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1 Conic Programming and Strong Duality

Recall from last time on primal/dual pair of conic programming

inf cTx sup bT y

s.t. Ax = b s.t. AT y + s = c

x ∈ K s ∈ K∗ ≡ {s ∈ Rn, sTx ≤ 0, ∀x ∈ K}

Various weirdness emerge even from “nice” cones (like SOC):

• Weak duality holds;

• Strong duality may not;

• Maybe no optimal solution(hence inf/sup)

Today we work out some conditions under which strong duality holds. Recall we showed the
analog of Farkas’ Lemma doesn’t hold. Both Ax = b, x ∈ K and −AT y ∈ K∗, bT y > 0 can be
infeasible. So let’s see how we can modify the condition so we can get something.

Definition 1 Ax=b, x ∈ K is asymptotically feasible if ∀ε > 0. ∃∆b, ‖∆b‖ < ε such that Ax =
b+ ∆b, x ∈ K is feasible.

Theorem 1 (Asymptotic Farkas’ Lemma) Either Ax = b, x ∈ K is asymptotically feasible, or
−AT y ∈ Kx, bT y > 0 is feasible, but not both.

Proof: Let Q = {b̃ ∈ Rm : ∃x ∈ K s.t. Ax = b̃}, Then b ∈ cl(Q) iff Ax = b, x ∈ K
asymptotically feasible (where cl(Q) is the closure of Q). If Ax = b, x ∈ K not asymptotically
feasible, then b 6∈ cl(Q). Since cl(Q) is closed, nonempty (0 ∈ Q), and convex, we can apply the
separating hyperplane theorem. So ∃y ∈ Rn, β such that yT b > β and yT b̃ < β for all b̃ ∈ cl(Q).
Since 0 ∈ Q, β > 0. Thus

yT b > 0 and yT (Ax) < β, ∀x ∈ K
⇔ yT (Aλx) < β, ∀x ∈ K, λ > 0

⇔ yT (Ax) < β/λ, ∀x ∈ K, λ > 0

⇔ yT (Ax) ≤ 0, ∀x ∈ K
⇔ xT (AT y) ≤ 0, ∀x ∈ K
⇔ −AT y ∈ K∗,
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by the definition of K∗. �
Now we need to define the primal value under asymptotic feasibility.

Definition 2 a-opt = lim
ε→0

inf
‖∆b‖

inf{cTx : x ∈ K,Ax = b+ ∆b} (i.e. limiting value of asymptotically

feasible solution)

Theorem 2 If primal is asymptotically feasible, then a-opt equals dual optimal.

Proof: Consider the following system:[
A 0
cT 1

] [
x
z

]
=

[
b
λ

]
,

[
x
z

]
∈ K × R≥0 (∗)

⇔ Ax = b

cTx+ z = λ; z ≥ 0 (i.e. cTx ≤ λ)

By asymptotic Farkas Lemma, either the system above is asymptotically feasible, and thus a-opt
≤ λ or the system

−
[
A 0
cT 1

]T [
y
γ

]
∈ (K × R≥0)∗ = K∗ × R≥0

[
b
λ

]T [
y
γ

]
> 0

is feasible which means that there exists y, γ such that

AT y − γc ∈ K∗ (∗∗)
−γ ≥ 0

bT y > −λγ

First, suppose that there is λ such that a-opt ≤ λ < dual-optimal. Then there exists a dual

feasible y such that bT y > λ, −AT y+ c ∈ K∗. But then

[
y
−1

]
is feasible for (**), a condradiction

to a-opt ≤ λ. Thus a-opt ≥ dual-optimal.
Second, suppose that there is a λ such that dual-opt < λ <a-opt. Then (**) is feasible for same[
y
γ

]
. If γ = 0 then −AT y ∈ K∗, bT y > 0 is feasible. By the asymptotic Farkas’ Lemma, this

implies that Ax = b, x ∈ K is not asymptotically feasible, which is a contradiction.

Thus we can assume γ < 0. Then consider ỹ = −1

γ
y. By the feasibility of (y, γ), we have that

−AT ỹ + c ∈ K∗

bT ỹ > λ.
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This contradicts our hypothesis that dual-optimal < λ.
We have shown that a-opt can be neither less than the dual optimal, nor greater than the dual

optimal, and so it must be equal to the dual optimal. �
We can similarly define the asymptotic optimal of dual.

Definition 3 a-dual-opt = lim
ε→0

sup
‖∆c‖<ε

(sup bT y : c+ ∆c−AT y ∈ K∗).

By similar reasoning, we can prove the following theorem.

Theorem 3 If dual is asymptotic feasible, then a-dual-opt = primal opt.

We now want to state conditions under which strong duality holds. We now know that a-opt
= dual optimal ≤ a-dual-opt = primal optimal. When is the inequality an equality? We first need
another definition.

Definition 4 The primal is strongly feasible if ∃ε > 0 such that ∀∆b with ‖∆b‖ < ε, then Ax =
b+ ∆b, x ∈ K is feasible.

The dual is strongly feasible if ∃ε > 0 such that ∀∆c with ‖∆c‖ < ε , then AT +S = c+ ∆c, s ∈
K∗ is feasible.

Observation 1 If ∃x such that Ax = b, x ∈ int K, then the primal is strongly feasible.

Theorem 4 If either primal or dual is strongly feasible, then primal opt = dual opt. (i.e. strong
duality holds).

Corollary 5 Strong duality holds if there exists a feasible primal solution x ∈ int K, or if there
exists a feasible dual solution with s ∈ int K∗.

Proof: Assume primal, dual are both asymptotic feasible, and the dual is strongly feasible.
(Note that we are skipping a case in which the primal is infeasible, the dual unbounded). Then,

a-opt = dual ≤ a-dual-opt = primal.

Suppose that a-opt < primal. Then, there exists a sequence {xi} ∈ K and {∆bi} such that

Axi = b+ ∆bi, ∆bi → 0, cTxi → a-opt.

We claim that ‖xi‖ → ∞, since otherwise {xi} has convergent subsequence, with limit point x
having x ∈ K, Ax = b, and cTx =a-opt. Such an x implies that a-opt = primal.

Let ∆c be a limit point of {− xi
‖xi‖} so that ‖∆c‖ = 1. For given ε > 0 consider

min (c+ ε∆c)Tx

s.t. Ax = b

x ∈ K.

27-3



The asymptotic optimal of this instance is at most

lim
i

inf(c+ ε∆c)Txi = lim
i

inf cTxi + ε lim
i

inf ∆cTxi

= a-opt + ε lim
i

inf ∆cTxi

= a-opt− ε lim
i
‖xi‖

= −∞.

Since the asymptotic optimal is unbounded, dual must be infeasible; i.e. the following is infea-
sible:

sup bT y

AT y + s = c+ ε∆c

s ∈ K∗

Since ε can be arbitrarily small, this implies that the original dual is not strongly feasible, a
contradiction. �

Corollary 6 If primal is feasible and dual is strongly feasible, then the primal has an optimal
solution.

Proof: As above. If the dual is strongly feasible and the primal feasible, then strong duality
holds and there exists a feasible sequence {xi} ⊂ K, ∆bi → 0, cTxi → a-opt. If{xi} does not
have a convergent subsequence, then ‖xi‖ → ∞ implies that the dual is not strongly feasible. So
there is a convergent subsequence, and the limit point x is feasible, with cTx = opt. �
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