ORIE 6300 Mathematical Programming I

Lecture 28

Lecturer: David P. Williamson
Scribe: David Eriksson

1 Semidefinite programming

Today we will discuss semidefinite programming (SDP) in particular; it is a special case of conic programming. The standard form of the primal is.

$$
\begin{align*}
\operatorname{Min} C \bullet X & \equiv \sum_{i j} C_{i j} X_{i, j} \\
A_{k} \bullet X & =b_{k} \quad k=1, \ldots, m \tag{1}\\
X & \succeq 0 \quad\left(\equiv X \text { positive semi-definite: } V^{T} X V \geq 0 \quad \forall V\right)
\end{align*}
$$

We are here assuming that X is symmetric. The following fact is well-known from Linear Algebra:
Fact 1 For symmetric $X \in \mathbb{R}^{n \times n}$, the following statements are equivalent:

1. $X \succeq 0$;
2. X has non-negative eigenvalues;
3. $X=V^{T} V$ for some $V \in \mathbb{R}^{m \times n}, m \leq n$.

The dual of (1) is given by:

$$
\begin{align*}
\operatorname{Max} b^{T} y & \\
\sum_{k=1}^{m} y_{k} A_{k}+S & =C \tag{2}\\
S & \succeq 0 .
\end{align*}
$$

2 SDP and the central path

We now show how some of the interior-point methods for LP can be used for SDP as well. We need the following definitions:

Definition 1

$$
\begin{aligned}
\mathcal{F}^{0}(P) & =\left\{X \in \mathbb{R}^{n \times n}: A_{k} \bullet X=b_{k}, k=1, \ldots, m, X \succ 0\right\} \\
\mathcal{F}^{0}(D) & =\left\{(y, S): \sum_{k=1}^{m} y_{k} A_{k}+S=C, S \succ 0\right\}
\end{aligned}
$$

where $X \succ 0 \equiv X$ positive definite, $v^{T} X v>0, \forall v \in \mathbb{R}^{n}$.

Recall the barrier function for LP:

$$
B_{\mu}(X)=c^{T} x-\mu \sum_{i} \ln \left(x_{i}\right)=c^{T} x-\mu \ln \left(\prod_{i} x_{i}\right) .
$$

Recall that minimizing the function trades off minimizing the objective function versus staying in the interior of the feasible region (in particular, staying away from the constraints $x_{i}=0$).

We would like to have the same sort of function for SDP. The corresponding barrier function is

$$
B_{\mu}(X)=C \bullet X-\mu \ln (\operatorname{det} X)
$$

Once again, minimizing the barrier function trades off minimizing the objective function versus staying in the interior of the feasible region: since $\operatorname{det} X$ is the product of the eigenvalues, it stays away from zero precisely when the eigenvalues of X stay away from zero.

We can prove a theorem analogous to the one we proved for linear programming about how to find the minimizer of the barrier function. We will skip the proof.
Theorem 1 If $\mathcal{F}^{0}(P)$ and $\mathcal{F}^{0}(D)$ are non-empty, a necessary and sufficient condition for $X \in$ $\mathcal{F}^{0}(P)$ to be the unique minimizer of B_{μ} is that $\exists(y, S) \in \mathcal{F}^{0}(D)$ such that:

1. $\sum_{k=1}^{m} y_{k} A_{k}+S=C$
2. $A_{k} \bullet X=b_{k}, \quad k=1, \ldots, m$
3. $X S=\mu I$

Again, as in the case of linear programming, we will apply Newton's method to find the minimizer of the barrier function B_{μ}. In particular, we want to find a zero of the function

$$
F(X, y, S)=\left(\begin{array}{c}
\sum_{k=1}^{m} y_{k} A_{k}+S-C \\
A_{1} \bullet X-b_{1} \\
\vdots \\
A_{k} \bullet X-b_{k} \\
X S-\mu I
\end{array}\right)
$$

We apply Newton's method by finding the Jacobian $J(X, y, S)$ and repeatedly solving the following system for $(\Delta X, \Delta y, \Delta S)$:

$$
J(X, y, S)\left(\begin{array}{c}
\Delta X \\
\Delta y \\
\Delta S
\end{array}\right)+F(X, y, S)=0
$$

