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1 Conic Programming

In the linear programming primal standard form, we have

Inf cTx

subject to Ax = b

x ≥ 0.

Now, with conic programming we replace this condition by requiring that x ∈ K for some cone K.
The primal form conic program is written as

Inf cTx

subject to Ax = b

x ∈ K.

Recall a cone K is a set such that if x, y ∈ K then λx+ µy ∈ K for λ, µ ≥ 0.

2 Examples

There are some commonly used cones in conic programming, including

1. The non-negative orthant, K = {x ∈ Rn : x ≥ 0}.

2. The second-order cone, Ksoc = {x ∈ Rn : x2n ≥
∑n−1

i=1 x
2
i , xn ≥ 0}, which is also called the

Lorentz cone or the ice cream cone.

3. The positive semidefinite cone, K = {X ∈ Rn×n : XT = X, vTXv ≥ 0∀v ∈ Rn}. Notice that
here we consider a set of matrices instead of vectors. In this case the conic program becomes

Inf
∑
i,j

cijxij

subject to
∑
ij

aijkxij = bk, k = 1, ...,m

X = (xij) ∈ K.
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Additionally, in conic programs notice how we now use the infimum instead of the minimum.
The following example illustrates why. Consider

Inf x2 + x3

subject to x1 = 1

x ∈ Ksoc.

Since Ksoc is the second order cone, we get that we have a feasible solution if and only if

x23 ≥ x21 + x22, and x3 ≥ 0⇔ x21 ≤ (x3 − x2)(x2 + x3)⇔ 1 ≤ (x3 − x2)(x2 + x3).

So, for any ε > 0, if we set x3 = 1
2(ε+ 1

2) and x2 = 1
2(ε− 1

2), then we get x2+x3 = ε and x3−x2 = 1
ε .

Therefore, the objective function x2 + x3 = ε can be arbitrarily small but cannot be zero.

3 Duality

For LP duality, we find a solution (y, s) s.t. AT y + s = c with s ≥ 0. From this we obtain that

cTx = (AT y + s)Tx = yTAx+ sTx = yT b+ sTx ≥ yT b.

The last equality is because the primal requires Ax = b, and the last inequality is because the
primal and dual solutions require x, s ≥ 0. This gives us a lower bound on the optimal value of
primal.

We apply the same sort of logic for the dual of the conic program. Here, we require that
x ∈ K∗ ≡ {s ∈ Rn : sTx ≥ 0, ∀x ∈ K}. This gives us that the last inequality will still hold so that
yT b is still a lower bound on the value of the primal. We get that the cone programming dual is

Sup bT y

subject to AT y + s = c

s ∈ K∗.

Thus by construction, we have that weak duality holds if this is the dual program.
K∗ is the dual of the cone K, and if K∗ = K then the cone is called a self-dual. The non-

negative orthant, second-order, and positive semidefinite cones are all self-dual, though we’ll only
prove this fact for the second-order cones.

Theorem 1 Ksoc is self-dual.

Proof: First we’ll show Ksoc ⊆ K∗soc. If x, s ∈ Ksoc, then

xT s = xnsn +

n−1∑
i=1

≥ xnsn −

√√√√n−1∑
i=1

x2i

√√√√n−1∑
i=1

s2i ≥ 0.

The first inequality follows from the Cauchy-Schwartz inequality, and the last inequality follows
from the fact that x, s ∈ Ksoc.
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Next we’ll show K∗soc ⊂ Ksoc. Suppose sTx ≥ 0∀x ∈ Ksoc. There are two cases. First, if
(s1, ..., sn − 1) = (0, ..., 0), then consider x1, ..., xn−1 = (0, ..., 0) and xn = 1. Then we get that

sTx ≥ 0⇔ sn ≥ 0⇔ s2n ≥
n−1∑
i=1

s2i ⇔ s ∈ Ksoc

Otherwise, set xn =
√∑n−1

i=1 s
2
i and xi = −si for i = 1, .., n− 1, and so

sTx ≥ 0⇔ sn

√√√√n−1∑
i=1

−
n−1∑
i=1

s2i ≥ 0⇔ s2n ≥
n−1∑
i=1

s2i , sn ≥ 0⇔ s ∈ Ksoc.

