Lecture 27

Lecturer: David P. Williamson

December 2, 2014

1 Conic Programming and Strong Duality

Recall from last time on primal/dual pair of conic programming

$$\begin{array}{lll} \inf \ c^T x & \sup \ b^T y \\ s.t. & Ax = b & s.t. \ A^T y + s = c \\ & x \in K & s \in K^* \equiv \{s \in \mathbb{R}^n, \quad s^T x \leq 0, \quad \forall x \in K\} \end{array}$$

Various weirdness emerge even from "nice" cones (like SOC):

- Weak duality holds;
- Strong duality may not;
- Maybe no optimal solution(hence inf/sup)

Today we work out some conditions under which strong duality holds. Recall we showed the analog of Farkas' Lemma doesn't hold. Both Ax = b, $x \in K$ and $-A^T y \in K^*, b^T y > 0$ can be infeasible. So let's see how we can modify the condition so we can get something.

Definition 1 $Ax=b, x \in K$ is <u>asymptotically feasible</u> if $\forall \epsilon > 0$. $\exists \Delta b, \|\Delta b\| < \epsilon$ such that $Ax = b + \Delta b, x \in K$ is feasible.

Theorem 1 (Asymptotic Farkas' Lemma) Either $Ax = b, x \in K$ is asymptotically feasible, or $-A^T y \in K^x, b^T y > 0$ is feasible, but not both.

Proof: Let $Q = \{\tilde{b} \in \mathbb{R}^m : \exists x \in K \text{ s.t. } Ax = \tilde{b}\}$, Then $b \in cl(Q)$ iff $Ax = b, x \in K$ asymptotically feasible (where cl(Q) is the closure of Q). If $Ax = b, x \in K$ not asymptotically feasible, then $b \notin cl(Q)$. Since cl(Q) is closed, nonempty $(0 \in Q)$, and convex, we can apply the separating hyperplane theorem. So $\exists y \in \mathbb{R}^n$, β such that $y^T b > \beta$ and $y^T \tilde{b} < \beta$ for all $\tilde{b} \in cl(Q)$. Since $0 \in Q$, $\beta > 0$. Thus

$$\begin{array}{ll} y^T b > 0 \quad \text{and} & y^T (Ax) < \beta, \quad \forall x \in K \\ \Leftrightarrow & y^T (A\lambda x) < \beta, \quad \forall x \in K, \quad \lambda > 0 \\ \Leftrightarrow & y^T (Ax) < \beta/\lambda, \quad \forall x \in K, \quad \lambda > 0 \\ \Leftrightarrow & y^T (Ax) \le 0, \quad \forall x \in K \\ \Leftrightarrow & x^T (A^T y) \le 0, \quad \forall x \in K \\ \Leftrightarrow & -A^T y \in K^*, \end{array}$$

by the definition of K^* .

Now we need to define the primal value under asymptotic feasibility.

Definition 2 $a \text{-opt} = \lim_{\varepsilon \to 0} \inf_{\|\Delta b\|} \inf \{c^T x : x \in K, Ax = b + \Delta b\}$ (i.e. limiting value of asymptotically feasible solution)

Theorem 2 If primal is asymptotically feasible, then a-opt equals dual optimal.

Proof: Consider the following system:

$$\begin{bmatrix} A & 0 \\ c^T & 1 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} b \\ \lambda \end{bmatrix}, \begin{bmatrix} x \\ z \end{bmatrix} \in K \times \mathbb{R}^{\ge 0}$$
(*)
$$\Leftrightarrow Ax = b c^T x + z = \lambda; \quad z \ge 0 \quad (i.e. \quad c^T x \le \lambda)$$

By asymptotic Farkas Lemma, either the system above is asymptotically feasible, and thus a-opt $\leq \lambda$ or the system

$$-\begin{bmatrix} A & 0\\ c^T & 1 \end{bmatrix}^T \begin{bmatrix} y\\ \gamma \end{bmatrix} \in (K \times \mathbb{R}^{\ge 0})^* = K^* \times \mathbb{R}^{\ge 0}$$
$$\begin{bmatrix} b\\ \lambda \end{bmatrix}^T \begin{bmatrix} y\\ \gamma \end{bmatrix} > 0$$

is feasible which means that there exists y, γ such that

$$A^{T}y - \gamma c \in K^{*}$$

$$-\gamma \geq 0$$

$$b^{T}y > -\lambda\gamma$$

$$(**)$$

First, suppose that there is λ such that a-opt $\leq \lambda <$ dual-optimal. Then there exists a dual feasible y such that $b^T y > \lambda$, $-A^T y + c \in K^*$. But then $\begin{bmatrix} y \\ -1 \end{bmatrix}$ is feasible for (**), a condradiction to a-opt $\leq \lambda$. Thus a-opt \geq dual-optimal.