Finding the Jacobian yields the following system:

$$
\begin{aligned}
\sum_{k=1}^{m}\left(\Delta y_{k}\right) A_{k}+\Delta S & =0 \\
A_{k} \bullet(\Delta X) & =0 \\
S(\Delta X)+(\Delta S) X & =-S X+\mu I
\end{aligned}
$$

Thus we get the following algorithm exactly analogous to that for linear programming:

Primal-Dual Interior-Point for SDP

$\left(X^{0}, y^{0}, S^{0}\right) \leftarrow$ initial feasible point $\left(x^{0}, s^{0}>0\right)$
$\mu^{0} \leftarrow \frac{1}{n} X^{0} \bullet S^{0}$
$k \leftarrow 0$
While $\mu^{k}>\epsilon$

$$
\begin{array}{llll}
\sum_{i=1}^{m}\left(\Delta y_{i}^{k}\right) A_{i}+\Delta S^{k} & = & 0 & \text { for }\left(\Delta X^{k}, \Delta y^{k}, \Delta S^{k}\right) \\
\text { Solve } \quad A_{i} \bullet\left(\Delta X^{k}\right) & = & 0 & \\
S^{k}\left(\Delta X^{k}\right)+\left(\Delta S^{k}\right) X^{k} & = & -S^{k} X^{k}+\sigma^{k} \mu^{k} I & \\
\left(X^{k+1}, y^{k+1}, S^{k+1}\right) \leftarrow\left(X^{k}, y^{k}, S^{k}\right)+\alpha^{k}\left(\Delta X^{k}, \Delta y^{k}, \Delta S^{k}\right) \\
\mu^{k+1} \leftarrow \frac{1}{n} X^{k+1} \bullet S^{k+1} \\
k \leftarrow k+1
\end{array}
$$

where $\mu=\frac{1}{n} X \bullet S$ and $\sigma \in[0,1]$ is a centering parameter. As before, this algorithm leads to an $O\left(\sqrt{n} \ln \frac{C}{\varepsilon}\right)$ iteration algorithm to get from duality gap of C down to ε. Note that the iteration count depends on n, even though the number of variables in the matrix is n^{2}.

3 An application: MAX CUT

We now show how to use semidefinite programming to obtain an approximation algorithm for finding a maximum cut (MAX CUT). Given input $G=(V, E)$, weights $w_{i j} \forall(i, j) \in E$, our goal is to find $S \subseteq V$ that maximizes $\sum_{(i, j) \in \delta(S)} w_{i j}$. An example of a cut can be seen in Figure 1 .

Figure 1: Example of a cut.

We claim that the following is an SDP relaxation of MAX CUT.

$$
\begin{aligned}
\operatorname{Max} & \frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-x_{i j}\right) \\
x_{i i}= & 1, \quad \forall i=1, \ldots, n=|v| \\
X=\left(x_{i j}\right) \succeq & 0 .
\end{aligned}
$$

For this to be a relaxation, we need to show that an optimal solution is feasible, and has objective function value equal to the weight of the edges in the optimal solution.

Suppose S^{*} is an optimal solution to the MAX CUT problem. Set

$$
z_{i}= \begin{cases}+1 & \text { if } i \in S^{*} \\ -1 & \text { otherwise }\end{cases}
$$

If we let $X^{*}=z z^{T}$ this implies that $X^{*} \succeq 0$. Moreover,

$$
X_{i j}^{*}=z_{i} z_{j}= \begin{cases}+1 & \text { is } i, j \in S^{*} \text { or } i, j \text { is in } S^{*} \\ -1 & \text { if exactly one of } i, j \text { is in } S^{*}\end{cases}
$$