2

4 Weak and Strong Duality

We know that weak duality holds, but in general strong duality does not. Here are two examples
showing that strong duality does not always hold.

Example 1: The primal has a finite value but the dual is not feasible. Consider the following
primal/dual pair:

Inf − x1
subject to x2 + x3 = 0

x ∈ Ksoc

Sup 0y

subject to

0
1
1

 y + s =

−1
0
0


Notice that the constraint in the dual implies that (−1,−y,−y)T ∈ Ksoc.

In the primal, we have that

x23 ≥ x21 + x22 ⇔ (x3 + x2)(x3 − x2) ≥ x21 ⇔ 0 ≥ x21 ⇔ x1 = 0,

and so an optimal primal solution is (0, 0, 0) with a value of 0.
For the dual, we require

(−y)2 ≥ 12 + (−y)2 ⇔ y2 ≥ 1 + y2 ⇔ 0 ≥ 1,

thereby showing that the dual is not feasible.

Example 2: Both the primal and the dual have finite, but different, values. Consider the following
primal/dual pair:

Inf − x1
subject to x1 + x4 = 1

x2 + x3 = 0

x ∈ K

Sup y1

subject to −


1 + y1
y2
y2
y1

 y ∈ K∗ = K
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where K = {x ∈ R4 : x23 ≥ x21 + x22, x3, x4 ≥ 0}, which is self-dual.
The primal is similar to the first example, so as before x1 is forced to be 0. Therefore, an

optimal solution is (0, 0, 0, 1) of value 0. For the dual, we need

y22 ≥ y22 + (−1− y1)2 and y1, y2 ≤ 0⇔ (y1 + 1)2 ≤ 0⇔ y1 = −1 with y2 = 0.

Therefore, (−1, 0) is an optimal solution with a value of −1.

Recalling that we proved strong duality holds using Farkas’ Lemma, strong duality breaks down
because Farkas’ Lemma no longer holds. Recall that Farkas’ Lemma states that exactly one the
following is feasible:

1. Ax = b, x ≥ 0

2. AT y ≤ 0, bT y > 0

In the conic programming setting, we would get the analogous Farkas’ Lemma stating that exactly
one of the following holds:

1. Ax = b, x ∈ K

2. −AT y ∈ K∗, bT y > 0

However, we can show an example where neither of these hold. Consider

x1 = 1, x2 + x+ 3 = 0, x ∈ Ksoc.

In the first case we get

x23 ≥ x21 + x22 ⇔ (x3 + x2)(x3 − x2) ≥ x21 ⇔ 0 ≥ 1,

and in the second case we get

−(y1, y2, y2) ∈ Ksoc, y1 > 0, (−y1)2 + (−y2)2 ≤ (−y2)2 ⇔ y21 ≤ 0 ⇔ y1 ≤ 0.

Farkas’ Lemma in conic programming is not true because the proof relied on applying the
separating hyperplane theorem to Q = {b ∈ Rm : ∃x ∈ Rn, Ax = b̂, x ≥ 0}. We used that if
Ax = b, x ≥ 0 is not feasible, then b 6∈ Q, and finally applied the hyperplane theorem to obtain a y
such that AT y ≤ 0, bT y > 0.

But, recall that this can only be applied if Q is closed, nonempty, and convex. However, as a
proof by counter example we show that the analogous Q in the conic programming setting does
not need to be closed — consider

Q′ =
{
b̂ ∈ R2 : ∃x ∈ R3, s.t.

[
1 0 0
0 1 1

]
x =

[
b̂1
b̂2

]
, x ∈ Ksoc

}
.

Then Q′ is nonempty since (0, 0) ∈ Q′. But, Q′ is not closed since (1, ε) ∈ Q′ for all ε > 0, but
(1, 0) 6∈ Q′.

This leads to the following idea: we say that Ax = b, x ∈ K is asymptotically feasible if
∀ε > 0, ∃∆b such that ||∆b|| < ε and Ax = b+ ∆b, x ∈ K is feasible; that is, the system is always
feasible if we can perturb the constraints a little, no matter how little we can perturb them. Next
time we will prove the following theorem.

Theorem 2 (Asymptotic Farkas Lemma) Either Ax = b, x ∈ K is asymptotically feasible, or
−AT y ∈ K∗, bT y > 0 is feasible, but not both.
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