ORIE 6300 Mathematical Programming I

Problem Set 2

Due Date: September 12, 2014

1. Give an example of a primal-dual pair for which both the primal and dual are infeasible, and demonstrate that they are infeasible. Use a matrix $A \in \Re^{1 \times 1}$.
2. Suppose that $P^{i}=\left\{x \geq 0: A^{i} x=b^{i}\right\}$ for $i=1,2$ are both bounded.

Prove that $P=P^{1}+P^{2}$ is also a polytope, where $P^{1}+P^{2}=\left\{x^{1}+x^{2}: x^{1} \in P^{1}\right.$ and $\left.x^{2} \in P^{2}\right\}$.
3. Suppose that you are given a feasible solution \bar{x} of value $\bar{\gamma}$ to the $\operatorname{problem} \max \left(c^{T} x: A x \leq b\right)$. Give a method that either demonstrates that the feasible region is unbounded (i.e., there is a point x and direction y such that $x+\lambda y$ is feasible for all $\lambda>0$) or that finds a vertex \tilde{x} of the feasible region with objective value $c \tilde{x} \geq \bar{\gamma}$. Your method should not use general purpose linear programming algorithms (like the simplex method). (Hint: some of the discussion of the equivalence of bounded polyhedra and polytopes, as well as the equivalence of extreme points, vertices, and basic feasible solutions, might prove useful.)

