal objective value of the

problem and the objective value from the heuristic is small, then we can safely conclude that

the solution provided by the heuristic is near-optimal. Thus, even if we cannot solve the

integer programming formulation of a problem exactly, linear programming relaxations of

such formulations can provide useful information. Lastly, as mentioned at the beginning of

this chapter, heuristic approaches can be used to complement the branch-and-bound method

when solving an integer program. In particular, if we have a good solution provided by a

heuristic, then we can use this solution to stop the search at many nodes of the tree during

the course of the branch-and-bound method.
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Optimization under Uncertainty

In some optimization problems, some parts of the data may be uncertain and we may need

to make decisions now without knowing the future realization of the uncertain data. For

example, we may need to decide how much inventory to purchase now without knowing

what the demand for the product will be in the future or we may need to decide where to

reposition the drivers now without knowing where the demand for the drivers will occur in

the future. In this chapter, we discuss how we can solve optimization problems when there

is uncertainty in some parts of the data and this uncertainty is revealed only later on.

17.1 Two-Stage Problems under Uncertainty

One class of optimization problems under uncertainty takes place over two stages. First, we

make a set of decisions now and collect the reward associated with them. Then, we observe

the outcome of a random quantity. After we observe the outcome of a random quantity, we

make another set of decisions and collect the reward associated with these decisions. The

goal is to maximize the total expected reward over the two stages. As an example, consider

the following problem. We want to control the level of water in a reservoir over the single

month on June. At the beginning of June, we have 150 units of water in the reservoir. At the

beginning of June, we decide how much water to release from the reservoir. The water we

release results in irrigation benefits and for each unit of water we release, we collect a revenue

of $3. After we decide how much water to release, we observe the random rainfall during

the month. The rain fall can take three values, low, medium and high. Low rainfall occurs

with probability of 0.3 and increases the water level in the reservoir by 125 units. Medium

rainfall occurs with probability 0.5 and increases the water level by 200 units. High rainfall

occurs with probability 0.2 and increases the water level by 300 units. Note that we must

decide how much water we release from the reservoir before we see the realization of the

random rainfall. At the end June, we observe the water level in the reservoir. The water in

the reservoir has recreational benefits and we want to maintain a minimum water level of 100

units at the end of the month. If the water level at the end of June is below 100 units, when

we incur a cost of $5 for each unit short. The goal is to decide how much water to release at

the beginning of June to maximize the total expected profit, where the total expected profit

is given by the difference between the revenue from releasing water at the beginning of the

month and the expected cost incurred when we are short of water at end of the month. The

cost that we incur at the end of the month depends on the random rainfall. Therefore, the

cost incurred at the end of the month is random as well. So, we are interested in the expected

cost that we incur at the end of the month.

In this problem, we need to make decisions before and after the outcome of a random

quantity becomes revealed to us. On the left side of the figure below, we show the time

line of the events in the problem. At the beginning of June, we observe the water level in

the reservoir, decide how much water to release and collect the revenue from the water that
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we release. During the month, the random rainfall is realized. At the end of the month, we

observe the water level, compute if and how much we are short of the desired water level

and incur the cost associated with each unit of water we are short. On the right side of the

figure, we give a tree that gives a more detailed description of the sequence of events and the

decisions in the problem. The nodes of the tree correspond to the states of the world. The

branches of the tree correspond to the realizations of the random quantities. Node A in the

tree corresponds to the state of the world here and now at the beginning of June. The three

branches leaving node A correspond to the three different realizations of the rainfall. Node B

corresponds to state of the world at the end of June after having observed that the realization

of the rainfall is low, at which point we need to check if and how much we are short of the

desired water level and incur the cost for each unit of water we are short. The interpretations

of nodes C and D are similar, but these nodes correspond to the cases where the rainfall

was observed to be medium and high.