Since it holds that $X_{i i}^{*}=z_{i} z_{i}=1 \forall i=1, . ., n$ it follows that X^{*} is feasible. The objective function value is

$$
\frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-x_{i j}^{*}\right)=\sum_{(i, j) \in \delta\left(S^{*}\right)} w_{i j}
$$

since all edges (i, j) that are not in the cut have $x_{i j}^{*}=1$, while all edges (i, j) in the cut have $x_{i j}^{*}=-1$. So if we solve SDP, get X of value Z^{*}, then

$$
Z^{*} \geq \sum_{(i, j) \in \delta\left(S^{*}\right)} w_{i j} \equiv O P T
$$

since the optimal solution to MAX CUT is feasible for the SDP.
Now, we want to solve the SDP relaxation and from it obtain a solution to the MAX CUT problem. W solve the SDP in polynomial time and get a solution X and let V be such that $X=V^{T} V$. Let v_{i} be the i th column of V, then $X_{i j}=v_{i}^{T} v_{j}$. Note that $x_{i i}=1 \Rightarrow v_{i}^{T} v_{i}=\left\|v_{i}\right\|^{2}=1$ so that v_{i} are a set of vectors in the unit ball. This is illustrated for two dimensions in Figure 2. Next pick a random vector $r=\left(r_{1}, \ldots, r_{n}\right)$ where $r_{i} \sim \mathcal{N}(0,1)$. We get a solution to MAX CUT by setting $i \in S$ iff $r^{T} V_{i} \geq 0$.

Fact $2 r$ is spherically symmetric.

Fact 3 Projection of r onto any 2D plane is still spherically symmetric.
Lemma $2 \operatorname{Pr}[(i, j) \in \delta(S)]=\frac{1}{\pi} \arccos \left(x_{i j}\right)$.

Figure 2: Example of some vectors V_{i} in the 2D unit circle.

Figure 3: Example of a plane that cuts the sphere.
Proof: Consider the 2D plane containing v_{i} and v_{j}. Let $r=r^{\prime}+r^{\prime \prime}$ where r^{\prime} is the projection of r onto plane and $r^{\prime \prime} \perp$ to the plane. Then

$$
\begin{aligned}
\operatorname{Pr}[(i, j) \in \delta(S)] & =\operatorname{Pr}[i \in S, j \notin S \text { or } i \notin S, j \in S] \\
& =\operatorname{Pr}\left[r^{T} v_{i} \geq 0, r^{T} v_{j}<0 \text { or } r^{T}<0, r^{T} v_{j} \geq 0\right] \\
& =\operatorname{Pr}\left[\left(r^{\prime}\right)^{T} v_{i} \geq 0,\left(r^{\prime}\right)^{T} v_{j}<0 \text { or }\left(r^{\prime}\right)^{T} v_{i}<0,\left(r^{\prime}\right)^{T} v_{j} \geq 0\right] \\
& =\frac{2 \theta}{2 \pi}=\frac{\theta}{\pi}
\end{aligned}
$$

This follows because r^{\prime} is spherically symmetric in the unit circle in the plane, and of the 2π possible orientations, 2θ of them correspond to the event we are interested in; for this, the shaded region in Figure 5 is when exactly one of i, j is in S.

We know that $v_{i}^{T} v_{j}=\left\|v_{i}\right\|\left\|v_{j}\right\| \cos \theta=\cos \theta$ so that $\theta=\arccos \left(v_{i}^{T} v_{j}\right)=\arccos \left(x_{i j}\right)$.
Lemma $3 \frac{1}{\pi} \arccos (x) \geq 0.87856 \cdot \frac{1}{2}(1-x)$ for $-1 \leq x \leq 1$
Theorem 4 In expectation, this algorithm returns a cut of weight $\geq 0.87856 \cdot$ OPT.

Figure 4: Illustration of the decomposition of r into r^{\prime} and $r^{\prime \prime}$.

Figure 5: Illustration of the regions where exactly one of i and j are in S.

Proof:

$$
\begin{aligned}
E\left[\sum_{(i, j) \in \delta(S)} w_{i j}\right] & =\sum_{(i, j) \in E} w_{i j} \operatorname{Pr}[(i, j) \in \delta(S)] \\
& =\sum_{(i, j) \in E} w_{i j} \frac{1}{\pi} \arccos \left(x_{i j}\right) \\
& \geq 0.87856 \cdot \frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-x_{i j}\right) \\
& =0.87856 \cdot Z^{*} \geq 0.87856 \cdot O P T
\end{aligned}
$$

It appears that SDP is strictly needed in order to obtain an approximation algorithm with a factor this close to 1 . Using linear programming, it does not appear possible to get an approximation algorithm with an approximation factor better than $1 / 2$.

