Problem Set 7

Due Date: October 17, 2014

1. (10 points) In class, we started to describe the capacitated simplex method for solving linear programs of the form $\min c^{T} x: A x=b, \ell \leq x \leq u$. We noted that its dual is $\max b^{T} y-u^{T} v+$ $\ell^{T} w: A^{T} y-v+w=c$, and that for any y, we can have a dual feasible solution by setting $v=\max \left(0, A^{T} y-c\right)$ and $w=\max \left(0, c-A^{T} y\right)$. We stated that the main idea is now to maintain three sets of indices of the primal variables: B the basic variables, L the variables set to their lower bounds, and U the variables set to the upper bounds, so that associated with these sets, we have a solution x in which we set $x_{j}=\ell_{j}$ for all $j \in L, x_{j}=u_{j}$ for all $j \in U$, and $x_{B}=A_{B}^{-1}\left(b-A_{U} u_{U}-A_{L} \ell_{L}\right)$; we assume the primal is feasible, which is true if $\ell_{B} \leq x_{B} \leq u_{B}$.
Given the dual solution $y=\left(A_{B}^{T}\right)^{-1} c_{B}$, and the normal reduced costs $\bar{c}=c-A^{T} y$, we argued in class that the current primal and dual are optimal if $\bar{c}_{j} \geq 0$ for all $j \in L$ and $\bar{c}_{j} \leq 0$ for all $j \in U$. Finish the description of the simplex method by describing what should happen from this point on: if the solutions are not optimal, how should x, B, L, and U be altered so that x remains feasible and so that we make progress if the current solution is not degenerate? How do we know that the updated B is a basis?
