ORIE 6300 Mathematical Programming I November 18, 2014

Lecture 24

Lecturer: David P. Williamson Scribe: Dave Lingenbrink

1 Decision Problem as a Subset
Definition 1 We denote the encoding of an input to a problem by (-).

For example, the input to the LP

min ¢’z
st. Ax=2b
x>0

can be denoted (A, b, c).
Definition 2 The set of all binary strings, is defined as {0,1}* = {0,1, 00,01, 10, 11,000,...}

Definition 3 A decision problem is one such that the expected output is either YES or NO. It is represented
by a set A € {0,1}* of exactly those inputs whose outputs are YES.

An LP can be seen as a decision problem. Consider the LP we defined above. We can define the decision
problem
LP = {{A,b,c,t). There is a solution x s.t. Az <b, x >0, and 'z < t}.

If we want to find an optimal solution, we can begin at ¢ = —oo and decide whether (A, b, ¢,t) € LP, then
we can find optimal solution t* as the point where the answer “switches” from YES to NO.
Another example is the Traveling Salesman Problem. This has decision problem

TSP = {(n,c,B) : There is a tour of length < B (i.e. Z;’;ll e(m(9),7(5+ 1)) + c(n(n),n(1)) < B)}.

Definition 4 z is a yes instance of a decision problem A if x € A. x is a no instance of a decision problem
Aifx ¢ A An algorithm A decides A if A(x) outputs YES iff x € A.

Definition 5 We define |x| to be the length of the string x (e.g. the number of bits it takes to represent x).

2 Definition of Polynomial Time

Definition 6 We say A runs in polynomial time if there exists a polynomial p such that the number of steps
of A on input = is no more than p(|x|).

Definition 7 If we denote a computational problem as w, then the set of polynomial-time decision problems,

denoted by P, is defined as:

P = {n: There is an algorithm to decide 7 in polynomial time}.
For example, LP € P.

Definition 8 A decision problem is in NP if there exists a verifier A(-,-), polynomials p1,pa such that

24-1

o for all x € A there exists a y € {0,1}* where |y| < p1(|z|) such that A(z,y) outputs YES.
o forallx ¢ A, there eixsts ay € {0,1}* where |y| < p1(|z]) such that A(z,y) outputs NO.
o the number of steps of A(x,y) is no more than pa(|z| + |y|).

NP means non-deterministic polynomial time.

For example, TSP € N'P. The “proof” is a tour of cost < B

The verifier A checks that

n—1

> ew(G),m(G + 1)) + elm(n),x(1)) < B

=1

.

and that 7 is a permutation.

Next, LP € NP, since we our verifier A can just ignore the proof y and compute in polytime whether
z € A. Thus, P C N'P. The answer to whether P = AP is not known, but if someone solves it, they will
have solved one of the seven Millennium Prize Problems and will win a $1,000,000 prize!

Definition 9 For decision problems A, B, a polyonimal-time reduction from A to B is a polynomial time
algorithm A such that A(x) € B iff x € A. In other words, A(x) is a yes instance of B iff x is a yes instance
of A. We write A <p B.

Lemma 1 If A <p B and B <p C, then A <p C.

Proof: Let A be the polynomial time reduction from A to B and A’ be the polynomial time reduction
from B to C. So, A(z) € Biff z € A, and A'(y) € C iff y € B. Thus, A'(A(z)) € C iff z € A. All we
need to show is that A’ o A runs in time polynomial in |z|. This is true since polynomials are closed under
composition. Thus, the lemma is proved. O

Definition 10 B is a N'P-complete problem if B € NP and for all A€ NP, A<p B.

Theorem 2 If B is N'P-complete and B € P, then P = N'P.

Proof: We know that P C NP. Pick a A € N'P. By definition of AN'P-competeness, A <p B. Let A be
a polynomial time algorithm for deciding B and let A’ be the polynomial time algorithm for reducing A to
B. Then, A'(z) €e Biff z € A.

So, given input z, we run A(A’(z)). This will output YES iff © € A and runs in polynomial time. So,
A€ P,and NP C P. Thus, NP =P. O

3 Outline of Strategy for Proving N'P-Completeness

Consider some problem B that we want to show is N'P-complete. First, we show that B € N'P. Next, show
that for some N'P-complete A, A <p B.

Lemma 3 Given the above, B is N'P-complete.

Proof: B € NP, so all we need to show is that for any C € NP, C <p B. Since A is N'P-complete,
C <p A. We know A <p B, so by transitivity, C <p B, and B is N'P-complete, as desired. O

24-2

4 Some NP-Complete Problems

e Satisfiability: Given boolean variables x4, ..., x, and clauses of disjunctions of variables or negations
(for example, one clause could be x1 V ZT5 V 217). Is there an assignment of true and false to the {z;}
that satisfies all clauses?

e Partition: Given n integers ai,...,a, such that >, a; is even. Does there exist a partition of
{1,...,n} into S and T such that
o= Y
= JET

e 3-partition: Given 3n integers aq, ..., as, and b such that b/4 < a; < a/2 for all ¢ and Z?Zl a; = nb,
does there exist a partition of {1,...,3n} into n sets T1,..., T, such that

Zaizb Vi=1,...n7?

=y
Finally, consider the Knapsack problem. Recall this problem has n items of sizes sy, ..., s,, values vy, ..., v,
and a total knapsack size of B. The decision problem is:
Given input V, does there exist a S C {1,...,n} such that }°,_¢s; < Band), qv; > V?

First, we see that the knapsack problem is in A'P. Just let our verifier check the list of items in .S and check
whether the items’ sizes are no more than B and the values are at least V. We will come back to showing
the knapsack problem is NP-complete.

24-3

