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Lecture 19

Lecturer: David P. Williamson Scribe: Nozomi Hitomi

1 The Ellipsoid Method for LP

Recall we discussed the ellipsoid method last time: Given some bounded polyhedron P = {x ∈
Rn : Cx ≤ D}, either finds x ∈ P or states that P = ∅; that is, P is infeasible. How can we use this
feasibility detector to solve an optimization problem such as min cTx : Ax ≤ b, x ≥ 0? We claim
that we can do this by making three calls to the ellipsoid method.

1.1 Idea of Ellipsoid method

Let’s now give the basic idea of how the ellipsoid method will work.

• Start with a sphere large enough to contain all feasible points. Call the sphere E0, center a0.

• If ak ∈ P , done (i.e. obeys constraints). Return ak.

• If not, ak /∈ P , since Cjak > dj for some j.

• Divide ellipsoid Ek in half through center ak with a hyperplane parallel to the constraint
Cjx = dj .

• Compute new ellipsoid Ek+1, center ak+1, containing the ”good” half of Ek that contains P .
Repeat.

1.2 Showing progress using the Ellipsoid method

Recall: L ≡ number of bits to represent C, d. For any vertex x, xj needs at most nU +n log(n) bits
to represent n ≡ numbers of vars, U ≡ largest entry in C, d.

• =⇒ |xj | ≤ 2nU+n log(n)

• =⇒ sphere of radius 2L contains all vertices and has volume 2O(nL).

Note, our initial ellipsoid is a sphere centered at origin and we know for any vertex x, |xj | ≤
2nU+n logn, so sphere of radius 2L, volume 2O(nL), will contain the feasible region.

In order to show progress, we will show:

1. (today) that after any O(n) iterations, the volume of the ellipsoid will be reduced by a factor
of ≈ 2

2. (next time) that if P is feasible, then it has a region of volume 2Ω(nL).
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Note that these two claims together will imply that the algorithm runs in polynomial time: After
O(n2L) iterations (n per factor of 2, O(nL) factors of 2), either we find a feasible point or the
ellipsoid has volume smaller than any feasible region, so P is infeasible.

1.3 Unit sphere split by hyperplane x1 > 0

Figure 1: Unit sphere split by hyperplane x1 > 0

As a start, consider the unit sphere E0 centered at the origin with radius 1. Consider dividing
E0 with plane x1 ≥ 0. Thus

E0 =

{
x ∈ Rn :

n∑
i=1

x2
i ≤ 1

}
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We now consider the ellipsoid

E1 =

{
x ∈ Rn :

(
n + 1

n

)2(
x1 −

1

n + 1

)2

+
n2 − 1

n2

n∑
i=2

xi
2 ≤ 1

}

We need to show that:

1. E1 contains all points in the intersection of E0 and x1 ≥ 0

2. Volume of E1 is some factor smaller than E0.

Lemma 1
E1 ⊇ E0 ∩ {x : x1 ≥ 0}

Proof: Pick x ∈ E0 ∩ {x : x1 ≥ 0}(
n + 1

n

)2(
x1 −

1

n + 1

)2

+
n2 − 1

n2

n∑
i=2

xi
2

We know that
∑n

i=2 xi
2 ≤ 1− x1

2 so,(
n + 1

n

)2(
x1 −

1

n + 1

)2

+
n2 − 1

n2

n∑
i=2

xi
2 ≤

(
n + 1

n

)2(
x1 −

1

n + 1

)2

+
n2 − 1

n2
1− x1

2

=
2n + 2

n2
x1

2 − 2(n + 1)

n2
x1 + 1

=
2n + 2

n2
(x1

2 − x1) + 1

Since 0 ≤ x1 ≤ 1 because x1 is inside unit sphere and x1 ≥ 0 =⇒ x2
1 − x1 ≤ 0

∴ ((2n + 2)/n2)x2
1 − x1) + 1 ≤ .

�

Lemma 2
volume(E1)

volume(E0)
≤ e

−1
2(n+1) < 1

Proof: First we define the general form of an ellipsoid with center a:

E(a,A) =
{
x : (x− a)TA−1(x− a) ≤ 1

}
where A is a symmetric, positive definite matrix (i.e. vTAv > 0∀v ∈ Rn). Then for an ellipsoid
E1 = E(a1, A) with center a1 = 1

n+1e1,
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A−1 =



(
n+1
n

)2
0 . . . . . . 0

0 n2−1
n2 0 . . .

...
... 0

. . .
. . .

...
...

...
. . .

. . . 0

0 . . . . . . 0 n2−1
n2


and A =



(
n

n+1

)2
0 . . . . . . 0

0 n2

n2−1
0 . . .

...
... 0

. . .
. . .

...
...

...
. . .

. . . 0

0 . . . . . . 0 n2

n2−1



=⇒ A =
n2

n2 − 1

(
I − 2

n + 1
e1e

T
1

)
Fact 1 Volume of E(a,A) is

√
det(A) times the volume of a unit sphere

volume(E1)

volume(E0)
=

√
det(A)

=

[(
n

n + 1

)2( n2

n2 − 1

)n−1
] 1

2

We use the fact that 1 + x ≤ ex for all x, so that

=⇒

[(
n

n + 1

)2( n2

n2 − 1

)n−1
] 1

2

≤
[
e

−2
n+1 e

n−1

n2−1

] 1
2

=
[
e

−2
n+1 e

1
n+1

] 1
2

=
[
e

−1
n+1

] 1
2

= e
−1

2(n+1)

�
Will show that in general that volume(Ek+1) ≤ e

−1
2(n+1) volume(Ek)

• =⇒ after k iterations, volume drops by a factor of at least e
−k

2(n+1)

• =⇒ after 2(n + 1) iterations, volume drops by a factor of at least e > 2.