Node%A%
xA#
#
#

Node%C%
yC#
zC#
#

Node%B%
yB#
zB#
#

Node%D%
yD#
zD#
#

low%
(125)%
0.3%
#
#

med%
(200)%
0.5%
#
#

high%
(300)%
0.2%
#
#

Beginning%%
of%June#

Water%level%is%150#

Release%water%and%
collect%revenue%

Random%rainfall#
realized%

Observe%water%level%%
and%incur%cost%

End%
of%June#

Next, we think about the decisions that we need to make at each node. As a result of

this process, we will associate decision variables with each node in the tree. At node A, we

decide how much water to release from the reservoir. Therefore, associated with node A, we

define the following decision variable.

xA = Amount of water released at node A.

At node B, we measure the level of water in the reservoir and we incur a cost for each unit

we are short of the desired water level. Associated with node B, we define the following

decision variables.

yB = Given that we are at node B, water level in the reservoir.

zB = Given that we are at node B, the amount we are short of the desired water level.

Note that yB captures the water level at the end of June given that the rainfall was low during

the month and zB captures the amount we are short at the end of June given that the rain

fall was low. We define the decision variables yC , zC , yD and zD with similar interpretations,
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but these decision variables are associated with nodes C and D in the tree. All decision

variables are indicated in the tree shown above. We proceed to constructing the objective

function. For each unit of water we release at node A, we collect a revenue of $3. Thus,

revenue at node A is 3 xA. At node B, we incur $5 for each unit of water we are short. So,

the cost at node B is 5 zB. Also, the probability of reaching node B is 0.3, which is the

probability of having low rainfall. Similarly, the costs incurred at nodes C and D are given

by 5 zC and 5 zD, whereas the probabilities of reaching these nodes are 0.5 and 0.2. So, we

write the total expected profit obtained over the whole month of June as

3xA − 0.3× 5 zB − 0.5× 5 zC − 0.2× 5 zD = 3xA − 1.5 zB − 2.5 zC − zD.

In the expression above, we multiply the cost incurred at each node by the probability of

reaching that node to compute the total expected cost incurred at the end of June.

We now construct the constraints in the problem. The decision variable yB corresponds

to the water level at the end of June given that the rainfall during the month turned out

to be low. The water level at the end of the month depends on how much water we had

at the beginning of the month, how much water we released and the rainfall during the

month. Noting that we have 150 units in the reservoir at the beginning of June, we release

xA units of water from the reservoir and low rainfall corresponds to a rainfall of 125 units,

we can relate yB to the decision variable xA as

yB = 150− xA + 125.

For each unit we are short of the desired water level of 100, we incur a cost of $5. The

decision variable zB corresponds to the amount we are short given that the rainfall during

the month turned out to be low. Thus, if yB is less than 100, then zB = 100− yB, whereas

if yB is greater than 100, then zB = 0. To capture this relationship between the decision

variables zB and yB, we use the constraints

zB ≥ 100− yB and zB ≥ 0.

Since zB appears in the objective function with a negative coefficient and we maximize the

objective function, we want to make the decision variable zB as small as possible. If yB is

less than 100, then 100− yB ≥ 0. Therefore, due to the two constraints above, if yB is less

than 100, then the smallest value that zB can take is 100 − yB. In other words, if yB is

less than 100, then the decision variable zB takes the value 100 − yB, as desired. On the

other hand, if yB is greater than 100, then we have 100 − yB ≤ 0. In this case, due to the

two constraints above, if yB is greater than 100, then the smallest value that zB can take

is 0. In other words. if yB is greater than 100, then the decision variable zB takes the value

0, as desired. By using the same argument, we have the constraints

yC = 150− xA + 200, zC ≥ 100− yC , zC ≥ 0,

yD = 150− xA + 300, zD ≥ 100− yD, zD ≥ 0.
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Therefore, to maximize the total expected profit over the month of June, we can solve the

linear program

max 3xA − 1.5 zB − 2.5 zC − zD
st yB = 150− xA + 125

zB ≥ 100− yB
yC = 150− xA + 200

zC ≥ 100− yC
yD = 150− xA + 300

zD ≥ 100− yD
xA, yB, zB, yC , zC , yD, zD ≥ 0.

The optimal objective value of the problem above is 637.5 with the optimal values of the

decision variables given by

xA = 250, yB = 25, zB = 75, yC = 100, zC = 0, yD = 200, zD = 0.

