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The Knapsack Problem 1

In the knapsack problem, we are given a set of n items I = {1, ..., n}, where item i has value vi
and size si, and a knapsack of capacity B. We assume all values and sizes are positive integers.
We want to find a subset of items S ⊆ I to put in the knapsack that maximizes the value

∑
i∈S vi

subject to the capacity constraint of the knapsack, i.e.
∑

i∈S si ≤ B. The decision version of the
Knapsack Problem is NP-complete.

Dynamic Program for the Knapsack Problem

We can solve the knapsack problem using dynamic programming. We maintain an array entry A(j)
for j = 1, . . . , n. Each entry A(j) is a list of pairs (t, w). A pair (t, w) in the list A(j) indicate
that there is a subset S of the first j items such that

∑
i∈S si = t where t ≤ B, and

∑
i∈S vi = w.

However, each list does not need to contain all possible such pairs and only keep track of the most
efficient ones. More formally, we say a pair (t, w) dominates the pair (t′, w′) if t ≤ t′ but w ≥ w′, i.e.
the solution (t, w) takes less space but has more value than (t′, w′). In each list A(j), we only keep
track of non-dominated pairs. Hence of A(j) has entries (t1, w1), . . . , (tk, wk) with t1 < · · · < tk
and w1 < · · · < wk. Now we can describe the dynamic program:

1. Start with A(1) = {(0, 0), (s1, w1)}
2. For each j = 2, ..., n :

first set A(j)← A(j − 1)
for each (t, w) ∈ A(j − 1), if t+ sj ≤ B then add (t+ sj , w + vj) to A(j)
remove dominated pairs from A(j)

3. return the pair (t, w) from A(n) with the maximum value

We will skip the proof of correctness of this algorithm, which can be done using induction on
j. Now for the running time: Computing each entry of the dynamic program takes O(1) time, so
it suffices to bound the size of the size of the dynamic program table. Since all inputs are integers,
we can bound the size of each list A(j) in the table by the number of distinct values (t, w) can take
in each coordinate. Notice t can possibly take on values from 0 to B. Now let V =

∑n
i=1 vi then V

gives an upper bound for value w can take, i.e. w can possibly take on values from 0 to V . Hence
the number of entries in the table, and thus the running time of the algorithm is O(nmin(B, V )).
In general, this is not polynomial to the input size (for example, the input B is encoded in binary
and has size log2B ), which is expected as the knapsack problem is NP-hard. However, note that
if V is polynomial in n then the running time would indeed be a polynomial in input size.

1Based on previous note by Maurice Cheung
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FPTAS for the Knapsack Problem

The key idea is that we can round the values of the items so that V is polynomial in n. While
rounding induces some loss of precision in the value of the solution, we will show this does not
affect the optimal value by too much. For any given instance, let OPT denote its optimal value.

Definition 1 A polynomial-time approximation scheme(PTAS) is a family of algorithms {Aε},
where there is an algorithm for each ε > 0, such that {Aε} is a (1 + ε)-approximation algorithm
(for minimization problems) or a (1− ε)-approximation algorithm (for maximization problems).

That means the solution S returned by the algorithm {Aε} has value at most (1 + ε)OPT for
minimization problems, and at least (1−ε)OPT for maximization problems. In general, the running
time of {Aε} is allowed to depend arbitrarily on 1/ε. If the running time of {Aε} is bounded by
a polynomial in 1/ε, we call it a fully polynomial-time approximation scheme (FPTAS). In some
sense a FPTAS is the best one can do for a NP-hard problem since given an error parameter ε,
one can find an approximate solution in polynomial time. However, in practice the running time
of many FPTAS is very slow even for reasonable values of ε.

We can now describe a FPTAS for Knapsack. Let µ be an appropriate scaling factor to be
defined later. Set v′i = bvi/µc. Then we run the dynamic programming algorithm in the previous
section of the instance with item size si and values v′i.

Claim 1 Let S be the set of chosen items in the optimal solution of the rounded instance using
scaling factor µ and O be the set of chosen items in an optimal solution of the original instance.
There exists a scaling factor µ such that

∑
i∈S vi ≥ (1− ε)

∑
i∈O vi.

Proof: Let v̂i = µbviµ c. Note that 0 ≤ vi − v̂i < µ. Hence:∑
i∈S

vi ≥
∑
i∈S

v̂i

≥
∑
i∈O

v̂i, (by optimality of S in rounded instance)

>
∑
i∈O

vi − |O|µ

≥
∑
i∈O

vi − nµ.

Hence we need nµ ≤ εOPT . Let M = maxi vi, then M is a (trivial) lower bound on OPT .
Hence setting µ = εM/n give us the desired result . 2

Notice for any item j, v′j ≤ vj/µ = nvj/(εM) ≤ n/ε. Hence V ′ =
∑n

i=1 v
′
i = O(n2/ε). Thus

the running time of the algorithm is O(nmin(B, V ′)) = O(n3/ε). Combining with the claim above,
this means this algorithm is indeed a FPTAS.
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