Problem Set 11

Due Date: November 21, 2014

1. (5 points) Let $A \in \Re^{m \times n}$ have rank m, and let $P_{A}=I-A^{T}\left(A A^{T}\right)^{-1} A$. Show that $P_{A}=P_{A}^{T}=$ P_{A}^{2} and then that $u^{T} P_{A} u=\left\|P_{A} u\right\|^{2}$ for every $u \in \Re^{n}$, so that P_{A} is positive semidefinite.
2. (10 points) Recall that when we determined the affine-scaling direction, we looked at a transformation $x \rightarrow \hat{x}=\bar{X}^{-1} x$, where $\bar{X}=\operatorname{diag}(x)$ for $x>0$, intended to map x to e, the vector of all ones. Then the original LP in terms of the transformed variables becomes $\min (\bar{X} c)^{T} \hat{x}$ subject to $A \bar{X} \hat{x}=b, \hat{x} \geq 0$.
(a) (2 points) Write the dual of the problem expressed in terms of transformed variables.
(b) (2 points) If (\hat{y}, \hat{s}) are the transformed variables for the dual, then show that $x_{j} s_{j}=\hat{x}_{j} \hat{s}_{j}$, and thus that $x^{T} s=\hat{x}^{T} \hat{s}$ under the transformation.
(c) (3 points) Recall the potential function $G_{q}(x, s)=q \ln \left(x^{T} s\right)-\sum_{j=1}^{n} \ln \left(x_{j} s_{j}\right)$ for $q=$ $n+\sqrt{n}$. Give the gradient $g=\nabla_{x} G_{q}(x, s)$ with respect to x, and give its evaluation at the current point (\hat{x}, \hat{s}) in the transformed space.
(d) (3 points) Give the projection of the gradient g onto the null space of $A \bar{X}$; this gives the affine-scaling direction for the gradient of the potential function.

The direction of the last part is the direction used in some potential reduction algorithms.
3. (8 points) Suppose we are given points $x \in \mathcal{F}^{\circ}(P)=\left\{x \in \Re^{n}: A x=b, x>0\right\}$ and $(y, s) \in \mathcal{F}^{\circ}(D)=\left\{y \in \Re^{m}, s \in \Re^{n}: A^{T} y+s=c, s>0\right\}$. Suppose that $x_{j} s_{j} \geq \theta \mu$, where $\mu=\frac{1}{n} x^{T} s$ and $\theta>0$ is some parameter. Further suppose that we solve the following system for $(\Delta x, \Delta y, \Delta s)$:

$$
\left[\begin{array}{ccc}
0 & A^{T} & I \\
A & 0 & 0 \\
S^{k} & 0 & X^{k}
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-X S e+\sigma \mu e,
\end{array}\right]
$$

where $\sigma \in[0,1]$ is a parameter, $X=\operatorname{diag}(x)$, and $S=\operatorname{diag}(s)$. For any $\alpha \geq 0$, let $(x(\alpha), y(\alpha), s(\alpha))=(x, y, s)+\alpha(\Delta x, \Delta y, \Delta s)$.
Consider

$$
\bar{\alpha}=\max \{\hat{\alpha} \in[0,1]: X(\alpha) S(\alpha) \geq \theta \mu(\alpha) e \text { for all } \alpha \in[0, \hat{\alpha}]\},
$$

where $X(\alpha)=\operatorname{diag}(x(\alpha)), S(\alpha)=\operatorname{diag}(s(\alpha))$, and $\mu(\alpha)=\frac{1}{n} x(\alpha)^{T} s(\alpha)$. Let $\left(x^{\prime}, y^{\prime}, s^{\prime}\right)=$ $(x(\bar{\alpha}), y(\bar{\alpha}), s(\bar{\alpha}))$. Show that either:

- x^{\prime} is the optimal solution to $\min \left(c^{T} x: A x=b, x \geq 0\right)$, and $\left(y^{\prime}, s^{\prime}\right)$ to $\max \left(b^{T} y: A^{T} y+s=\right.$ $c, s \geq 0$); or
- $x^{\prime} \in \mathcal{F}^{\circ}(P)$ and $\left(y^{\prime}, s^{\prime}\right) \in \mathcal{F}^{\circ}(D)$.

Further show that only the second possibility can occur if $\sigma>0$.