We show the optimal solution in the tree below. According to the solution in the tree, we

release 250 units of water at the beginning of June. If the rainfall turns out to be low, then

the water level at the end of the month is 25 and we are 75 units short of the desired water

level. If the rainfall turns out to be medium or high, then the water level at the end of the

month is respectively 100 or 200, in which case, we are not short. Note that to maximize the

expected profit, we release 250 units of water at the beginning of the month, which implies

that we are willing to be short of the desired water level when the rainfall during the month

turns out to be low. The revenue that we obtain from the released water justifies the cost

incurred at the end of the month if the rainfall turns out to be low.
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17.2 Multi-Stage Problems under Uncertainty

The problem we studied in the previous section takes place in two stages. We first make

a set of decisions and collect the reward associated with these decisions. Then, we observe

the outcome of a random quantity. After we observe the outcome of a random quantity, we
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make another set of decisions and collect the reward associated with these decisions. For the

problem in the previous section, the decisions in the second stage were rather simple. We

simply measured the water level and calculated how much we are short of the desired level. In

this section, we study problems that take place under uncertainty over multiple stages,

instead of two stages. In multi-stage problems, we begin by making a set of decisions. Then,

we observe the outcome of a random quantity. After we observe the outcome of a random

quantity, we make another set of decisions. After making these decisions, we observe the

outcome of another random quantity and make more decisions. The process of observing

the outcome of a random quantity and making decisions continues until we reach the end

of the planning horizon. For example, consider the problem of controlling the inventory of

a certain product over 4 weeks. We first decide how much product to purchase. Then, we

observe the random demand for the current week. After we observe the random demand, we

decide how much to purchase in the next week. After making this decision, we observe the

random demand in the next week. The process continues for 4 weeks. Our goal could be to

maximize the expected profit given by the difference between the revenue from the demand

we satisfy and the cost from purchasing the product.

We build on the example in the previous section to illustrate how we can model problems

that takes place over multiple stages. Assume that we control the water level in a reservoir

over 3 months, June, July and August. At the beginning of June, we have 150 units of

water in the reservoir. At the beginning of each of the 3 months, we decide how much

water to release from the reservoir. For each unit of water we release, we collect a revenue

of $3. During each month, we observe the random rainfall, which can take values low or

high. Low rainfall occurs in each month with a probability of 0.4 and increases the water

level in the reservoir by 125 units. High rainfall occurs with a probability of 0.6 and increases

the water level in the reservoir by 300 units. At the end of each of the 3 months, we observe

the water level. If the water level is below the desired level of 100 units, then we incur a cost

of $5 for each unit short. The goal is to decide how much water to release at the beginning

of each of the 3 months to maximize the total expected profit over the 3 months.

On the left side of the figure below, we show the time line of the events. At the beginning

of each month, we observe the water level in the reservoir and decide how much water to

release. At the end of each month, we observe the water level and compute how much we

are short of the desired water level. On the right side of the figure, we give a tree that gives

a detailed description of the sequence of events and the decisions in the problem. Node A

corresponds to the state of the world at the beginning of June. The two branches leaving

node A correspond to the two possible realizations of the rainfall during June. For example,

node B corresponds to the state of the world at the end of June and at the beginning of

July, given that the rainfall during June turned out to be low. The nodes deeper in the

tree represent the states of the world later in the planning horizon. For example, node F

corresponds to the state of the world at the end of July and at the beginning of August,

given that the rainfall during June was high and the rainfall during July was low. Similarly,
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node J corresponds to the state of the world at the end of August, given that the rain fall

during June, July and August was respectively low, high and low.
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Let us think about the decision variables in the problem. At each node in the tree except

for the leaf nodes that are at the very bottom, we need to decide how much water to release

from the reservoir. Thus, we define the following decision variables.

xi = Given that we are at node i, the amount of water released from the reservoir, for

i = A,B,C,D,E, F,G.

