
ORIE 6300 Mathematical Programming I November 20, 2014

Lecture 25

Lecturer: David P. Williamson Scribe: Wei Qian

1 NP-Complete Problems and General Strategy

In the last lecture, we defined two classes of problems, P and NP. While P ⊆ NP, it is still an
open question whether NP ⊆ P. We recognized a special class of problems inside NP, which are
called NP-complete problems. They are the fundamental problems to tackle in order to solve P
vs NP. We gave three examples of NP-complete problems (proof omitted): SAT, Partition, and
3-Partition. Our goal in this lecture is to recognize other NP-complete problems based on Partition
and SAT problems.

There is a general strategy to show that a problem B is NP-complete. The first step is to prove
that B is in NP (which is usually easy) and the second step is to prove there is an NP-complete
problem A such that it has a polynomial reduction to problem B. In general, the difficulties lie in
the second step.

2 Knapsack

Let us recall the decision version of the Knapsack problem: given n items with size s1, s2, ..., sn,
value v1, v2, ..., vn, capacity B and value V , is there a subset S ⊆ {1, 2, .., n} such that

∑
i∈S si ≤ B

and
∑

i∈S vi ≥ V ?

Theorem 1 Knapsack is NP-complete.

Proof: First of all, Knapsack is NP. The proof is the set S of items that are chosen and the
verification process is to compute

∑
i∈S si and

∑
i∈S vi, which takes polynomial time in the size of

input.
Second, we will show that there is a polynomial reduction from Partition problem to Knapsack.

It suffices to show that there exists a polynomial time reduction Q(·) such that Q(X) is a ‘Yes’
instance to Knapsack iff X is a ‘Yes’ instance to Partition. Suppose we are given a1, a2, . . . , an for
the Partition problem, consider the following Knapsack problem: si = ai, vi = ai for i = 1, . . . , n,
B = V = 1

2

∑n
i=1 ai. Q(·) here is the process converting the Partition problem to Knapsack

problem. It is clear that this process is polynomial in the input size.
If X is a ‘Yes’ instance for the Partition problem, there exists S and T such that

∑
i∈S ai =∑

i∈T ai = 1
2

∑n
i=1 ai. Let our Knapsack contain the items in S, and it follows that

∑
i∈S si =∑

i∈S ai = B and
∑

i∈S vi =
∑

i∈S ai = V . Therefore, Q(X) is a ‘Yes’ instance for the Knapsack
problem.

Conversely, if Q(X) is a ‘Yes’ instance for the Knapsack problem, with the chosen set S, let
T = {1, 2, ..n} − S. We have

∑
i∈S si =

∑
i∈S ai ≤ B = 1

2

∑n
i=1 ai, and

∑
i∈S vi =

∑
i∈S ai ≥ V =

1
2

∑n
i=1 ai. This implies that

∑
i∈S ai = 1

2

∑n
i=1 ai and

∑
i∈T ai =

∑n
i=1 ai−

1
2

∑n
i=1 ai = 1

2

∑n
i=1 ai.

25-1

Therefore, {S, T} is the desired partition, and X is a ‘Yes’ instance for the Partition problem. This
establishes the NP-completeness of Knapsack problem. 2

Remark 1 In the previous lecture, we showed that Knapsack problem can be solved using dynamic
programming with running time O(n3B2), where n is the number of items and B is the capacity.
Since our input is binary, nB2 is exponential in the input size (B = 2logB), thus DP does not
provide a polynomial running time algorithm.

On the other hand, if the given input to the Knapsack problem is unary rather than binary (that
is, we encode a 5 as 11111), then DP provides a polynomial running time algorithm. We call such
algorithms pseudo-polynomial time algorithms.

Hence, we see that Knapsack is not NP-complete if the given input is unary (assuming P 6=
NP), but NP-complete when the given input is binary. Such problems are called weakly NP-
complete. However, some problems (like 3-Partition) are NP-complete even if the given input is
uniary. We call such problems strongly NP-complete.

3 3-SAT

The SAT problem is the following: given n boolean variables x1, x2, ..., xn, m clauses (e.g. x1 ∨
x̄3 ∨ x7), is there an assignment of true/false to the xi, such that all clauses are satisfied? 3-SAT
problem is a special case of SAT problem in the sense that each clause contains at most 3 variables.

Theorem 2 3-SAT is NP-complete.

Proof: First of all, since 3-SAT problem is also a SAT problem, it is NP. We now show that
there is a polynomial reduction from SAT to 3-SAT.