Second, suppose that there is a λ such that dual-opt $< \lambda <$ a-opt. Then (**) is feasible for same $\begin{bmatrix} y \\ \gamma \end{bmatrix}$. If $\gamma = 0$ then $-A^T y \in K^*$, $b^T y > 0$ is feasible. By the asymptotic Farkas' Lemma, this implies that Ax = b, $x \in K$ is not asymptotically feasible, which is a contradiction.

Thus we can assume $\gamma < 0$. Then consider $\tilde{y} = -\frac{1}{\gamma}y$. By the feasibility of (y, γ) , we have that

$$\begin{array}{rcl}
-A^T \tilde{y} + c &\in K^* \\
b^T \tilde{y} &> \lambda.
\end{array}$$

27-2

This contradicts our hypothesis that dual-optimal $< \lambda$.

We have shown that a-opt can be neither less than the dual optimal, nor greater than the dual optimal, and so it must be equal to the dual optimal. \Box

We can similarly define the asymptotic optimal of dual.

Definition 3 a-dual-opt = $\lim_{\epsilon \to 0} \sup_{\|\Delta c\| < \epsilon} (\sup b^T y : c + \Delta c - A^T y \in K^*).$

By similar reasoning, we can prove the following theorem.

Theorem 3 If dual is asymptotic feasible, then a-dual-opt = primal opt.

We now want to state conditions under which strong duality holds. We now know that a-opt = dual optimal \leq a-dual-opt = primal optimal. When is the inequality an equality? We first need another definition.

Definition 4 The primal is <u>strongly feasible</u> if $\exists \epsilon > 0$ such that $\forall \Delta b$ with $\|\Delta b\| < \epsilon$, then $Ax = b + \Delta b, x \in K$ is feasible.

The dual is strongly feasible if $\exists \epsilon > 0$ such that $\forall \Delta c \text{ with } \|\Delta c\| < \epsilon$, then $A^T + S = c + \Delta c, s \in K^*$ is feasible.

Observation 1 If $\exists x \text{ such that } Ax = b, x \in int K$, then the primal is strongly feasible.

Theorem 4 If either primal or dual is strongly feasible, then primal opt = dual opt. (i.e. strong duality holds).

Corollary 5 Strong duality holds if there exists a feasible primal solution $x \in int K$, or if there exists a feasible dual solution with $s \in int K^*$.

Proof: Assume primal, dual are both asymptotic feasible, and the dual is strongly feasible. (Note that we are skipping a case in which the primal is infeasible, the dual unbounded). Then,

 $a-opt = dual \le a-dual-opt = primal.$

Suppose that a-opt < primal. Then, there exists a sequence $\{x_i\} \in K$ and $\{\Delta b_i\}$ such that

$$Ax_i = b + \Delta b_i, \quad \Delta b_i \to 0, \quad c^T x_i \to \text{a-opt}$$

We claim that $||x_i|| \to \infty$, since otherwise $\{x_i\}$ has convergent subsequence, with limit point x having $x \in K$, Ax = b, and $c^T x$ =a-opt. Such an x implies that a-opt = primal.

Let Δc be a limit point of $\{-\frac{x_i}{\|x_i\|}\}$ so that $\|\Delta c\| = 1$. For given $\epsilon > 0$ consider

$$\begin{array}{ll} \min & (c + \epsilon \Delta c)^T x \\ s.t. & Ax = b \\ & x \in K. \end{array}$$

The asymptotic optimal of $\underline{\text{this}}$ instance is at most

$$\lim_{i} \inf(c + \epsilon \Delta c)^{T} x_{i} = \lim_{i} \inf c^{T} x_{i} + \epsilon \lim_{i} \inf \Delta c^{T} x_{i}$$
$$= \operatorname{a-opt} + \epsilon \lim_{i} \inf \Delta c^{T} x_{i}$$
$$= \operatorname{a-opt} - \epsilon \lim_{i} ||x_{i}||$$
$$= -\infty.$$

Since the asymptotic optimal is unbounded, dual must be infeasible; i.e. the following is infeasible:

$$\sup_{\substack{A^T y \\ s \in K^*}} b^T y$$

Since ϵ can be arbitrarily small, this implies that the original dual is not strongly feasible, a contradiction.

Corollary 6 If primal is feasible and dual is strongly feasible, then the primal has an optimal solution.

Proof: As above. If the dual is strongly feasible and the primal feasible, then strong duality holds and there exists a feasible sequence $\{x_i\} \subset K$, $\Delta b_i \to 0$, $c^T x_i \to a$ -opt. If $\{x_i\}$ does not have a convergent subsequence, then $\|x_i\| \to \infty$ implies that the dual is not strongly feasible. So there is a convergent subsequence, and the limit point x is feasible, with $c^T x = opt$.