November 18, 2014

Scribe: Dave Lingenbrink

Lecture 24

Lecturer: David P. Williamson

1 Decision Problem as a Subset

Definition 1 We denote the encoding of an input to a problem by $\langle \cdot \rangle$.

For example, the input to the LP

$$\begin{array}{ll} \min & c^T x\\ \text{s.t.} & Ax = b\\ & x \ge 0 \end{array}$$

can be denoted $\langle A, b, c \rangle$.

Definition 2 The set of all binary strings, is defined as $\{0,1\}^* = \{0,1,00,01,10,11,000,\ldots\}$

Definition 3 A decision problem is one such that the expected output is either YES or NO. It is represented by a set $A \in \{0,1\}^*$ of exactly those inputs whose outputs are YES.

An LP can be seen as a decision problem. Consider the LP we defined above. We can define the decision problem

 $LP = \{ \langle A, b, c, t \rangle.$ There is a solution x s.t. $Ax \le b, x \ge 0$, and $c^T x \le t \}.$

If we want to find an optimal solution, we can begin at $t = -\infty$ and decide whether $\langle A, b, c, t \rangle \in LP$, then we can find optimal solution t^* as the point where the answer "switches" from YES to NO.

Another example is the Traveling Salesman Problem. This has decision problem

 $TSP = \{ \langle n, c, B \rangle : \text{ There is a tour of length} \leq B \text{ (i.e. } \sum_{j=1}^{n-1} c(\pi(j), \pi(j+1)) + c(\pi(n), \pi(1)) \leq B) \}.$

Definition 4 x is a <u>yes instance</u> of a decision problem A if $x \in A$. x is a <u>no instance</u> of a decision problem A if $x \notin A$. An algorithm \mathcal{A} <u>decides A</u> if $\mathcal{A}(x)$ outputs YES iff $x \in A$.

Definition 5 We define |x| to be the length of the string x (e.g. the number of bits it takes to represent x).

2 Definition of Polynomial Time

Definition 6 We say \mathcal{A} runs in polynomial time if there exists a polynomial p such that the number of steps of \mathcal{A} on input x is no more than $\overline{p(|x|)}$.

Definition 7 If we denote a computational problem as π , then the set of <u>polynomial-time decision problems</u>, denoted by \mathcal{P} , is defined as:

 $\mathcal{P} = \{\pi : \text{There is an algorithm to decide } \pi \text{ in polynomial time}\}.$

For example, $LP \in \mathcal{P}$.

Definition 8 A decision problem is in \underline{NP} if there exists a verifier $\mathcal{A}(\cdot, \cdot)$, polynomials p_1, p_2 such that

- for all $x \in A$ there exists a $y \in \{0,1\}^*$ where $|y| \leq p_1(|x|)$ such that $\mathcal{A}(x,y)$ outputs YES.
- for all $x \notin A$, there eixsts a $y \in \{0,1\}^*$ where $|y| \leq p_1(|x|)$ such that $\mathcal{A}(x,y)$ outputs NO.
- the number of steps of $\mathcal{A}(x, y)$ is no more than $p_2(|x| + |y|)$.

 \mathcal{NP} means non-deterministic polynomial time.

For example, $TSP \in \mathcal{NP}$. The "proof" is a tour of cost $\leq B$

$$y = \langle \pi(1), \pi(2), \dots, \pi(n) \rangle.$$

The verifier \mathcal{A} checks that

$$\sum_{j=1}^{n-1} c(\pi(j), \pi(j+1)) + c(\pi(n), \pi(1)) \le B$$

and that π is a permutation.

Next, $LP \in \mathcal{NP}$, since we our verifier \mathcal{A} can just ignore the proof y and compute in polytime whether $x \in \mathcal{A}$. Thus, $\mathcal{P} \subseteq \mathcal{NP}$. The answer to whether $\mathcal{P} = \mathcal{NP}$ is not known, but if someone solves it, they will have solved one of the seven Millennium Prize Problems and will win a \$1,000,000 prize!

Definition 9 For decision problems A, B, a <u>polyonimal-time reduction</u> from A to B is a polynomial time algorithm \mathcal{A} such that $\mathcal{A}(x) \in B$ iff $x \in A$. In other words, $\mathcal{A}(x)$ is a yes instance of B iff x is a yes instance of A. We write $A \leq_{\mathcal{P}} B$.

