Lecture 24
Lecturer: David P. Williamson
Scribe: Dave Lingenbrink

1 Decision Problem as a Subset

Definition 1 We denote the encoding of an input to a problem by $\langle\cdot\rangle$.
For example, the input to the LP

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

can be denoted $\langle A, b, c\rangle$.
Definition 2 The set of all binary strings, is defined as $\{0,1\}^{*}=\{0,1,00,01,10,11,000, \ldots\}$
Definition 3 A decision problem is one such that the expected output is either YES or NO. It is represented by a set $A \in\{0,1\}^{*}$ of exactly those inputs whose outputs are YES.

An LP can be seen as a decision problem. Consider the LP we defined above. We can define the decision problem

$$
L P=\left\{\langle A, b, c, t\rangle . \text { There is a solution } x \text { s.t. } A x \leq b, x \geq 0, \text { and } c^{T} x \leq t\right\}
$$

If we want to find an optimal solution, we can begin at $t=-\infty$ and decide whether $\langle A, b, c, t\rangle \in L P$, then we can find optimal solution t^{*} as the point where the answer "switches" from YES to NO.

Another example is the Traveling Salesman Problem. This has decision problem

$$
T S P=\left\{\langle n, c, B\rangle: \text { There is a tour of length } \leq B\left(\text { i.e. } \sum_{j=1}^{n-1} c(\pi(j), \pi(j+1))+c(\pi(n), \pi(1)) \leq B\right)\right\}
$$

Definition $4 x$ is a yes instance of a decision problem A if $x \in A . x$ is a no instance of a decision problem A if $x \notin A$. An algorithm \mathcal{A} decides A if $\mathcal{A}(x)$ outputs YES iff $x \in A$.

Definition 5 We define $|x|$ to be the length of the string x (e.g. the number of bits it takes to represent x).

2 Definition of Polynomial Time

Definition 6 We say \mathcal{A} runs in polynomial time if there exists a polynomial p such that the number of steps of \mathcal{A} on input x is no more than $\overline{p(|x|) \text {. }}$

Definition 7 If we denote a computational problem as π, then the set of polynomial-time decision problems, denoted by \mathcal{P}, is defined as:

$$
\mathcal{P}=\{\pi: \text { There is an algorithm to decide } \pi \text { in polynomial time }\} .
$$

For example, $L P \in \mathcal{P}$.
Definition 8 decision problem is in $\underline{\mathcal{N P}}$ if there exists a verifier $\mathcal{A}(\cdot, \cdot)$, polynomials p_{1}, p_{2} such that

- for all $x \in A$ there exists a $y \in\{0,1\}^{*}$ where $|y| \leq p_{1}(|x|)$ such that $\mathcal{A}(x, y)$ outputs YES.
- for all $x \notin A$, there eixsts $a y \in\{0,1\}^{*}$ where $|y| \leq p_{1}(|x|)$ such that $\mathcal{A}(x, y)$ outputs NO.
- the number of steps of $\mathcal{A}(x, y)$ is no more than $p_{2}(|x|+|y|)$.
$\mathcal{N} \mathcal{P}$ means non-deterministic polynomial time.
For example, $T S P \in \mathcal{N} \mathcal{P}$. The "proof" is a tour of cost $\leq B$

$$
y=\langle\pi(1), \pi(2), \ldots, \pi(n)\rangle .
$$

The verifier \mathcal{A} checks that

$$
\sum_{j=1}^{n-1} c(\pi(j), \pi(j+1))+c(\pi(n), \pi(1)) \leq B
$$

and that π is a permutation.
Next, $L P \in \mathcal{N} \mathcal{P}$, since we our verifier \mathcal{A} can just ignore the proof y and compute in polytime whether $x \in A$. Thus, $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$. The answer to whether $\mathcal{P}=\mathcal{N} \mathcal{P}$ is not known, but if someone solves it, they will have solved one of the seven Millennium Prize Problems and will win a $\$ 1,000,000$ prize!

Definition 9 For decision problems A, B, a polyonimal-time reduction from A to B is a polynomial time algorithm \mathcal{A} such that $\mathcal{A}(x) \in B$ iff $x \in A$. In other words, $\mathcal{A}(x)$ is a yes instance of B iff x is a yes instance of A. We write $A \leq_{\mathcal{P}} B$.

