
ORIE 6300 Mathematical Programming I December 4, 2014

Lecture 28

Lecturer: David P. Williamson Scribe: David Eriksson

1 Semidefinite programming

Today we will discuss semidefinite programming (SDP) in particular; it is a special case of conic
programming. The standard form of the primal is.

Min C •X ≡
∑
ij

CijXi,j

Ak •X = bk k = 1, ...,m (1)

X � 0 (≡ X positive semi-definite: V TXV ≥ 0 ∀V)

We are here assuming that X is symmetric. The following fact is well-known from Linear Algebra:

Fact 1 For symmetric X ∈ Rn×n, the following statements are equivalent:

1. X � 0;

2. X has non-negative eigenvalues ;

3. X = V TV for some V ∈ Rm×n, m ≤ n.

The dual of (1) is given by:

Max bT y
m∑
k=1

ykAk + S = C, (2)

S � 0.

2 SDP and the central path

We now show how some of the interior-point methods for LP can be used for SDP as well. We need
the following definitions:

Definition 1

F0(P) = {X ∈ Rn×n : Ak •X = bk, k = 1, ...,m, X � 0}

F0(D) = {(y, S) :
m∑
k=1

ykAk + S = C, S � 0}

where X � 0 ≡ X positive definite, vTXv > 0, ∀v ∈ Rn.

28-1

Recall the barrier function for LP:

Bµ(X) = cTx− µ
∑
i

ln(xi) = cTx− µ ln

(∏
i

xi

)
.

Recall that minimizing the function trades off minimizing the objective function versus staying in
the interior of the feasible region (in particular, staying away from the constraints xi = 0).

We would like to have the same sort of function for SDP. The corresponding barrier function is

Bµ(X) = C •X − µ ln(detX).

Once again, minimizing the barrier function trades off minimizing the objective function versus
staying in the interior of the feasible region: since detX is the product of the eigenvalues, it stays
away from zero precisely when the eigenvalues of X stay away from zero.

We can prove a theorem analogous to the one we proved for linear programming about how to
find the minimizer of the barrier function. We will skip the proof.

Theorem 1 If F0(P) and F0(D) are non-empty, a necessary and sufficient condition for X ∈
F0(P) to be the unique minimizer of Bµ is that ∃(y, S) ∈ F0(D) such that:

1.
m∑
k=1

ykAk + S = C

2. Ak •X = bk, k = 1, ...,m

3. XS = µI

Again, as in the case of linear programming, we will apply Newton’s method to find the mini-
mizer of the barrier function Bµ. In particular, we want to find a zero of the function

F (X, y, S) =

m∑
k=1

ykAk + S − C

A1 •X − b1
...

Ak •X − bk
XS − µI

.

We apply Newton’s method by finding the Jacobian J(X, y, S) and repeatedly solving the following
system for (∆X,∆y,∆S):

J(X, y, S)

 ∆X
∆y
∆S

+ F (X, y, S) = 0.

Finding the Jacobian yields the following system:

m∑
k=1

(∆yk)Ak + ∆S = 0

Ak • (∆X) = 0

S(∆X) + (∆S)X = −SX + µI

28-2

Thus we get the following algorithm exactly analogous to that for linear programming:

Primal-Dual Interior-Point for SDP

(X0, y0, S0)← initial feasible point (x0, s0 > 0)
µ0 ← 1

nX
0 • S0

k ← 0
While µk > ε

Solve

m∑
i=1

(∆yki)Ai + ∆Sk = 0

Ai • (∆Xk) = 0
Sk(∆Xk) + (∆Sk)Xk = −SkXk + σkµkI

for (∆Xk,∆yk,∆Sk)

(Xk+1, yk+1, Sk+1)← (Xk, yk, Sk) + αk(∆Xk,∆yk,∆Sk)
µk+1 ← 1

nX
k+1 • Sk+1

k ← k + 1

where µ = 1
nX • S and σ ∈ [0, 1] is a centering parameter. As before, this algorithm leads to an

O(
√
n ln C

ε) iteration algorithm to get from duality gap of C down to ε. Note that the iteration
count depends on n, even though the number of variables in the matrix is n2.

3 An application: MAX CUT

We now show how to use semidefinite programming to obtain an approximation algorithm for
finding a maximum cut (MAX CUT). Given input G = (V,E), weights wij ∀(i, j) ∈ E, our goal is
to find S ⊆ V that maximizes

∑
(i,j)∈δ(S)

wij . An example of a cut can be seen in Figure 1.

