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1 Polynomial-time algorithms for the max-flow problem

1.1 The push-relabel algorithm

So far we have considering augmenting path algorithms. These algorithms are primal feasi-
ble, because capacity constraints are obeyed and flow conservation constraints are obeyed.
We maintain a feasible flow and work towards finding a maximum flow. But the next algo-
rithm we will consider, “Push-Relabel”, also known as “Preflow-Push”, is primal infeasible,
because it does not obey flow conservation constraints. Here we will maintain a flow that
has value at least that of the maximum, and work towards finding a feasible flow. The
algorithm will maintain a preflow.
Basic idea: Use preflows instead of flows.

Definition 1 A preflow is a function f : A → < that obeys

1) Capacity constraints: fij 6 uij

2) Antisymmetry constraints: fij = −fji

3) For ∀i ∈ V , i 6= {s, t}, f in(i) > fout(i) ⇒
∑

j:(j,i)∈A

fji >
∑

k:(i,k)∈A

fik

That is, in a preflow, instead of flow in equalling flow out for every vertex other than
the source and the sink, we have that total flow in is at least total flow out. We define the
excess to be the difference between the flow in and flow out.

Definition 2 We define the excess at node i to be ei ≡ f in(i)− fout(i) > 0.

If ei = 0, for ∀i 6= s, t, then the preflow is a flow. Given a preflow, we try to reach a
feasible flow by pushing excess ei to sink t and the remainder to source s along shortest
paths. Maintaining shortest path lengths is expensive, so instead we maintain a “gradient”:
a distance labeling d which gives us estimates on the shortest path to the sink.

Definition 3 A distance labeling d is a set of di for ∀i ∈ V . d is valid with respect to f if

• di is a non-negative integer associated with each node i

• dt = 0, ds = n

• di 6 dj + 1 ∀ (i, j) ∈ Af (residual edge)

The intuition is that di < n gives a lower bound on distance to t, and di > n gives a
lower bound on distance to s.
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Figure 1: di 6 d(i, t)

Claim 1 If there is an i-t path in Gf , then di is a lower bound on the distance from i to t:
di 6 d(i, t).

To see this, consider the shortest path P from i to t. Any arc (i, j) on this path has
the relation di 6 dj + 1, as shown in Figure 1. Thus, di 6 |P |, and is the lower bound on
distance of i to t.

Claim 2 An s-t path in Gf never exists as long as d is valid. ⇒ If f ever becomes a true
flow, it must be optimum.

Definition 4 If ei > 0 for ∀i ∈ V , i 6= s, t, call node i active.

Push-Relabel Algorithm

Initialize f ← 0, e ← 0
fsj ← usj ; fjs ← −fsj ; ej = usj ; fij ← 0 for all other edges
ds ← n; dt ← 0; di ← 0, ∀i ∈ V, i 6= s, t

While ∃ an active node i

-If ∃j, s.t. uf
ij > 0 and di = dj + 1, then

Push δ ← min(ei, u
f
ij)

fij ← fij + δ; fji ← fji − δ
ei ← ei − δ; ej ← ej + δ

-Else
Relabel di ← min

(i,j)∈Af

(dj + 1).

Question: If this algorithm terminates, will we have a max-flow f?

- Only terminates when f is a flow

- Already argued that if d remains valid, f will be optimal

- By induction over steps of the algorithm, all our operations preserve validity of d

Claim 3 If i is active (ei > 0) at some point, then there is an i-s path in Gf .
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Proof: Let S = {j : there is an i-j path in Gf} for i active. Note that for all k ∈ S,
j 6∈ S, fkj 6 0 (otherwise i could reach k). Suppose that s 6∈ S,

∑

j∈S

ej =
∑

j∈S

∑

(k,j)∈A

fkj (using fij = −fji, this is flow in minus flow out)

=
∑

k∈S,j∈S

fkj +
∑

k∈S,j 6∈S

fkj

= 0 +
∑

k∈S,j 6∈S

fkj (Each fkj cancels each fjk)

6 0

This is a sum of terms that is all “> 0”=⇒ ej = 0 for all j ∈ S =⇒ This contradicts the
fact that i ∈ S and i is active. 2

Claim 4 For all i at all points in the algorithm, di 6 2n− 1.

Proof: ds = n, dt = 0 never change. di increases only when i is active. i is active
implies there exists a path P in Gf from i to s. The path in Gf has the length of at most
n− 1. So di 6 ds + n− 1 = 2n− 1. 2

In the algorithm, there are two types of pushes:

- push is saturating if δ = uf
ij (reach residual capacity and stop)

- push is nonsaturating if δ < uf
ij , i.e δ = ei (reach excess and stop)

Claim 5 There are at most 2mn saturating pushes.

Proof: In fact, there will only ever be 6 n saturating pushes on each (i, j) ∈ Af . At
a saturating push from i to j, di = dj + 1. After this, (i, j) leaves Af , a saturating push
cannot be done until it returns. What must happen before it returns? A push from j to i,
and dj = di +1. So the distance label of j must increase by at least 2. But dj ≤ 2n− 1 and
thus can be increased by 2 at most n times. Thus there are at most n saturating pushes on
(i, j). 2

Claim 6 There are at most 4mn2 nonsaturating pushes.

Proof: Let Φ ≡
∑

active i

di be the “potential function” (Global Progress Measure). At the

start of algorithm Φ = 0, and Φ > 0 throughout algorithm. =⇒ total of all decreases to Φ
during algorithm 6 total of all increases to Φ.

Which push/relabel operations make Φ increase? Relabel will increase it by at most
2n2. One saturating push may create a new active vertex and increase it by at most 2n−1.
So Φ can increase by at most 2n2 + 4mn2 − 2mn, as shown in Figure 2.

Therefore, total increases of Φ

• due to relabels 6 ((2n-1) per node)(n nodes) 6 2n2

4-3



Figure 2: Saturating pushes and nonsaturating pushes

• due to saturating pushes 6 (2mn saturating pushes)((2n − 1) changes per push) 6
4mn2 − 2mn

So Φ can increase by at most 4mn2 − 2mn + 2n2.
Which push/relabel operations make Φ decrease? Only nonsaturating pushes make Φ

decrease, because it make i inactive =⇒ no more than 4mn2 − 2mn + 2n2 nonsaturating
pushes. 2
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