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1 Linear Algebra Review1

1.1 Independence, Spanning, and Dimension

Definition 1 A (usually infinite) set of vectors S is a vector space if ∀x, y ∈ S, λ ∈ R,
(a) x+ y ∈ S (b) λx ∈ S, and (c) 0 ∈ S.

Definition 2 A set of vectors x1, . . . , xk is said to be linearly dependent if there exists
a vector λ 6= 0 such that

∑k
i=1 λix

i = 0. Otherwise, the set is linearly independent.

Claim 1 If S is linearly dependent and S ⊂ T , then T is also linearly dependent. If some
set S is linearly independent and S ⊃ T , then T is also linearly independent.

Proof: If T = S, we’re done. Otherwise, WLOG T = x1, . . . , xk and S = x1, . . . , xl

where l < k. Since S is linearly dependent, ∃λ 6= 0, λ ∈ Rl such that
∑l

i=1 λix
i = 0.

However, letting λl+1 = · · · = λk = 0 gives
∑k

i=1 λix
i = 0. Thus, T is linearly dependent.

The second statement is just the contrapositive. 2

Definition 3 A set S is said to span a vector space V if all elements of V can be written
as linear combinations of vectors in S.

Definition 4 For a set of vectors T , span(T ) is the set of all vectors that can be expressed
as linear combinations of vectors in T .

Claim 2 For any set T , span(T ) is a vector space.

Proof: 0 is trivially in span(T ). Suppose x and y are linear combinations of vectors
in T . Then x + y and λx are also linear combinations of vectors in T . Thus, span(T ) is a
vector space. 2

Fact 1 span(T ) is the largest vector space that T spans.

Definition 5 A set of linearly independent vectors S is a basis for a subspace V if S ⊂ V
and S spans V .

Example 1 The standard basis for Rn is the set e1, . . . , en where ei is the vector of zeros
with 1 in the ith position.

1Based on previous notes of Maurice Cheung
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Claim 3 If S = {x1, . . . , xk} is linearly dependent, then ∃j such that xj is a linear combi-
nation of x1, . . . xj−1.

Proof: Since S is linearly dependent, ∃λ 6= 0 such that
∑k

i=1 λix
i = 0. Let j be the

largest index such that λj 6= 0. This implies that
∑j

i=1 λix
i = 0. Since λj 6= 0, we can

divide and obtain xj =
∑j−1

i=1 −
λi
λj
xi. Thus, xj is a linear combination of x1, . . . , xj−1. 2

Claim 4 If S, T are linearly independent sets in vector space V , and S a basis for V , and
|S| = n, |T | = k. Then k ≤ n.

Proof: Assume k > n. Since S, T are linearly independent, no vector in S or T is zero.
Let S = {x1, . . . , xn}, T = {y1, . . . , yk}. Since S spans V , y1 is a linear combination of
{x1, . . . , xn}, which means the set {y1, x1, . . . , xn} is linearly dependent. By the previous
claim, there is some vector the is a linear combination of the previous vectors. It cannot be
y1, so it is some xj . Let S1 be {y1, x1, . . . , xn} with xj removed. Since S spans V and xj is
a linear combination of elements in S1, we have that S1 spans V as well.

Now, consider the set {y2} ∪ S1. Again, this set is linearly dependent since S2 spans
V . If we order the elements of this set {y1, y2, x1, . . . , xn}, we can apply the previous claim
again, and we know that the resulting element must be some xl since {y1, y2} are linearly
independent. So let S2 = S1 ∪ {y2}
{xl}. Again, S2 spans V .

We can continue this process, adding elements of T , always preserving the property that
Si spans V . However, since k > n, we will reach the set Sn = {y1, . . . yn} which spans V .
However, yn+1 is in V , which means that it is a linear combination of {y1, . . . yn}. This is
a contradiction since T is linearly independent. Thus, k ≤ n. 2

Corollary 5 All bases for a vector space V have the same cardinality.

Definition 6 The dimension of V is the size of any basis of V .

1.2 Matrices, Rank, and Invertibility

Definition 7 For a matrix A ∈ Rm×n, the row (column) space of A is the vector space
spanned by its row (column) vectors. A has row (column) rank k if the basis of its row
(column) space has size k.

Claim 6 For any matrix A, the row rank and column rank of A are equal.

Proof: Consider some matrix A ∈ Rm×n. Assume its row rank is k, and that the set
{y1, . . . , yk} is a basis for the row space. Then the ith row ri = (ai1, . . . , ain) can be expressed
as

∑k
r=1 λiry

r. Looking at the jth coordinate of this sum, we have that aij =
∑k

r=1 λiry
r
j .

Since this is true for all j, we have that the jth column cj = (a1j , . . . , anj) can be expressed

as
∑k

r=1 y
r
jz
r, where zr = (λ1r, . . . , λnr). This means that every column of A is a linear

combination of k vectors, which means that the column space can have dimension no larger
than k. So column rank of A ≤ row rank of A.

Applying this argument to the column space gives the other inequality, that row rank
of A ≤ column rank of A. Thus, row rank and column rank are the same. 2
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Thus we can denote the rank of the column space of A or the rank of the row space of
A as simply the rank of A.

Fact 2 rank(A) ≤ min{m,n}

Definition 8 (Matrix multiplication) Given matrix A ∈ Rm×r, B ∈ Rr×n, we have that
C ∈ Rm×n is the product of A and B, denoted AB = C if C is the matrix where Cij =∑r

k=1 aikbkj.

c21 =

 · · · ·
a21 a22 a23 a24
· · · ·




b11 ·
b21 ·
b31 ·
b41 ·


Matrix multiplication is associative and distributive, but not commutative.

