
ORIE 633 Network Flows August 30, 2007

Lecture 3

Lecturer: David P. Williamson Scribe: Gema Plaza-Mart́ınez

1 Polynomial-time algorithms for the maximum flow prob-
lem

1.1 Introduction

Let’s turn now to considering polynomial-time algorithms for computing a maximum flow.
We’ll need the following definitions:

Definition 1 An algorithm runs in polynomial time if the number of operations (basic
arithmetic operations, comparisons, etc.) can be bounded by a polynomial in the size of
the input, when data items are encoded in binary.

Definition 2 An algorithm runs in pseudo polynomial time if the number of operations can
be bounded by a polynomial in the size of the input, when data items are encoded in unary.

Definition 3 An algorithm runs in strongly polynomial time if the number of operations
can be bounded by a polynomial in the number of data items, and it is not dependent on the
size of the data items.

Recall the problem:

Maximum s-t Flow Problem

• Input:

– Directed graph G = (V, A)

– Capacities uij ≥ 0, ∀(i, j) ∈ A, uij integer

– Source node s ∈ V , sink node t ∈ V, s 6= t

• Goal: Find an s-t flow of maximum value.

Definition 4 An s-t flow is a function f : A → R+ such that

(i) fij ≤ uij , ∀(i, j) ∈ A (capacity constraints)

(ii) fij = −fji, ∀(i, j) ∈ A (antisymmetry)

(iii)
∑

k:(i,k)∈A

fik = 0, ∀i ∈ V, i 6= s, t (flow conservation constraints)

Definition 5 The value of a flow f is |f | ≡ ∑
k:(s,k)∈A

fsk.

3-1

1.2 Augmenting path algorithms

Recall the following definitions:

Definition 6 The residual graph of a flow f is given by Gf = (V,Af , uf), where Af =
{(i, j) ∈ A : fij < uij} and uf

ij = uij − fij.

Definition 7 A directed s-t path in Gf is called an augmenting path.

We describe now the augmenting path algorithm:

Augmenting path

f ← 0
While ∃ an augmenting path P in Gf

Augment flow on P

Update f : fij =





fij + δ, if (i, j) ∈ P ;
fij − δ, if (j, i) ∈ P ;
fij , otherwise,

where δ = min(i,j)∈P uf
ij .

Let m = |A|, n = |V |.

Lemma 1 (Decomposition lemma) Given an s-t flow f , there exists a set P of s-t paths, a
set C of cycles, and weights w : P ∪ C → R+ such that

(i) fij =
∑

P∈P∪C:(i,j)∈P w(P), ∀(i, j) ∈ A s.t. fij > 0,

(ii) |f | = ∑
p∈P w(P),

(iii) |P|+ |C| ≤ m.

Proof: Start with P = C = ∅.
Pick (i, j) ∈ A with fij > 0. If such an arc doesn’t exist, we are done. Otherwise, if i 6= s
there exists a k such that fki > 0. This follows from the flow conservation and from the
fact that fij > 0.

Similarly, if j 6= t there exists an h such that fjh > 0.

Keep repeating this until we find either an s-t path or a cycle. Call this P , and set w(P) =
min(i,j)∈P fij . Add P to P or C.
Update the flow:

fij =





fij − w(P), if (i, j) ∈ P ;
fij + w(P), if (j, i) ∈ P ;
fij , ow.

Once we are done with this, parts (i) and (ii) follow from the construction. Also notice that

3-2

at least one more arc has fij = 0, so we can only do it at most m times. Hence (iii) holds.
2

Lemma 2 Let f be an s-t flow, and f∗ a maximum flow in G. Then the maximum flow in
Gf has value |f∗| − |f |.

Proof: Let f ′ be an s-t flow in Gf , and define f̃ij = fij + f ′ij , ∀(i, j) ∈ A. Then f̃ is a
feasible flow in G. This implies |f̃ | ≤ |f∗|, and therefore |f ′| ≤ |f∗| − |f |.
Now, define f̂ as the following flow in Gf : f̂ij = f∗ij−fij , ∀(i, j) ∈ Af . Then f̂ij = f∗ij−fij ≤
uij − fij = uf

ij . So f̂ is a feasible flow and it has value |f∗|− |f |. Therefore f̂ is a maximum
flow in Gf . 2

As we will see in the problem set, this does not necessarily lead to a polynomial-time algo-
rithm because it is possible that there will be too little progress made for each augmentation.
However, if one picks a path to make substantial progress in each augmentation, then we
can give a polynomial-time algorithm. One natural choice is to pick P with largest possible
capacity; i.e. maxP min(i,j)∈P {uf

ij}. Then the algorithm above becomes:

Maximum capacity augmenting path

f ← 0
While ∃ an augmenting path in Gf

Pick augmenting path P with maximal residual capacity.
Augment flow on P
Update f .