Given m clauses in the SAT problem, we will modify each clause in the following recursive way:
while there is a clause with more than 3 variables, replace it by two clauses with one new variable.
The tree below is an example of this process, and we will use it for the demonstration of proof.
The new 3-SAT problem contains all the clauses corresponding to the leaves, they are x1 ∨ x̄2 ∨ z,
z̄ ∨ x̄3 ∨ w, and w̄ ∨ x4 ∨ x̄5.

x1 ∨ x̄2 ∨ x̄3 ∨ x4 ∨ x̄5

x1 ∨ x̄2 ∨ z z̄ ∨ x̄3 ∨ x4 ∨ x̄5

z̄ ∨ x̄3 ∨ w w̄ ∨ x4 ∨ x̄5

We first observe that this reduction process is polynomial in the input size. For a clause
consisting of k variables, we can build a tree recursively until each leaf is a clause consisting of
exactly 3 variables. At i-th level of the tree, the clause corresponds to rightest node at each level
contains one less variable than the previous layer. Hence, the tree has k − 3 layers in total. This
implies that we will construct k− 2 new clauses that consists of exactly 3 variables for each clause

25-2

that consists of k variables in the SAT problem. Suppose the original SAT problem has m clauses,
with k1, ..., km variables respectively, we will construct a 3-SAT problem with

∑m
i=1(ki−2) clauses.

And this procedure takes O(2
∑m

i=1(ki − 2)) steps, which is polynomial in the size of input.
For the final step, we claim that the original SAT problem is a ‘Yes’ instance iff the constructed

3-SAT problem is a ‘Yes’ instance. The key property here is that each step (during the tree
construction) maintains satisfiability, i.e, the clauses at level i can be satisfied iff the clauses at
level i + 1 can be satisfied. For a demonstration, we will use the above tree. First suppose that
x1 ∨ x̄2 ∨ x̄3 ∨ x4 ∨ x̄5 is true, then either x1 ∨ x̄2 is true or x̄3 ∨ x4 ∨ x̄5 is true. In the previous
case, set z = False, and in the latter case, set z = True. We see that with this assignment, both
x1 ∨ x̄2 ∨ z and z̄ ∨ x̄3 ∨x4 ∨ x̄5 are satisfied. Conversely, if both x1 ∨ x̄2 ∨ z and z̄ ∨ x̄3 ∨x4 ∨ x̄5 are
satisfied, then if z = True, we know that x̄3 ∨ x4 ∨ x̄5 is true; if z = False, we know that x1 ∨ x̄2
is true. Both imply that the original clause is true.

This property allows us to prove the general claim. For ==> direction, we start from the root
of the tree and use the satisfiability property to deduce that all the clauses at the leaves can be
satisfied. For <== direction, we start from the leaves and use the satisfiability property to show
that the root clause can be satisfied as well. This completes the proof that 3-SAT problem is
NP-complete. 2

4 Independent Set Problem

Given a graph G = (V,E), an independent set (IS) S is a subset of V such that for all i, j ∈ S,
(i, j) /∈ E. The maximum IS problem is to find an independent set of maximum size, and the
decision version of this problem is the following: give G = (V,E), is there an independent set of
size at least B ?

Theorem 3 IS is NP-complete.

Proof: First of all, IS is NP with proof S. The verification process consists of checking all
possible pairs in S and checking |S| = B. It takes

(
B
2

)
+ 1 steps, which is polynomial in the size of

the input.
Secondly, we claim that there is a polynomial-time reduction from 3-SAT problem to IS problem.

The construction is the following: give a 3-SAT problem with m clauses, we draw m triangles with
nodes representing the literals appearing in the clause. Then we connect each node corresponding
to a literal xi with each node corresponding to a literal x̄i, for all i. For example, consider a 3-SAT
problem: x1 ∨ x̄2 ∨ x3, x̄1 ∨ x2 ∨ x̄4, x1 ∨ x̄3 ∨ x5, we will convert it to the following graph:

x̄2 x3

x1

x2 x̄4

x̄1

x̄3 x5

x1

Note that the newly constructed graph G consists of 3m nodes, and at most 3m +
(
3m
2

)
edges.

Hence, the reduction process takes time polynomial in the input size. Moreover, we claim that a

25-3

3-SAT problem is a ‘Yes’ instance iff (G,m) is a ‘Yes’ instance to the IS problem. Suppose that
3-SAT is satisfiable, then for each triangle, we choose one node such that the corresponding literal
satisfies the clause (that is, xi is set true or x̄i is set false). For any two nodes we choose, they are
from two different triangles. If they are connected to each other, they are xi and x̄i for some i by
our construction. But it is not possible that xi = True and x̄i = True. Hence, the set of nodes we
choose forms an independent set of size m.

Conversely, if we have an independent set of size m for G, then each node must come from
different triangles since each triangle is connected. For each node we choose, if it corresponds to
variable xi for some i, we set xi = True; if it corresponds to x̄i for some i, then we set xi = False;
the assignment is consistent because we cannot have both xi and x̄i in the independent set because
they are joined by an edge. This assignment satisfies the clause corresponding to each triangle.
This shows that the 3-SAT instance is satisfiable. 2

25-4

