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Problem Definition and Formulation 1

Suppose there is a set, S, of suppliers, each with supply si and a set, D, of customers each with
demand dj that must be met. Further, suppose that each unit shipped from supply node i to
demand node j incurs a cost cij . Find a minimum-cost shipping scheme that satisfies all the
demand and supply restrictions.

Clearly, this problem is only feasible if
∑

i si ≥
∑

j dj . Without loss of generality, suppose∑
i si =

∑
j dj since otherwise we can set a dummy demand node k with dk =

∑
i si−

∑
j dj . Then

we can formulate this as an linear program by:

min
∑

i∈S,j∈D cijxij
s.t.

∑
j∈D xij = si ∀i ∈ S∑
i∈S xij = dj ∀j ∈ D

xij ≥ 0.

In some cases, we might wish to restrict the value of xij to be integral.
First, note that the rows of the constraint matrix are linearly dependent because:∑

i∈S
si =

∑
i∈S

∑
j∈D

xij =
∑
j∈D

∑
i∈S

xij =
∑
j∈D

dj

i.e., adding all the rows in the first constraint set gives the same result as adding all the rows of the
second constraint set. Hence, without loss of generality, we can remove one constraint arbitrarily.

Let |S| = m, |D| = n. Consider a graphical representation of this problem where G is bipartite
graph with vertex sets corresponding to S and D and an edge set E = S ×D, i.e., {i, j} ∈ E for
every i ∈ S, j ∈ D. Note that each decision variable corresponds to an edge in the graph. Hence,
a basic solution to the LP corresponds to some subgraph.

Claim 1 The graph corresponding to a basic solution to the LP doesn’t contain cycles.

Proof: Let C be a cycle in the corresponding subgraph induced by the basic solution. Then
C = i1 → j1 → . . . → jk → i1 where il ∈ S, jl ∈ D. Consider the vector x which equals 1 if xi
corresponds a cycle edge from S to D, −1 if xi corresponds to a cycle edge from D to S, and 0
otherwise.

Note that in any cycle in our graph, every vertex k in the cycle has exactly one edge xik going
from S to D and one edge xkj going from D to S (or vice versa). Hence, it must be that Ax = 0,
where A is our constraint matrix.

1Based on previous notes of Maurice Cheung
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So, consider any basis, B and suppose C is a cycle using only our basis variables. Let AB be
the corresponding basis matrix and xB be the matching components of x. Since xi = 0 for i 6∈ B,
0 = Ax = [AB|AN ][xB|xN ] = ABxB + AN0 = ABxB. Hence, xB is a non-zero element in the null
space of AB, so B is not a basis. 2

Noting that our graph has n+m vertices, and each basis has n+m− 1 edges (since there are
that many constraints), and each basis cannot contain a cycle, it follows that each basic solution
corresponds to a spanning tree of our graph.

A Simplex-like Algorithm

First, note that linear dependence of the primal constraints is equivalent to linear dependence of
the dual variables. Since there is no non-negativity in the dual problem, we can choose one dual
variable and set it arbitrarily (for example, set it to 0 for convenience).

Let’s see how a simplex-like algorithm can be used to solve the Transportation Problem. Using
the characterization of basic feasible solution, notice that if we add an edge corresponding to a
non-basic variable to the subgraph spanned by the edges corresponding to the basic variables, this
creates a unique cycle. The algorithm is as follows:
Initialization: A basic feasible solution, x, to the primal LP
Step 1: Choose a dual variable and set it arbitrarily.
Step 2: Solve for the other dual variables to maintain the complementary slackness condition, i.e.,
if xij is basic, then ui + vj = cij .
Step 3: For every non-basic edge {i, j}, compute the reduced costs c̄ij = cij−ui−vj . If all reduced
costs are non-negative, STOP: Dual solution is feasible. Else, choose xij such that c̄ij < 0. This
will be the entering basic variable (this create a cycle in the graph) .
Step 4: Alternatingly increase (from i → j and decrease (from j → k) flow around edges in the
cycle to preserve 0 net flow. Let δ = min(i,j){xij : xij basic variable , (i, j)a decreasing edge}.
Increase all ”forward” edges by δ, decrease all ”backwards” edges by δ. Remove from the basis an
edge which achieves the minimum. Goto Step 1.

5-2