For example, the decision variable xC represents how much water we release at the beginning

of July given that we are at node C. In other words, xC represents how much water we release

at the beginning of July given that the rainfall during June was high. Similarly, xE represents

how much water we release at the beginning of August given that the rainfall during June

and July was respectively low and high. Since the planning horizon ends at the end of

August, we do not worry about how much water to release at the end of August. Thus, we

do not worry about defining decision variables that capture the amount of water released at

the nodes H, I, J,K, L,M,N and O. On the other hand, at each node in the tree except for

the root node at the very top, we need to measure the level of water and how much we are

short of the desired level. So, we define the following decision variables.

yi = Given that we are at node i, water level in the reservoir, for i = B,C,D,E, F,G,H, I, J,

K, L,M,N,O.
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zi = Given that we are at node i, the amount we are short of the desired water level, for

i = B,C,D,E, F,G,H, I, J, K, L,M,N,O.

The water level in the reservoir at node A is known to be 150. Therefore, we do not need

decision variables that measure the water level and how much we are short of the desired

water level at node A.

Next, we construct the objective function in the problem. Each node in the tree

contributes to the expected profit. As an example, we consider node G. At node G, the

amount of water we release is given by the decision variable xG. Thus, we make a revenue

of 3xG. At this node, the amount we are short of the desired water level is given by the

decision variable zG. Thus, we incur a cost of 5 zG at node G. So, the profit at node G is

given by 3xG − 5 zG. We reach node G when the rainfall in June and July are respectively

high and high. Thus, the probability of reaching node G is 0.6 × 0.6 = 0.36. In this case,

the contribution of node G to the expected profit is given by 0.36 (3xG− 5 zG). Considering

all the nodes in the tree, the objective function is given by

3xA + 0.4 (3xB − 5 zB) + 0.6 (3xC − 5 zC)

+ 0.16 (3xD − 5 zD) + 0.24 (3xE − 5 zE) + 0.24 (3xF − 5 zF ) + 0.36 (3xG − 5 zG)

− 0.064× 5 zH − 0.096× 5 zI − 0.096× 5 zJ − 0.144× 5 zK − 0.096× 5zL

− 0.144× 5 zM − 0.144× 5 zN − 0.216× 5 zO.

We proceed to constructing the constraints in the problem. For each node in the tree,

we need to construct a constraint that computes the water level at the current node as a

function of the water level at the parent node of the current node, the amount of water

released at the parent node and the rainfall over the branch that connects the current node

to its parent node. For example, for nodes B, G and H, we have the constraints

yB = 150− xA + 125, yG = yC − xC + 300, yH = yD − xD + 125.

Furthermore, for each node in the tree, we need to compute how much we are short of the

desired water level. For example, for nodes B, G and H, we compute how much we are short

of the desired water level by using the constraints

zB ≥ 100− yB, zB ≥ 0, zG ≥ 100− yG, zG ≥ 0, zH ≥ 100− yH , zH ≥ 0.

The idea behind the constraints above is identical to the one we used when we formulated

the two-stage problem in the previous section. We construct the two types of constraints

for all nodes in the tree except for node A. Since the water level at node A is known to

be 150 units, we do not need to compute the water level and how much we are short at

node A. Putting the discussion in this section together, we can maximize the total expected
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profit over the 3 month planning horizon by solving the linear program

max 3xA + 0.4 (3xB − 5 zB) + 0.6 (3xC − 5 zC)

+ 0.16 (3xD − 5 zD) + 0.24 (3xE − 5 zE) + 0.24 (3xF − 5 zF ) + 0.36 (3xG − 5 zG)

− 0.064× 5 zH − 0.096× 5 zI − 0.096× 5 zJ − 0.144× 5 zK − 0.096× 5zL

− 0.144× 5 zM − 0.144× 5 zN − 0.216× 5 zO

st yB = 150− xA + 125

zB ≥ 100− yB
yC = 150− xA + 300

zC ≥ 100− yC
yD = yB − xB + 125

zD ≥ 100− yD
...

yG = yC − xC + 300

zG ≥ 100− yG
yH = yD − xD + 125

zH ≥ 100− yH
...

yO = yG − xG + 300

zO ≥ 100− yO
xA, xB, yB, zB, . . . , xG, yG, zG, yH , zH , . . . , yO, zO ≥ 0.