Lemma 1 If $A \leq_{\mathcal{P}} B$ and $B \leq_{\mathcal{P}} C$, then $A \leq_{\mathcal{P}} C$.

Proof: Let \mathcal{A} be the polynomial time reduction from A to B and \mathcal{A}' be the polynomial time reduction from B to C. So, $\mathcal{A}(x) \in B$ iff $x \in A$, and $A'(y) \in C$ iff $y \in B$. Thus, $\mathcal{A}'(\mathcal{A}(x)) \in C$ iff $x \in A$. All we need to show is that $\mathcal{A}' \circ A$ runs in time polynomial in |x|. This is true since polynomials are closed under composition. Thus, the lemma is proved. \Box

Definition 10 *B* is a \mathcal{NP} -complete problem if $B \in \mathcal{NP}$ and for all $A \in \mathcal{NP}$, $A \leq_{\mathcal{P}} B$.

Theorem 2 If B is \mathcal{NP} -complete and $B \in P$, then $\mathcal{P} = \mathcal{NP}$.

Proof: We know that $\mathcal{P} \subseteq \mathcal{NP}$. Pick a $A \in \mathcal{NP}$. By definition of \mathcal{NP} -competeness, $A \leq_{\mathcal{P}} B$. Let \mathcal{A} be a polynomial time algorithm for deciding B and let \mathcal{A}' be the polynomial time algorithm for reducing A to B. Then, $\mathcal{A}'(x) \in B$ iff $x \in A$.

So, given input x, we run $\mathcal{A}(\mathcal{A}'(x))$. This will output YES iff $x \in A$ and runs in polynomial time. So, $A \in \mathcal{P}$, and $\mathcal{NP} \subseteq \mathcal{P}$. Thus, $\mathcal{NP} = \mathcal{P}$. \Box

3 Outline of Strategy for Proving \mathcal{NP} -Completeness

Consider some problem B that we want to show is \mathcal{NP} -complete. First, we show that $B \in \mathcal{NP}$. Next, show that for some \mathcal{NP} -complete A, $A \leq_{\mathcal{P}} B$.

Lemma 3 Given the above, B is \mathcal{NP} -complete.

Proof: $B \in \mathcal{NP}$, so all we need to show is that for any $C \in \mathcal{NP}$, $C \leq_{\mathcal{P}} B$. Since A is \mathcal{NP} -complete, $C \leq_{\mathcal{P}} A$. We know $A \leq_{\mathcal{P}} B$, so by transitivity, $C \leq_{\mathcal{P}} B$, and B is \mathcal{NP} -complete, as desired. \Box

4 Some *NP*-Complete Problems

- Satisfiability: Given boolean variables x_1, \ldots, x_n and clauses of disjunctions of variables or negations (for example, one clause could be $x_1 \vee \overline{x_5} \vee x_{17}$). Is there an assignment of true and false to the $\{x_i\}$ that satisfies all clauses?
- **Partition**: Given *n* integers a_1, \ldots, a_n such that $\sum_{i=1}^n a_i$ is even. Does there exist a partition of $\{1, \ldots, n\}$ into *S* and *T* such that

$$\sum_{i \in S} a_i = \sum_{j \in T} a_j?$$

• **3-partition**: Given 3n integers a_1, \ldots, a_{3n} and b such that $b/4 < a_i < a/2$ for all i and $\sum_{i=1}^{3n} a_i = nb$, does there exist a partition of $\{1, \ldots, 3n\}$ into n sets T_1, \ldots, T_n such that

$$\sum_{i \in T_j} a_i = b \quad \forall j = 1, \dots n?$$

Finally, consider the Knapsack problem. Recall this problem has n items of sizes s_1, \ldots, s_n , values v_1, \ldots, v_n and a total knapsack size of B. The decision problem is:

Given input V, does there exist a $S \subset \{1, \ldots, n\}$ such that $\sum_{i \in S} s_i \leq B$ and $\sum_{i \in S} v_i \geq V$?

First, we see that the knapsack problem is in \mathcal{NP} . Just let our verifier check the list of items in S and check whether the items' sizes are no more than B and the values are at least V. We will come back to showing the knapsack problem is \mathcal{NP} -complete.