ORIE 6300 Mathematical Programming I November 20, 2014

Lecture 25
Lecturer: David P. Williamson Scribe: Wei Qian

1 NP-Complete Problems and General Strategy

In the last lecture, we defined two classes of problems, P and NP. While P C NP, it is still an
open question whether NP C P. We recognized a special class of problems inside NP, which are
called NP-complete problems. They are the fundamental problems to tackle in order to solve P
vs NP. We gave three examples of NP-complete problems (proof omitted): SAT, Partition, and
3-Partition. Our goal in this lecture is to recognize other NP-complete problems based on Partition
and SAT problems.

There is a general strategy to show that a problem B is NP-complete. The first step is to prove
that B is in NP (which is usually easy) and the second step is to prove there is an NP-complete
problem A such that it has a polynomial reduction to problem B. In general, the difficulties lie in
the second step.

2 Knapsack

Let us recall the decision version of the Knapsack problem: given n items with size s1, s9, ..., Sp,
value vy, v, ..., U, capacity B and value V, is there a subset S C {1,2,..,n} such that } ", ¢s; < B
and), cqv; > V7

Theorem 1 Knapsack is NP-complete.

Proof: First of all, Knapsack is NP. The proof is the set S of items that are chosen and the
verification process is to compute) ;¢ s; and) ;¢ v;, which takes polynomial time in the size of
input.

Second, we will show that there is a polynomial reduction from Partition problem to Knapsack.
It suffices to show that there exists a polynomial time reduction Q(-) such that Q(X) is a ‘Yes’
instance to Knapsack iff X is a ‘Yes’ instance to Partition. Suppose we are given ay,as,...,a, for
the Partition problem, consider the following Knapsack problem: s; = a;,v; = a; for i =1,...,n,
B =V = 13" a;. Q() here is the process converting the Partition problem to Knapsack
problem. It is clear that this process is polynomial in the input size.

If X is a ‘Yes’ instance for the Partition problem, there exists S and T such that } ", ga; =
Sier@ = 531 ;a;. Let our Knapsack contain the items in S, and it follows that >, ¢s; =
Yics@i = Band Y, gvi = > ,cga; = V. Therefore, Q(X) is a ‘Yes’ instance for the Knapsack
problem.

Conversely, if Q(X) is a ‘Yes’ instance for the Knapsack problem, with the chosen set S, let
T={1,2,.n} —S. Wehave > ,ca8 = ;cq@i < B=3Y" 0a;and Y ,cqvi =D ;ega; >V =
23" | a;. This implies that >, cqa; = 3> 0 qa;and Y cpa; = >0 jai— 250 1a; =3 >0 a;.

25-1

Therefore, {S, T} is the desired partition, and X is a ‘Yes’ instance for the Partition problem. This
establishes the NP-completeness of Knapsack problem. O

Remark 1 In the previous lecture, we showed that Knapsack problem can be solved using dynamic
programming with running time O(n3B?), where n is the number of items and B is the capacity.
Since our input is binary, nB? is exponential in the input size (B = 2'°88), thus DP does not
provide a polynomial running time algorithm.

On the other hand, if the given input to the Knapsack problem is unary rather than binary (that
is, we encode a 5 as 11111), then DP provides a polynomial running time algorithm. We call such
algorithms pseudo-polynomial time algorithms.

Hence, we see that Knapsack is not NP-complete if the given input is unary (assuming P #
NP), but NP-complete when the given input is binary. Such problems are called weakly NP-
complete. However, some problems (like 3-Partition) are NP-complete even if the given input is
uniary. We call such problems strongly NP-complete.

3 3-SAT

The SAT problem is the following: given n boolean variables z1,xs, ..., z,, m clauses (e.g. z1 V
@3 V x7), is there an assignment of true/false to the z;, such that all clauses are satisfied? 3-SAT
problem is a special case of SAT problem in the sense that each clause contains at most 3 variables.

Theorem 2 3-SAT is NP-complete.

Proof: First of all, since 3-SAT problem is also a SAT problem, it is NP. We now show that
there is a polynomial reduction from SAT to 3-SAT.

Given m clauses in the SAT problem, we will modify each clause in the following recursive way:
while there is a clause with more than 3 variables, replace it by two clauses with one new variable.
The tree below is an example of this process, and we will use it for the demonstration of proof.
The new 3-SAT problem contains all the clauses corresponding to the leaves, they are z1 V 23 V z,
ZVx3Vw,and 0V x4 V Ts.