The optimal objective value of the problem above is 2005. There are quite a few decision

variables in the problem. Thus, we go over the optimal values of only a few of the decision

variables. For example, we have xE = 700 and yE = 575 in the optimal solution. According

to this solution, given that the rainfall during June and July was respectively low and high,

it is optimal to release xE = 700 units of water at the beginning of August. Given that the

rainfall during June and July was respectively low and high, the optimal water level at the

beginning of August is yE = 575 units.

17.3 A Larger Two-Stage Problem under Uncertainty

In some applications, the decisions that we make at each node of the tree may be captured

by a large number of decision variables. To give an example, consider the situation faced

by a company shipping products from its production plant to the warehouses and from the

warehouses to its retail centers with the purpose of satisfying the random demand at the retail

centers. At the beginning of the planning horizon, the company has 100 units of product

at the production plant. It needs to decide how much to ship from the production plant
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to each one of the 3 warehouses. After the company ships products to the warehouses, the

random demand at the retail centers is realized. Once the company observes the realization

of the random demand at the retail centers, it needs to decide how much product to ship

from the warehouses to the retail centers to cover the demand. On the left side of the figure

below, we depict the production plant, warehouses and retail centers. The label on each arc

shows the cost of shipping a unit of product over each arc. For example, it costs $1 to ship

one unit from the production plant to each one of the warehouses and $4 to ship one unit

from warehouse 2 to retail center 1. On the right side of the figure, we show the possible

demand realizations. In particular, there are two possible scenarios for demand realizations.

The first scenario happens with probability 0.6. Under this scenario, the demand at retail

centers 1 and 2 are respectively 70 and 20. The second scenario happens with probability

0.4. Under this scenario, the demand at retail centers 1 and 2 are respectively 10 and 80.

Note that under scenario 1, the demand at retail center 1 is high, whereas under scenario

2, the demand at retail center 2 is high. So, it is hard to judge where the large demand

will occur. The goal of the company is to minimize the total expected cost of satisfying the

demand, where the cost includes the cost of shipping products from the production plant to

the warehouses and from the warehouses to the retail centers.

1
1

2

3 2

1

1

1

1

1

4

4

12!

10!

produc,on.
plant!

warehouses! retail.
centers.

Dem. at Dem. at

Scenario Prob. Ret. Cen. 1 Ret. Cen. 2

1 0.6 70 20

2 0.4 10 80

On the left side of the figure below, we show the time line of the events. At the beginning,

we decide how much product to ship to each warehouse. Then, we observe the realization of

the demands. After observing the realization of the demands, we decide how much product

to ship from the warehouses to the retail centers to cover the demands. On the right side of

the figure, we give a tree that shows a more detailed description of the sequence of events

and the decisions in the problem. Node A in the tree corresponds to the state of the world

here and now. At this node, we decide how much product to ship to the warehouses. The

two branches leaving node A correspond to the two demand scenarios given in the table

above. Node B corresponds to the state of the world where the demands turned out to be

the one in scenario 1. At this node, we need to decide how much product to ship from the

warehouses to the retailer centers. Similarly, node C corresponds to the state of the world

where the demands turned out to be the one in scenario 2. At this node, we also need to

decide how much product to ship from the warehouses to the retailer centers. To capture

the decisions in the problem, we define the following decision variables.
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Node%A%
xiA$
$
$

Node%B%
yijB$

Node%C%
yijC$

Scenario%1%
(70,%20)%
0.6%
$
$

Scenario%2%
(10,%80)%
0.4%
$
$

Ship%product%to%
warehouses%

Random%demand%%
at%retail%centers%

is%realizes%

Ship%product%to%
retail%centers%

xiA = Given that we are at node A, amount of product shipped to warehouse i, for i = 1, 2, 3.

yijB = Given that we are at node B, amount of product shipped from warehouse i to retail

center j, for i = 1, 2, 3, j = 1, 2.

yijC = Given that we are at node C, amount of product shipped from warehouse i to retail

center j, for i = 1, 2, 3, j = 1, 2.

