Problem Set 4

Due Date: September 26, 2014

1. In class we showed that given a polytope $Q=\operatorname{conv}\left(v_{1}, \ldots, v_{k}\right)$, if 0 is in the interior of Q, then Q is a bounded polyhedron. Now suppose that we only know that there is some point v in the interior of Q. Show that Q is bounded polyhedron. (Hint: Think about $Q-v=\{w-v: w \in Q\})$.
2. Consider the set $P=\{x: A x \geq 0\}$ and assume that we have $x \geq 0$ for all $x \in P$, i.e., that $x \geq 0$ is implied by $A x \geq 0$.
(a) A set K is a cone if $x, y \in K$ implies that $\lambda x+\mu y \in K$ for all $\mu, \lambda \geq 0$. Prove that P is a cone.
(b) An extreme ray of a cone K is a nonzero vector $x \in K$ such that $x+y \in K$ and $x-y \in K$ implies that $y=\lambda x$ for some λ.
Give another characterization of the extreme rays of the polyhedral cone P, using the rank of a submatrix of A. (Hint: think about the positive orthant as the canonical example of a cone, in order to get some intuition here.)
(c) Two extreme rays x and y of a cone K are said to be the same if $x=\lambda y$ for some $\lambda>0$. Prove that the number of different extreme rays of our polyhedral cone P is finite. Give a finite bound on the maximum number of extreme rays possible assuming that A is has m rows and n columns.
(d) Let r^{1}, \ldots, r^{k} denote the finite set of extreme rays of P. Let

$$
Q=\operatorname{cone}\left(r^{1}, \ldots, r^{k}\right)=\left\{x=\sum_{i} \lambda_{i} r^{i}: \lambda_{i} \geq 0 \text { for all } i\right\} .
$$

Prove that $P=Q$. (Hint: consider $P^{\prime}=\left\{x \in P: \sum x_{i}=1\right\}$.)
It might help to visualize this as moving from the description of P by the faces of the cone that bound it $(A x \geq 0)$ to a description of P by the outside rays $\left(r^{1}, \ldots, r^{k}\right)$ that bound it.
3. Fun with polars.
(a) Given a convex cone $K \subseteq \Re^{n}$, prove that the polar of K is the set $\left\{z \in \Re^{n}: x^{T} z \leq\right.$ 0 for all $x \in K\}$.
(b) Give the polar of the non-negative orthant $\left\{x \in \Re^{n}: x \geq 0\right\}$.
(c) Show that if $A \subseteq B$, then $B^{\circ} \subseteq A^{\circ}$.