To deal with the general case, we want to show for any ellipsoid E with center a and constraint
Cj = c, we can find a new ellipsoid E′ with center a′ such that E′ ⊇ E ∩ x : cTx ≤ cTa and

volume(E′) ≤ e
−1

2(n+1) volume(E). We now deal with a slightly more complicated case.

1.4 Unit sphere split by arbitrary hyperplane

First, suppose that E0 = E(0, I), the unit sphere centered at origin, but now we have arbitrary
constraint c. Assume ‖c‖ = 1. (i.e., cT c = 1). In order to handle this, the main idea is to reduce
to previous case. Consider applying a rotation y = T (x), so that −e1 = T (c). Then rotate E1 back
using T−1.
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Figure 2: General Case for Unit Sphere

Since T is a rotation, y = T (x) = Ux for some orthonormal matrix U (i.e. UT = U−1).
We want Uc = −e1, so c = −U−1e1 = −UT e1. In the transformed space, the desired ellipsoid
is {x ∈ Rn : (Ux − a)TA−1(Ux − a) ≤ 1}. Since UTU = I, this is the same as {x : (Ux −
a)TUUTA−1UUT (Ux− a) ≤ 1}.

Figure 3: Rotation

Now we observe that
(Ux− a)TU = ((Ux)T − aT )U

= (xTUT − aT )U
= xT − aTU
= (x− UTa)T ,

and
UT (Ux− a) = x− UTa,
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where we define

UTa = UT

(
1

n + 1
e1

)
= − 1

n + 1
e =: â.

If we set Â−1 = UTA−1U , then we get

Â = (UTA−1U)−1

= U−1A(U−1)T

=
n2

n2 − 1
UT (I − 2

n + 1
e1e

T
1 )U

=
n2

n2 − 1
(I − 2

n + 1
(UT e1)(eT1 U))

=
n2

n2 − 1
(I − 2

n + 1
(−c)(−cT ))

=
n2

n2 − 1
(I − 2

n + 1
ccT ).

Therefore in this case,

E′ = {x ∈ Rn : (x− â)T Â−1(x− â) ≤ 1}.

Since we only performed a rotation, the volume did not change. So volume(E′) ≤ e
− 1

2(n+1) volume(E0).

1.5 General Case: (not covered in lecture on Oct. 31 2014)

Now what if E is not the unit sphere but a general ellipsoid? The idea is to transform E into
unit sphere centered at origin via transform T (x) = y, apply the result of the previous case, then
transform it back via T−1.

Figure 4: Case of General Ellipsoid

Let E = Ek = E(ak, Ak). Since Ak is positive definite, Ak = BTB for some B. Then A−1
k =

B−1(B−1)T , and
E(ak, Ak) = {x : (x− ak)TB−1(B−1)T (x− ak) ≤ 1}.
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If we set y = T (x) = (B−1)T (x− ak), we will get

yT y ≤ 1.

So T transforms Ek into E(0, I). T−1(y) = x = BT y + ak.
The hyperplane in the original space dTx ≤ dTak becomes dT (BT y+ak) ≤ dTak, thus dTBT y ≤

0 after the transform T . We want cT y ≤ 0 for ‖c‖ = 1, therefore set

cT =
dTBT

‖dTBT ‖
,

hence

c =
Bd√
dTAd

.

In the transformed space, we have

E′ =

{
y : (y +

1

n + 1
c)TF−1(y +

1

n + 1
c) ≤ 1

}
,

where

F = Â =
n2

n2 − 1
(I − 2

n + 1
ccT ).

Now substitute y = (B−1)T (x− ak) to get back to the original space. We have

Ek+1 =

{
x :

(
(B−1)T (x− ak) +

1

n + 1
c

)T

F−1

(
(B−1)T (x− ak) +

1

n + 1
c

)
≤ 1

}
,

Ek+1 =

{
x :

(
(x− ak)TB−1 +

1

n + 1
cT
)
F−1

(
(B−1)T (x− ak) +

1

n + 1
c

)
≤ 1

}
.

If we set ak+1 = ak − 1
n+1B

T c, then

Ek+1 = {x : (x− ak+1)TB−1F−1(B−1)T (x− ak+1) ≤ 1}.

If we set F̂−1 = B−1F−1(B−1)T , then

F̂ = BTFB =
n2

n2 − 1
BT

(
I − 2

n− 1
ccT
)
B

=
n2

n2 − 1

(
Ak −

2

n + 1
(BT c)(BT c)T

)
=

n2

n2 − 1

(
Ak −

2

n + 1
bbT
)
,

where we set b = BT c. Then ak+1 = ak − b
n+1 , and Ak+1 = F̂ = n2

n2−1

(
Ak − 2

n+1bb
T
)

.

Since the ratios of volumes are preserved under linear transformation,

volume(Ek+1)

volume(Ek)
=

volume(E′)

volume(E0)
≤ e
− 1

2(n+1) .
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