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1 Interior-Point Methods

1.1 Barrier Function Minimization & Introduction of Central Path

Recall the primal and dual LP we considered in last class:

min cTx max bT y

s.t. Ax = b s.t. AT y + s = c

x ≥ 0 s ≥ 0

We defined the interior of primal feasible region P and dual feasible region D as follows:

F◦(P ) = {x ∈ Rn : Ax = b, x > 0}
F◦(D) = {(y, s) ∈ Rm × Rn : AT y + s = c, s > 0}

We also introduced the logarithmic barrier function:

F (x) = −
n∑
j=1

lnxj

which is defined on F◦(P ). F (x) measures how central x is. The point x that minimizes F (x) over
F◦(P ) is called the analytical center of P .

Consider the function Bµ(x) = cTx + µF (x) for µ > 0, defined on F◦(P ). The x ∈ F◦(P )
minimizing Bµ(x) is close to the anlytical center when µ is large, and close to the optimal solution
to cTx when µ is small. So as µ → 0, x ∈ P minimizing Bµ(x) converges to the optimal solution
to cTx. We can use this idea to find the optimal solution to cTx.

We need first to check whether a minimizer of Bµ(x) exists on F◦(P ). The following theorem
gives necessary and sufficient conditions for the existence of such a minimizer.

Theorem 1

(i) For Bµ to have a minimizer on F◦(P ), it is necessary and sufficient for F◦(P ) and F◦(D)
to be non-empty.

(ii) If F◦(P ) and F◦(D) are non-empty, a necessray and sufficient condition for x ∈ F◦(P ) to
be the unique minimizer of Bµ is that ∃(y, s) ∈ F◦(D) such that:

AT y + s = c
Ax = b

XSe = µe
(1)
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where X = diag(x), S = diag(s), and e = (1, . . . , 1)T ∈ Rn.

The last condition in (ii) is equivalent as xjsj = µ, ∀j. When µ = 0, this condition is equivalent
that x, y, s satisfy the complementery slackness condition, which ensures (x, y, s) to be optimal.
Proof: We first prove sufficiency of (i). Assume ∃x̂ ∈ F◦(P ), (ŷ, ŝ) ∈ F◦(D), then:

Bµ(x) = cTx+ µF (x)

= (AT ŷ + ŝ)Tx+ µF (x)

= ŷTAx+ ŝTx+ µF (x)

= ŷT b+ ŝTx+ µF (x)

= ŷT b+
n∑
j=1

(ŝjxj − µ lnxj)

Note that ∀j, ŝjxj − µ lnxj → ∞ as xj → 0 or xj → ∞ (Figure 1). Therefore, for each
j, we can find xj > 0 and xj > 0 such that for all x ∈ F◦(P ) s.t. Bµ(x) ≤ Bµ(x̂), x satisfies
0 < xj ≤ xj ≤ xj , ∀j. Since Bµ is a continuous function over a non-empty, closed and bounded set
C = {x ∈ F◦(P ) : x ≤ x ≤ x}, by Weierstrass’s theorem, there exists a minimizer of Bµ on C, and
by construction, this is also a minimizer over F◦(P ).

Figure 1: Plot of ŝjxj − µ lnxj vs xj

Next, we prove necessity of (i) and (ii).
Suppose x is a minimizer of Bµ on F◦(P ), then there exists y s.t. AT y = c+µ∇F (x) = ∇Bµ(x),

since otherwise by Lemma 1 of last lecture, there would exist a direction to decrease Bµ(x) along
∇Bµ(x).

Thus, ∃y s.t.

AT y = c+ µ∇F (x)

= c+ µ(−X−1e)

= c− µ


1/x1
1/x2

...
1/xn
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Now set s = µ


1/x1
1/x2

...
1/xn

 > 0.

Since AT y + s = c, this implies (y, s) ∈ F◦(D). Thus both F◦(P ) and F◦(D) are non-empty.
Moreover, we have xjsj = µ for all j, so that XSe = µe, which shows (1) holds.

Last, we show that if (1) holds for x ∈ F◦(P ) and (y, s) ∈ F◦(D), then x is the unique minimizer
of Bµ over F◦(P ).

