ORIE 6300 Mathematical Programming I

Problem Set 3

Due Date: September 19, 2014

1. Recall the maximum flow problem, and its dual as they were presented in class. We used the variables $z_{u v}^{*}$ of an optimal dual solution to define $\operatorname{cost}(s, v)$ for each vertex v, and then defined the sets $S_{\rho}=\{v: \operatorname{cost}(s, v) \leq \rho\}$, and showed that each S_{ρ} is an s - t cut for $0 \leq \rho<1$. We have also shown that, in any optimal dual solution z^{*}, at least one of the cuts S_{ρ} for some $0 \leq \rho<1$ defines a minimum cut by showing that the expected value $E\left[n\left(S_{\rho}\right)\right] \leq \sum_{(u, v) \in A} z_{u v}^{*}$. Show that all cuts S_{ρ} occurring with positive probability in the expectation must be minimum $s-t$ cuts for the graph.
2. (Carathéodory's theorem) Show that if $x \in \Re^{n}$ is a convex combination of v_{1}, \ldots, v_{k}, then it is also a convex combination of at most $n+1$ of these points.
3. Consider the polytope $Q=\operatorname{conv}\left(v_{1}, \ldots, v_{k}\right)$ with $v_{i} \in \Re^{n}$ for all i. Prove that for any objective function $c \in \Re^{n}$, there is some v_{j} such that $c^{T} v_{j} \leq c^{T} x$ for all $x \in Q$.