We indicate these decision variables in the tree shown above. Note that since node B

corresponds to the case where the demands turned out to be the one in scenario 1, the

decision variables {yijB : i = 1, 2, 3, j = 1, 2} capture the products shipped from the

warehouses to the retail centers under scenario 1. Since it costs $1 to ship one unit of

product from the production plant to each one of the warehouses, the cost incurred at node

A is
∑3

i=1 xiA. For notational brevity, we use cij to denote the cost of shipping a unit of

product from warehouse i to retail center j. So, the costs incurred at nodes B and C are∑3
i=1

∑2
j=1 cij yijB and

∑3
i=1

∑2
j=1 cij yijC . Since the probabilities of reaching nodes B and

C are 0.6 and 0.4, the total expected cost can be written as

3∑
i=1

xiA + 0.6
3∑
i=1

2∑
j=1

cij yijB + 0.4
3∑
i=1

2∑
j=1

cij yijC .

Next, we construct the constraints in the problem. At node A, the total amount of

product that we ship out of the production plant cannot exceed the product availability at

the production plant. Therefore, we have the constraint

3∑
i=1

xiA ≤ 100.

At node B, the total amount of product that we ship out of each warehouse i cannot exceed

the amount of product shipped to the warehouse. Noting that the amount of product shipped

to warehouse i is given by xiA, for all i = 1, 2, 3, we have the constraint

2∑
j=1

yijB ≤ xiA.
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Furthermore, at node B, the amount of product shipped to each retail center should be

enough to cover the demand at the retail center. At node B, the demands at the retail

centers are observed to be 70 and 20. Thus, we have the constraints

3∑
i=1

yi1B ≥ 70 and
3∑
i=1

yi2B ≥ 20.

In this case, to figure out how to ship the products from the production plant to the

warehouses and from the warehouses to the retail centers to minimize the total expected

cost, we can solve the linear program

max
3∑
i=1

xiA + 0.6
3∑
i=1

2∑
j=1

cij yijB + 0.4
3∑
i=1

2∑
j=1

cij yijC

st
3∑
i=1

xiA ≤ 100

2∑
j=1

yijB ≤ xiA ∀ i = 1, 2, 3

3∑
i=1

yi1B ≥ 70

3∑
i=1

yi2B ≥ 20

2∑
j=1

yijC ≤ xiA ∀ i = 1, 2, 3

3∑
i=1

yi1C ≥ 10

3∑
i=1

yi2C ≥ 80

xiA, yijB, yijC ≥ 0 ∀ i = 1, 2, 3, j = 1, 2.

The optimal objective value of the problem above is 340. We focus on the values of some

of the decision variables in the optimal solution. In particular, the optimal solution has

x1A = 20, x2A = 50 and x3A = 30. There are two interesting observations. First, observe

that the costs of shipping products from warehouse 1 to retail center 2 and from warehouse

3 to retail center 1 are rather high. Thus, if we ship a large amount of product to warehouse

1 and retail center 2 ends up having a large demand, then we incur a high cost to cover the

demand at retail center 2. Similarly, if we ship a large amount of product to warehouse 3

and retail center 1 ends up having a large demand, then we incur a high cost to cover the
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demand at retail center 1. In contrast, the costs of shipping products from warehouse 2 to

either of the retail centers is moderate. In the optimal solution, we ship a relatively large

amount of product to warehouse 2. After observing the realization of the demand at the retail

centers, we use the products at warehouse 2 to satisfy the demand. Second, although the

total amount of demand at the retail centers never exceeds 90, the total amount of product

that we ship to the warehouses is 100. The idea is that there is value in having products at

warehouses 1 and 3. If the demand at retail center 1 turns out to be large, then we can use

the products at warehouse 1, rather than the products at warehouse 2 or 3. Similarly, if the

demand at retail center 2 turns out to be large, then we can use the products at warehouse

3, rather than the products at warehouse 1 or 2. Since the cost of shipping the product

from the production plant to the warehouses is quite low, in this problem instance, it turns

out that it is optimal to ship all of the products out of the production plant to keep the

warehouses stocked.
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