ORIE 6300 Mathematical Programming I

September 12, 2014

Problem Set 3

Due Date: September 19, 2014

- 1. Recall the maximum flow problem, and its dual as they were presented in class. We used the variables z_{uv}^* of an optimal dual solution to define cost(s, v) for each vertex v, and then defined the sets $S_{\rho} = \{v : cost(s, v) \le \rho\}$, and showed that each S_{ρ} is an *s*-*t* cut for $0 \le \rho < 1$. We have also shown that, in any optimal dual solution z^* , at least one of the cuts S_{ρ} for some $0 \le \rho < 1$ defines a minimum cut by showing that the expected value $E[n(S_{\rho})] \le \sum_{(u,v) \in A} z_{uv}^*$. Show that all cuts S_{ρ} occurring with positive probability in the expectation must be minimum *s*-*t* cuts for the graph.
- 2. (Carathéodory's theorem) Show that if $x \in \Re^n$ is a convex combination of v_1, \ldots, v_k , then it is also a convex combination of at most n + 1 of these points.
- 3. Consider the polytope $Q = conv(v_1, \ldots, v_k)$ with $v_i \in \Re^n$ for all *i*. Prove that for any objective function $c \in \Re^n$, there is some v_j such that $c^T v_j \leq c^T x$ for all $x \in Q$.