Problem Set 9

Due Date: November 7, 2014

1. (10 points) Consider the following version of the cutting stock problem. There is a demand b_{i} for every size s_{i} and a width W for the raw material, just in the version discussed in class. Change the method from class to work with the following version instead: customers have a 10% tolerance in the order, that is, all the solution has to satisfy is a demand some place between $.9 b_{i}$ and $1.1 b_{i}$ for every size s_{i} and whatever produced will be bought by the customers. Last time we were minimizing the number of width W raws used. Suppose you are given N (the number of raws you have), and instead you want to maximize the amount of demand satisfied, i.e., if your solution produces p_{i} finals of size s_{i}, then you must have that $.9 b_{i} \leq p_{i} \leq 1.1 b_{i}$ and your goal is to maximize $\sum_{i} p_{i}$. Explain how to modify the solution discussed in class to solve this problem.
2. (15 points) Recall the maximum multicommodity flow problem given on the previous problem set. In this problem we are given a directed graph G with nodes V and directed $\operatorname{arcs} A$, and k source-sink pairs $\left(s_{i}, t_{i}\right)$, where $s_{i}, t_{i} \in V$ for $i=1, \ldots, k$. We may send flow only from a source s_{i} to the corresponding sink t_{i}. The goal is to send as much flow as possible from the sources s_{i} to their corresponding sinks t_{i}. Each arc $a \in A$ has a capacity u_{a}; we may not send more than u_{a} total units of flow through arc a.

On the last problem set, we used a linear programming formulation of the problem in which there is a variable x_{P} for each $s_{i}-t_{i}$ path P. However, this isn't the only possible linear programming formulation of the problem.
(a) (5 points) Give another linear programming formulation of the problem which uses variables $f_{u v}^{i}$ to indicate the amount of flow being sent from s_{i} to t_{i} using arc $(u, v) \in A$.
(b) (8 points) If you've set up your linear programming formulation correctly in the part above, you'll notice that it can be solved via a Dantzig-Wolfe decomposition. What are the linking constraints? What are the associated subproblems? What is an extreme point of the subproblem? How can you tell whether the master problem has a negative reduced cost variable?