Definition 9 A matrix A ∈ Rn×n has inverse B if AB = BA = In, where

In =


1 0 · · · 0
0 1
...

. . .

0 1


A matrix is invertible or nonsingular if it has an inverse. Otherwise it is singular.

The inverse of a matrix A is denoted A−1.

Claim 7 If A ∈ Rn×n has an inverse, it is unique.

Proof: Assume A has inverses B and C. Then consider D = BAC. Associating one
way, this is

D = B(AC) = B(In) = B.

Associating the other way, this is

D = (BA)C = (In)C = C.

This implies that B = C, which implies that the inverse is unique. 2

Fact 3 If AB = In then BA = In.

Claim 8 If A,B invertible, then AB is invertible.

Proof: The inverse of AB is B−1A−1 since

B−1A−1AB = B−1InB = B−1B = In.

2
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Claim 9 A matrix A ∈ Rn×n is invertible iff it has rank n.

Proof: (⇒) Assume A has rank k < n, and inverse A−1. Since it does not have rank n,
the columns of A, a1, . . . , an are dependent. Thus, there is a λ 6= 0 such that

∑n
i=1 λia

i = 0,
or in matrix notation, Aλ = 0. Now consider A−1Aλ. We have (A−1A)λ = Inλ = λ
associating one way, but we also have A−1(Aλ) = A−10 = 0. This is a contradiction since
λ 6= 0. Thus, it must be the case that A has rank n.

(⇐) Assume A has rank n. Then the columns of A span Rn. Thus, we can write any
vector in Rn as a linear combination of the columns of A. Specifically, for any j, we can
write ej as some

∑n
i=1 λ

j
ia
i. Then if we let matrix B have columns (λ1, . . . , λn), we see that

AB = In. Thus, A is invertible. 2

1.3 Solving Systems of Equations

Given matrix A ∈ Rm×n and (column) vector b ∈ Rm, it’s often useful to be able to solve
for a vector x ∈ Rn that satisfies Ax = b. A system of equations can have no solutions, a
unique solution or infinitely many solution.

Fact 4 The system Ax = b has no solution if and only if b is not in the column space of A.

Fact 5 If the system Ax = b has at least one solution, and rank(A)< n, then it has infinitely
many solutions.

Definition 10 A matrix A ∈ Rm×n with m ≤ n is said to have full rank if rank(A) = m.

Claim 10 If A has full rank, then the system Ax = b always has a solution.

Proof: Since A has full rank, it has column rank m, which means we can find m linearly
independent columns of A. WLOG, let those columns be the 1st m columns. Then the
matrix B which consists of those m columns is invertible, and if we left multiply by B−1,
we see that the first m columns of B−1A are the identity matrix. Thus, if y = B−1b, then
one solution to Ax = b is the vector (y1, . . . , ym, 0, . . . 0), since this satisfies B−1Ax = B−1b.

2

So we can sometimes guarantee that a solution to a system of equations exists. But how
can we actually find such a solution?

Example 2 Find solutions to the system Ax = b where

A =

 1 2 3
2 −1 1
3 0 −1

 b =

 9
8
3


In order to determine the set of solutions x, we reduce the problem using elementary

row operations.
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Definition 11 The elementary row operations are:
(1) Scaling a row by some nonzero constant 2 0 0

0 1 0
0 0 1

 1 2 3
2 −1 1
3 0 −1

 =

 2 4 6
2 −1 1
3 0 −1


(2) Interchanging two rows 0 1 0

1 0 0
0 0 1

 1 2 3
2 −1 1
3 0 −1

 =

 2 -1 1
1 2 3
3 0 −1


(3) Adding some multiple of one row to another 1 2 0

0 1 0
0 0 1

 1 2 3
2 −1 1
3 0 −1

 =

 5 0 5
2 −1 1
3 0 −1


Each elementary row operation corresponds to left multiplying by a certain square matrix,

known as an elementary matrix.

Fact 6 All elementary matrices are invertible.

Using this fact, we can apply elementary row operations to our matrix and RHS vector
to simplify the problem. Since elementary matrices are invertible, we preserve the solution
set.

Claim 11 Let E be an invertible matrix. Then x satisfies Ax = b iff x satisfies EAx = Eb.

Proof: If Ax = b, left multiplying by E gives EAx = Eb. If EAx = Eb, left multiplying
by E−1 gives Ax = b. 2

Now, we can define the Gauss-Jordan Elimination method for solving systems of
equations. This method involves applying elementary row operations to the matrix and
RHS vectors to reduce the problem to a simpler form.

Example 3 Solve Ax = b for the previously defined A, b.

Start by augmenting the matrix with the RHS vector: 1 2 3 | 9
2 −1 1 | 8
3 0 −1 | 3


Since the first element of the first row is 1, eliminate all entries in the first column under

that element.  1 2 3 | 9
0 −5 −5 | −10
0 −6 −10 | −24
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The second element of the second row is nonzero, but not 1, so scale that row. 1 2 3 | 9
0 1 1 | 2
0 −6 −10 | −24


Eliminate the rest of the second column 1 2 3 | 9

0 1 1 | 2
0 0 −4 | −12


Scale the third row so that its leading nonzero is one. 1 2 3 | 9

0 1 1 | 2
0 0 1 | 3


Eliminate entries above the diagonal 1 0 1 | 5

0 1 1 | 2
0 0 1 | 3


 1 0 0 | 2

0 1 0 | −1
0 0 1 | 3


Thus, the unique solution to the original problem is x = (2,−1, 3). Note that in this

example the leading elements of the rows were not zero, so we could scale them to 1. If one
of these elements was zero, we would either use the interchange operation to swap in a row
that had a nonzero element in that position, or else continue to the next column since the
current column had only zeros in active rows.
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