1 VIV IT3VxyVTs

1 VIV 2z zZV I3V xaV Ty

zZVI3Vw wV x4V Ty

We first observe that this reduction process is polynomial in the input size. For a clause
consisting of k variables, we can build a tree recursively until each leaf is a clause consisting of
exactly 3 variables. At i-th level of the tree, the clause corresponds to rightest node at each level
contains one less variable than the previous layer. Hence, the tree has k — 3 layers in total. This
implies that we will construct k — 2 new clauses that consists of exactly 3 variables for each clause

25-2

that consists of k variables in the SAT problem. Suppose the original SAT problem has m clauses,
with ki, ..., ky, variables respectively, we will construct a 3-SAT problem with > /" (k; —2) clauses.
And this procedure takes O(2> 7" (k; — 2)) steps, which is polynomial in the size of input.

For the final step, we claim that the original SAT problem is a ‘Yes’ instance iff the constructed
3-SAT problem is a ‘Yes’ instance. The key property here is that each step (during the tree
construction) maintains satisfiability, i.e, the clauses at level i can be satisfied iff the clauses at
level i + 1 can be satisfied. For a demonstration, we will use the above tree. First suppose that
x1V Zo VI3V x4V Ty is true, then either x1 V 25 is true or 23 V x4 V &5 is true. In the previous
case, set z = False, and in the latter case, set z = True. We see that with this assignment, both
r1 VI Vzand ZV I3V gV Ty are satisfied. Conversely, if both 21 V2oV z and ZV @3V x4 V T5 are
satisfied, then if z = True, we know that 3V x4 V &5 is true; if z = False, we know that x1 V 73
is true. Both imply that the original clause is true.

This property allows us to prove the general claim. For ==> direction, we start from the root
of the tree and use the satisfiability property to deduce that all the clauses at the leaves can be
satisfied. For <== direction, we start from the leaves and use the satisfiability property to show
that the root clause can be satisfied as well. This completes the proof that 3-SAT problem is
NP-complete. O

4 Independent Set Problem

Given a graph G = (V, E), an independent set (IS) S is a subset of V' such that for all 7,j € S,
(i,7) ¢ E. The maximum IS problem is to find an independent set of maximum size, and the
decision version of this problem is the following: give G = (V, E), is there an independent set of
size at least B 7

Theorem 3 IS is NP-complete.

Proof: First of all, IS is NP with proof S. The verification process consists of checking all
possible pairs in S and checking |S| = B. It takes (5) + 1 steps, which is polynomial in the size of
the input.

Secondly, we claim that there is a polynomial-time reduction from 3-SAT problem to IS problem.
The construction is the following: give a 3-SAT problem with m clauses, we draw m triangles with
nodes representing the literals appearing in the clause. Then we connect each node corresponding
to a literal x; with each node corresponding to a literal z;, for all i. For example, consider a 3-SAT
problem: x1 V Ty V x3, 1 V o V T4, 1 V 23 V 5, we will convert it to the following graph:

x1 x7 z1

Note that the newly constructed graph G consists of 3m nodes, and at most 3m + (351) edges.
Hence, the reduction process takes time polynomial in the input size. Moreover, we claim that a

25-3

3-SAT problem is a ‘Yes’ instance iff (G, m) is a ‘Yes’ instance to the IS problem. Suppose that
3-SAT is satisfiable, then for each triangle, we choose one node such that the corresponding literal
satisfies the clause (that is, z; is set true or Z; is set false). For any two nodes we choose, they are
from two different triangles. If they are connected to each other, they are x; and z; for some i by
our construction. But it is not possible that x; = True and z; = True. Hence, the set of nodes we
choose forms an independent set of size m.

Conversely, if we have an independent set of size m for G, then each node must come from
different triangles since each triangle is connected. For each node we choose, if it corresponds to
variable x; for some i, we set x; = True; if it corresponds to x; for some i, then we set xz; = False;
the assignment is consistent because we cannot have both x; and z; in the independent set because
they are joined by an edge. This assignment satisfies the clause corresponding to each triangle.
This shows that the 3-SAT instance is satisfiable. O

25-4