δ(S)

S

Figure 1: Example of a cut.

28-3

We claim that the following is an SDP relaxation of MAX CUT.

Max
1

2

∑
(i,j)∈E

wij(1− xij)

xii = 1, ∀i = 1, ..., n = |v|
X = (xij) � 0.

For this to be a relaxation, we need to show that an optimal solution is feasible, and has objective
function value equal to the weight of the edges in the optimal solution.

Suppose S∗ is an optimal solution to the MAX CUT problem. Set

zi =

{
+1 if i ∈ S∗

−1 otherwise
.

If we let X∗ = zzT this implies that X∗ � 0. Moreover,

X∗ij = zizj =

{
+1 is i, j ∈ S∗ or i, j is in S∗

−1 if exactly one of i, j is in S∗

Since it holds that X∗ii = zizi = 1 ∀i = 1, .., n it follows that X∗ is feasible. The objective function
value is

1

2

∑
(i,j)∈E

wij(1− x∗ij) =
∑

(i,j)∈δ(S∗)

wij

since all edges (i, j) that are not in the cut have x∗ij = 1, while all edges (i, j) in the cut have
x∗ij = −1. So if we solve SDP, get X of value Z∗, then

Z∗ ≥
∑

(i,j)∈δ(S∗)

wij ≡ OPT.

since the optimal solution to MAX CUT is feasible for the SDP.
Now, we want to solve the SDP relaxation and from it obtain a solution to the MAX CUT

problem. W solve the SDP in polynomial time and get a solution X and let V be such that
X = V TV . Let vi be the ith column of V , then Xij = vTi vj . Note that xii = 1⇒ vTi vi = ‖vi‖2 = 1
so that vi are a set of vectors in the unit ball. This is illustrated for two dimensions in Figure 2.
Next pick a random vector r = (r1, ..., rn) where ri ∼ N (0, 1). We get a solution to MAX CUT by
setting i ∈ S iff rTVi ≥ 0.

Fact 2 r is spherically symmetric.

Fact 3 Projection of r onto any 2D plane is still spherically symmetric.

Lemma 2 Pr[(i, j) ∈ δ(S)] = 1
π arccos(xij).

28-4

π/54

v
1

v

v

v

2

4

5

v
3

Figure 2: Example of some vectors Vi in the 2D unit circle.

v_k

r

v_i

v_j

Figure 3: Example of a plane that cuts the sphere.

Proof: Consider the 2D plane containing vi and vj . Let r = r′ + r′′ where r′ is the projection
of r onto plane and r′′ ⊥ to the plane. Then

Pr[(i, j) ∈ δ(S)] = Pr[i ∈ S, j /∈ S or i /∈ S, j ∈ S]

= Pr[rT vi ≥ 0, rT vj < 0 or rT < 0, rT vj ≥ 0]

= Pr[(r′)T vi ≥ 0, (r′)T vj < 0 or (r′)T vi < 0, (r′)T vj ≥ 0]

=
2θ

2π
=
θ

π

This follows because r′ is spherically symmetric in the unit circle in the plane, and of the 2π
possible orientations, 2θ of them correspond to the event we are interested in; for this, the shaded
region in Figure 5 is when exactly one of i, j is in S.

We know that vTi vj = ‖vi‖‖vj‖ cos θ = cos θ so that θ = arccos(vTi vj) = arccos(xij). 2

Lemma 3 1
π arccos(x) ≥ 0.87856 · 12(1− x) for −1 ≤ x ≤ 1

Theorem 4 In expectation, this algorithm returns a cut of weight ≥ 0.87856 ·OPT .

28-5

r

v_j*

v_i*
r’’

r’

Figure 4: Illustration of the decomposition of r into r′ and r′′.

θ

θ

θ

E

B

C

A
v_j*

F

v_i*

D

O

not in

in

not

in

in

i

j

S

S

i

j

S

S

Figure 5: Illustration of the regions where exactly one of i and j are in S.

Proof:

E

 ∑
(i,j)∈δ(S)

wij

 =
∑

(i,j)∈E

wij Pr[(i, j) ∈ δ(S)]

=
∑

(i,j)∈E

wij
1

π
arccos(xij)

≥ 0.87856 · 1

2

∑
(i,j)∈E

wij(1− xij)

= 0.87856 · Z∗ ≥ 0.87856 ·OPT.

2

It appears that SDP is strictly needed in order to obtain an approximation algorithm with a
factor this close to 1. Using linear programming, it does not appear possible to get an approximation
algorithm with an approximation factor better than 1/2.

28-6