Consider the function:
G(x) = (c−AT y)Tx+ µF (x)

The gradient of G(x) is:

∇G(x) = c−AT y + µ∇F (x)

= c−AT y − µ

1/x1
...

1/xn


= c−AT y − s = 0

implied by the fact (y, s) ∈ F◦(D).
Since G is a convex function over F◦(P ), then x is the unique minimizer of G over that region.

Also, by x ∈ F◦(P ) we have Ax = b and:

G(x) = cTx− yTAx+ µF (x)

= Bµ(x)− yT b

Thus, Bµ(x) and G(x) differ only by a constant yT b over F◦(P ). Hence minimizing Bµ is
equivalent as minimizing G and x is the unique minimizer of Bµ over F◦(P ). �

Let x(µ), y(µ), s(µ) be solutions to (1) for some fixed µ, then {x(µ) : µ > 0} is called the
primal central path and {x(µ), y(µ), s(µ) : µ > 0} is called the primal-dual central path. We have
as µ→ 0, the central path will converge to an optimal solution of the original LP. In next lecture,
we’re going to talk about some “path-following” methods in which we follow a central path to find
an optimal solution to the LP.

1.2 Potential Function Reduction Method

Now we turn our steer towards another important class of interior-point method: the methods of
potential function reduction. We’re going to pick some potential function G(x, s) with the property
that when G(x, s) is sufficiently small, (x, y, s) must be close to an optimal solution. The idea of the
potentail reduction method is to start with some feasible (x, y, s) and try to decrease the potential
function G in each iteration until G is small enough so that we are close to an optimal solution.
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One choice of G is:

Gq(x, s) = q ln(xT s) + F (x) + F (s)

= q ln(xT s)−
n∑
j=1

lnxj −
n∑
j=1

ln sj

= q ln(xT s)−
n∑
j=1

lnxjsj

for some q.
What q shall we choose? The following lemma shows we can not choose q too small.

Lemma 2 If q = n, then Gn(x, s) ≥ n lnn.

Proof: Recall that for a list of values t1, . . . , tn where ti > 0 ∀i, the arithmatic mean is always
no less than the geometric mean, i.e. n∏

j=1

tj

 1
n

≤ 1

n

 n∑
j=1

tj


⇒ 1

n

n∑
j=1

ln tj ≤ ln

 n∑
j=1

tj

− lnn

⇒ n ln

 n∑
j=1

tj

− n∑
j=1

ln tj ≥ lnn

Let tj = sjxj , and we have the desired result. �
Keep in mind we want that when G(x, s) is sufficiently small, (x, y, s) is close to an optimal

solution. When does (x, y, s) approach an optimal solution? Note that for x ∈ F◦(P ) and (y, s) ∈
F◦(D):

xT s = xT (c−AT y) = xT c− (Ax)T y = cTx− bT y

If xT s = 0, then cTx = bT y and x and (y, s) are optimal. Also note if xT s ≤ ε, then cTx−bT y ≤
ε. Since bT y ≤ cTx, this implies the primal and dual are within ε of their optimal values.

Therefore, we want that Gq(x, s) sufficiently small implies xT s close to 0. Hence we may ask if
there exists some q s.t. Gq(x, s) → −∞ as xT s → 0. If such q exists, then Gq(x, s) is a desirable
potential function. By Lemma 2, we have:

Gq(x, s) = Gn(x, s)− (n− q) ln(xT s)

≥ −(n− q) ln(xT s) + n lnn

Therefore, for q < n, Gq(x, s) → +∞ as xT s → 0. Thus, we want to choose some q > n, and
the following lemma shows such q exists:

Lemma 3 If Gq(x, s) ≤ −
√
n ln 1

ε for q = n+
√
n, then xT s ≤ ε.
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Proof:

−
√
n ln

1

ε
= Gq(x, s) = (n+

√
n) ln(xT s)−

n∑
j=1

lnxjsj ≥
√
n ln(xT s) + n lnn

⇒ ln(xT s) ≤ − ln
1

ε
−
√
n lnn ≤ − ln

1

ε

⇒ xT s ≤ e− ln 1
ε = ε

�
Therefore, if we can find a good starting point (x, y, s) and can reduce Gq(x, s) by a constant

in each iteration, then in O(
√
n ln 1

ε ) iterations we can find a solution whose value is within ε of the
value of the optimal solution.
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