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1 Decision Problem as a Subset

Definition 1 We denote the encoding of an input to a problem by 〈·〉.

For example, the input to the LP

min cTx

s.t. Ax = b

x ≥ 0

can be denoted 〈A, b, c〉.

Definition 2 The set of all binary strings, is defined as {0, 1}∗ = {0, 1, 00, 01, 10, 11, 000, . . .}

Definition 3 A decision problem is one such that the expected output is either YES or NO. It is represented
by a set A ∈ {0, 1}∗ of exactly those inputs whose outputs are YES.

An LP can be seen as a decision problem. Consider the LP we defined above. We can define the decision
problem

LP = {〈A, b, c, t〉. There is a solution x s.t. Ax ≤ b, x ≥ 0, and cTx ≤ t}.

If we want to find an optimal solution, we can begin at t = −∞ and decide whether 〈A, b, c, t〉 ∈ LP , then
we can find optimal solution t∗ as the point where the answer “switches” from YES to NO.

Another example is the Traveling Salesman Problem. This has decision problem

TSP = {〈n, c,B〉 : There is a tour of length ≤ B (i.e.
∑n−1

j=1 c(π(j), π(j + 1)) + c(π(n), π(1)) ≤ B)}.

Definition 4 x is a yes instance of a decision problem A if x ∈ A. x is a no instance of a decision problem
A if x /∈ A. An algorithm A decides A if A(x) outputs YES iff x ∈ A.

Definition 5 We define |x| to be the length of the string x (e.g. the number of bits it takes to represent x).

2 Definition of Polynomial Time

Definition 6 We say A runs in polynomial time if there exists a polynomial p such that the number of steps
of A on input x is no more than p(|x|).

Definition 7 If we denote a computational problem as π, then the set of polynomial-time decision problems,
denoted by P, is defined as:

P = {π : There is an algorithm to decide π in polynomial time}.

For example, LP ∈ P.

Definition 8 A decision problem is in NP if there exists a verifier A(·, ·), polynomials p1, p2 such that
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• for all x ∈ A there exists a y ∈ {0, 1}∗ where |y| ≤ p1(|x|) such that A(x, y) outputs YES.

• for all x /∈ A, there eixsts a y ∈ {0, 1}∗ where |y| ≤ p1(|x|) such that A(x, y) outputs NO.

• the number of steps of A(x, y) is no more than p2(|x|+ |y|).

NP means non-deterministic polynomial time.

For example, TSP ∈ NP. The “proof” is a tour of cost ≤ B

y = 〈π(1), π(2), . . . , π(n)〉.

The verifier A checks that
n−1∑
j=1

c(π(j), π(j + 1)) + c(π(n), π(1)) ≤ B

and that π is a permutation.
Next, LP ∈ NP, since we our verifier A can just ignore the proof y and compute in polytime whether

x ∈ A. Thus, P ⊆ NP. The answer to whether P = NP is not known, but if someone solves it, they will
have solved one of the seven Millennium Prize Problems and will win a $1,000,000 prize!

Definition 9 For decision problems A,B, a polyonimal-time reduction from A to B is a polynomial time
algorithm A such that A(x) ∈ B iff x ∈ A. In other words, A(x) is a yes instance of B iff x is a yes instance
of A. We write A ≤P B.

Lemma 1 If A ≤P B and B ≤P C, then A ≤P C.

Proof: Let A be the polynomial time reduction from A to B and A′ be the polynomial time reduction
from B to C. So, A(x) ∈ B iff x ∈ A, and A′(y) ∈ C iff y ∈ B. Thus, A′(A(x)) ∈ C iff x ∈ A. All we
need to show is that A′ ◦ A runs in time polynomial in |x|. This is true since polynomials are closed under
composition. Thus, the lemma is proved. 2

Definition 10 B is a NP-complete problem if B ∈ NP and for all A ∈ NP, A ≤P B.

Theorem 2 If B is NP-complete and B ∈ P , then P = NP.

Proof: We know that P ⊆ NP. Pick a A ∈ NP. By definition of NP-competeness, A ≤P B. Let A be
a polynomial time algorithm for deciding B and let A′ be the polynomial time algorithm for reducing A to
B. Then, A′(x) ∈ B iff x ∈ A.

So, given input x, we run A(A′(x)). This will output YES iff x ∈ A and runs in polynomial time. So,
A ∈ P, and NP ⊆ P. Thus, NP = P. 2

3 Outline of Strategy for Proving NP-Completeness

Consider some problem B that we want to show is NP-complete. First, we show that B ∈ NP. Next, show
that for some NP-complete A, A ≤P B.

Lemma 3 Given the above, B is NP-complete.

Proof: B ∈ NP, so all we need to show is that for any C ∈ NP, C ≤P B. Since A is NP-complete,
C ≤P A. We know A ≤P B, so by transitivity, C ≤P B, and B is NP-complete, as desired. 2
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4 Some NP-Complete Problems

• Satisfiability: Given boolean variables x1, . . . , xn and clauses of disjunctions of variables or negations
(for example, one clause could be x1 ∨ x5 ∨ x17). Is there an assignment of true and false to the {xi}
that satisfies all clauses?

• Partition: Given n integers a1, . . . , an such that
∑n

i=1 ai is even. Does there exist a partition of
{1, . . . , n} into S and T such that ∑

i∈S
ai =

∑
j∈T

aj?

• 3-partition: Given 3n integers a1, . . . , a3n and b such that b/4 < ai < a/2 for all i and
∑3n

i=1 ai = nb,
does there exist a partition of {1, . . . , 3n} into n sets T1, . . . , Tn such that∑

i∈Tj

ai = b ∀j = 1, . . . n?

Finally, consider the Knapsack problem. Recall this problem has n items of sizes s1, . . . , sn, values v1, . . . , vn
and a total knapsack size of B. The decision problem is:

Given input V , does there exist a S ⊂ {1, . . . , n} such that
∑

i∈S si ≤ B and
∑

i∈S vi ≥ V ?

First, we see that the knapsack problem is in NP. Just let our verifier check the list of items in S and check
whether the items’ sizes are no more than B and the values are at least V . We will come back to showing
the knapsack problem is NP-complete.
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