Lemma 1 If $A \leq_{\mathcal{P}} B$ and $B \leq_{\mathcal{P}} C$, then $A \leq_{\mathcal{P}} C$.
Proof: Let \mathcal{A} be the polynomial time reduction from A to B and \mathcal{A}^{\prime} be the polynomial time reduction from B to C. So, $\mathcal{A}(x) \in B$ iff $x \in A$, and $A^{\prime}(y) \in C$ iff $y \in B$. Thus, $\mathcal{A}^{\prime}(\mathcal{A}(x)) \in C$ iff $x \in A$. All we need to show is that $\mathcal{A}^{\prime} \circ A$ runs in time polynomial in $|x|$. This is true since polynomials are closed under composition. Thus, the lemma is proved.

Definition $10 B$ is a $\underline{\mathcal{N P} \text {-complete problem }}$ if $B \in \mathcal{N} \mathcal{P}$ and for all $A \in \mathcal{N} \mathcal{P}, A \leq \mathcal{P} B$.
Theorem 2 If B is $\mathcal{N} \mathcal{P}$-complete and $B \in P$, then $\mathcal{P}=\mathcal{N} \mathcal{P}$.
Proof: \quad We know that $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$. Pick a $A \in \mathcal{N} \mathcal{P}$. By definition of $\mathcal{N} \mathcal{P}$-competeness, $A \leq_{\mathcal{P}} B$. Let \mathcal{A} be a polynomial time algorithm for deciding B and let \mathcal{A}^{\prime} be the polynomial time algorithm for reducing A to B. Then, $\mathcal{A}^{\prime}(x) \in B$ iff $x \in A$.

So, given input x, we run $\mathcal{A}\left(\mathcal{A}^{\prime}(x)\right)$. This will output YES iff $x \in A$ and runs in polynomial time. So, $A \in \mathcal{P}$, and $\mathcal{N P} \subseteq \mathcal{P}$. Thus, $\mathcal{N} \mathcal{P}=\mathcal{P}$.

3 Outline of Strategy for Proving $\mathcal{N} \mathcal{P}$-Completeness

Consider some problem B that we want to show is $\mathcal{N} \mathcal{P}$-complete. First, we show that $B \in \mathcal{N} \mathcal{P}$. Next, show that for some $\mathcal{N} \mathcal{P}$-complete $A, A \leq_{\mathcal{P}} B$.

Lemma 3 Given the above, B is $\mathcal{N} \mathcal{P}$-complete.
Proof: $\quad B \in \mathcal{N} \mathcal{P}$, so all we need to show is that for any $C \in \mathcal{N} \mathcal{P}, C \leq_{\mathcal{P}} B$. Since A is $\mathcal{N} \mathcal{P}$-complete, $C \leq_{\mathcal{P}} A$. We know $A \leq_{\mathcal{P}} B$, so by transitivity, $C \leq_{\mathcal{P}} B$, and B is $\mathcal{N} \mathcal{P}$-complete, as desired.

4 Some $\mathcal{N} \mathcal{P}$-Complete Problems

- Satisfiability: Given boolean variables x_{1}, \ldots, x_{n} and clauses of disjunctions of variables or negations (for example, one clause could be $x_{1} \vee \overline{x_{5}} \vee x_{17}$). Is there an assignment of true and false to the $\left\{x_{i}\right\}$ that satisfies all clauses?
- Partition: Given n integers a_{1}, \ldots, a_{n} such that $\sum_{i=1}^{n} a_{i}$ is even. Does there exist a partition of $\{1, \ldots, n\}$ into S and T such that

$$
\sum_{i \in S} a_{i}=\sum_{j \in T} a_{j} ?
$$

- 3-partition: Given $3 n$ integers $a_{1}, \ldots, a_{3 n}$ and b such that $b / 4<a_{i}<a / 2$ for all i and $\sum_{i=1}^{3 n} a_{i}=n b$, does there exist a partition of $\{1, \ldots, 3 n\}$ into n sets T_{1}, \ldots, T_{n} such that

$$
\sum_{i \in T_{j}} a_{i}=b \quad \forall j=1, \ldots n ?
$$

Finally, consider the Knapsack problem. Recall this problem has n items of sizes s_{1}, \ldots, s_{n}, values v_{1}, \ldots, v_{n} and a total knapsack size of B. The decision problem is:

Given input V, does there exist a $S \subset\{1, \ldots, n\}$ such that $\sum_{i \in S} s_{i} \leq B$ and $\sum_{i \in S} v_{i} \geq V ?$
First, we see that the knapsack problem is in $\mathcal{N P}$. Just let our verifier check the list of items in S and check whether the items' sizes are no more than B and the values are at least V. We will come back to showing the knapsack problem is $\mathcal{N} \mathcal{P}$-complete.

