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1 Conic Programming and Strong Duality

Recall from last time on primal/dual pair of conic programming

inf 'z sup by
sit. Ar=0b st. ATy+s=c
reK sce K*={scR", s'2<0, VzreK}

Various weirdness emerge even from “nice” cones (like SOC):
e Weak duality holds;
e Strong duality may not;
e Maybe no optimal solution(hence inf/sup)

Today we work out some conditions under which strong duality holds. Recall we showed the
analog of Farkas’ Lemma doesn’t hold. Both Az =b, z € K and —ATy € K*,bTy > 0 can be
infeasible. So let’s see how we can modify the condition so we can get something.

Definition 1 Az=b, z € K is asymptotically feasible if Ve > 0. JAD, ||Ab|| < € such that Az =
b+ Ab,x € K 1is feasible.

Theorem 1 (Asymptotic Farkas’ Lemma) Fither Ax = b,x € K is asymptotically feasible, or
—ATy € K= bTy > 0 is feasible, but not both.

Proof: Let Q = {b € R™ : 3z € K s.t. Az = b}, Then b € c(Q) iff Az = b,z € K
asymptotically feasible (where cl(Q) is the closure of Q). If Az = b,x € K not asymptotically
feasible, then b & cl(Q). Since cl(Q) is closed, nonempty (0 € @), and convex, we can apply the
separating hyperplane theorem. So Jy € R™, 3 such that y7b > 8 and y7b < B for all b € c(Q).
Since 0 € @, S > 0. Thus

y'b>0 and yI(Az) < B, Vze K
e yl(Axz) < B, VzeK, A>0
& yT(Ax)<ﬁ/)\ Vee K, A>0
& yT(Aas) Ve € K
s oTAT )<O Ve e K
s —Alye K~
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by the definition of K*. O
Now we need to define the primal value under asymptotic feasibility.

Definition 2 a-opt = lin[l) |Ii££|| inf{c'x : 2 € K, Ax = b+ Ab} (i.e. limiting value of asymptotically
E—>

feasible solution)

Theorem 2 If primal is asymptotically feasible, then a-opt equals dual optimal.

Proof: Consider the following system:
A 0 X b X >0
] [ - I3 [ 8
S Axr = b
Trt+z = XN 2>0 (ie. cfz<))

By asymptotic Farkas Lemma, either the system above is asymptotically feasible, and thus a-opt
< X or the system

T
_ A 0 Yy >0\* __ * >0
[ch] [’Y]E(KXR ) =K"xR

is feasible which means that there exists y,y such that

Aly—qc € K* (%)
- =2 0
Vly > —\y

First, suppose that there is A such that a-opt < A < dual-optimal. Then there exists a dual

feasible y such that by > A, —ATy+ ¢ € K*. But then [ —yl ] is feasible for (**), a condradiction
to a~opt < A. Thus a-opt > dual-optimal.
Second, suppose that there is a A such that dual-opt < A <a-opt. Then (**) is feasible for same

g } If v = 0 then —ATy € K*, b7y > 0 is feasible. By the asymptotic Farkas’ Lemma, this
implies that Az = b, x € K is not asymptotically feasible, which is a contradiction.

1
Thus we can assume v < 0. Then consider § = ——y. By the feasibility of (y,~), we have that
Y

—ATj4+c¢ e K*
g > A
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This contradicts our hypothesis that dual-optimal < A.
We have shown that a-opt can be neither less than the dual optimal, nor greater than the dual
optimal, and so it must be equal to the dual optimal. ]
We can similarly define the asymptotic optimal of dual.

Definition 3 a-dual-opt = lim sup (supb’y:c+ Ac— ATy c K*).
=0 || Acl|<e

By similar reasoning, we can prove the following theorem.
Theorem 3 If dual is asymptotic feasible, then a-dual-opt = primal opt.

We now want to state conditions under which strong duality holds. We now know that a-opt
= dual optimal < a-dual-opt = primal optimal. When is the inequality an equality? We first need
another definition.

Definition 4 The primal is strongly feasible if e > 0 such that YAb with |Ab|| < €, then Ax =
b+ Ab,x € K 1is feasible.

The dual is strongly feasible if e > 0 such that VAc with |Ac|| < € , then AT +S = c+ Ac,s €
K* is feasible.

Observation 1 If dx such that Ax = b, x € int K, then the primal is strongly feasible.

Theorem 4 If either primal or dual is strongly feasible, then primal opt = dual opt. (i.e. strong
duality holds).

Corollary 5 Strong duality holds if there exists a feasible primal solution x € int K, or if there
exists a feasible dual solution with s € int K*.

Proof: Assume primal, dual are both asymptotic feasible, and the dual is strongly feasible.
(Note that we are skipping a case in which the primal is infeasible, the dual unbounded). Then,

a-opt = dual < a-dual-opt = primal.
Suppose that a-opt < primal. Then, there exists a sequence {x;} € K and {Ab;} such that
Ax; =b+ Ab;, Ab; — 0, 'x; — a-opt.
We claim that ||z;|| — oo, since otherwise {z;} has convergent subsequence, with limit point z

having = € K, Az = b, and ¢’z =a-opt. Such an x implies that a-opt = primal.
Let Ac be a limit point of {—ﬁ} so that ||Ac|| = 1. For given € > 0 consider

min (¢ + eAc)
st. Ar=0>
r € K.
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The asymptotic optimal of this instance is at most
lilm inf(c+ eAc)Tx; = lilm inf cl'x; 4 € lilm inf Aclz;
= a-opt+e¢ lign inf Ac'z;
= a-opt — elim ||z|
= —o0. z

Since the asymptotic optimal is unbounded, dual must be infeasible; i.e. the following is infea-
sible:

sup by
ATy + s =c+eAc
se K*

Since € can be arbitrarily small, this implies that the original dual is not strongly feasible, a
contradiction. g

Corollary 6 If primal is feasible and dual is strongly feasible, then the primal has an optimal
solution.

Proof: As above. If the dual is strongly feasible and the primal feasible, then strong duality
holds and there exists a feasible sequence {x;} ¢ K, Ab; — 0, c’'z; — a-opt. If{z;} does not
have a convergent subsequence, then |x;|| — oo implies that the dual is not strongly feasible. So
there is a convergent subsequence, and the limit point z is feasible, with ¢!z = opt. O
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