The above two lemmas indicate that some augmenting path P will have capacity at least
|f∗|−|f |

m .

Claim 3 P has capacity at least |f∗|−|f |
m .

Proof: Follows from the two lemmas. From the second lemma, the maximum flow value
in Gf is |f∗|− |f |. By the decomposition lemma, there are at most m paths in Gf on which
we can send |f∗| − |f | in total. 2

Let’s consider 2m iterations of the loop in the above algorithm. Let f0 be the flow at the
beginning of them. Then either

(i) all 2m iterations augment flow value by ≥ |f∗|−|f0|
2m . Or

(ii) at least one iteration augments flow by < |f∗|−|f0|
2m .

If (i) happens, we are done, since we have a flow of value at least |f∗|. If (ii) happens,
then the capacity of the maximum capacity augmenting path has dropped by a factor of
2. The upper bound on the capacity of P is U ≡ max(i,j)∈A uij . The lower bound on the
capacity of P is 1. Therefore, there can be at most O(log U) decreases of the capacity of

3-3

the maximum capacity augmenting path by a factor of 2. Since every 2m iterations either
the algorithm terminates with a maximum flow or the capacity drops by a factor of 2, there
are at most O(m log U) iterations of the main loop overall. This gives a polynomial-time
algorithm.

To get the exact running time, we would have to determine the time needed to find the
maximum capacity augmenting path. Rather than get into this, we will consider a variation
of the algorithm above in which we only need to find a path in a network. The idea of this
algorithm is to look for paths in which each edge is ’big’. If such a path exists, then we can
increase the flow by a significant amount. If there is no such path, then we will show that
we must be closer to the maximum flow value. We first need the following definition.

Definition 8 A δ-capacity augmenting path is an augmenting path P such that uf
ij ≥ δ for

all (i, j) ∈ P .

The algorithm is as follows:

Capacity scaling

f ← 0
δ ← 2blog2 Uc

While there is an augmenting path in Gf

If ∃ δ-capacity augmenting path P
Augment flow on P , update f .

Else
δ ← δ/2

Suppose that there is no δ-capacity augmenting path and we decrease δ by 2. Let δ′ be the
new value and δ the old value. Then the maximum flow value in Gf is < mδ = 2mδ′ by
the decomposition lemma. This implies that we can’t find more than 2m δ′-capacity paths
before we have to halve δ′ again. This means at most O(m log U) iterations.

The disadvantage of augmenting path-style algorithms is that we have to find the full path
each time, and this takes O(m) time. We are going to see another type of algorithm that
avoids this.

1.3 The push/relabel algorithm

Observation 1 A pre-flow doesn’t satisfy the flow conservation constraints (iii), but it has∑
(j,i)∈A fji ≥ 0, ∀i ∈ V, i 6= s, t.

Definition 9 A distance labelling is a set of di for all i ∈ V such that:

- di is a non-negative integer;

- dt = 0;

- ds = n;

3-4

- di ≤ dj + 1 ∀ (i, j) ∈ Af .

The idea of distance labelling is the following:

• If di < n ⇒ it gives a lower bound on the distance to t.

• If di ≥ n ⇒ it gives a lower bound on the distance to s.

Definition 10 If ei > 0, i ∈ V, i 6= s, t then we call i active.

Push/Relabel(Goldberg, Tarjan ’88)

f ← 0
fsj ← usj , fjs ← −usj , ej = usj , ∀(s, j) ∈ A
ds ← n
di ← distance to t in G, ∀i ∈ V, i 6= s
While ∃ active i

If ∃j, s.t. uf
ij > 0 and di = dj + 1

Push δ ← min(ei, u
f
ij)

fij ← fij + δ; fji ← fji − δ
ei ← ei − δ; ej ← ej + δ

Else
Relabel di ← min(i,j)∈Af

(dj + 1).

3-5

