1 The Ellipsoid Method for LP

Recall we discussed the ellipsoid method last time: Given some bounded polyhedron $P=\{x \in$ $\left.\mathbb{R}^{n}: C x \leq D\right\}$, either finds $x \in P$ or states that $P=\emptyset$; that is, P is infeasible. How can we use this feasibility detector to solve an optimization problem such as $\min c^{T} x: A x \leq b, x \geq 0$? We claim that we can do this by making three calls to the ellipsoid method.

1.1 Idea of Ellipsoid method

Let's now give the basic idea of how the ellipsoid method will work.

- Start with a sphere large enough to contain all feasible points. Call the sphere E_{0}, center a_{0}.
- If $a_{k} \in P$, done (i.e. obeys constraints). Return a_{k}.
- If not, $a_{k} \notin P$, since $C_{j} a_{k}>d_{j}$ for some j.
- Divide ellipsoid E_{k} in half through center a_{k} with a hyperplane parallel to the constraint $C_{j} x=d_{j}$.
- Compute new ellipsoid E_{k+1}, center a_{k+1}, containing the "good" half of E_{k} that contains P. Repeat.

1.2 Showing progress using the Ellipsoid method

Recall: $L \equiv$ number of bits to represent C, d. For any vertex x, x_{j} needs at most $n U+n \log (n)$ bits to represent $n \equiv$ numbers of vars, $U \equiv$ largest entry in C, d.

- $\Longrightarrow\left|x_{j}\right| \leq 2^{n U+n \log (n)}$
- \Longrightarrow sphere of radius 2^{L} contains all vertices and has volume $2^{O(n L)}$.

Note, our initial ellipsoid is a sphere centered at origin and we know for any vertex $x,\left|x_{j}\right| \leq$ $2^{n U+n \log n}$, so sphere of radius 2^{L}, volume $2^{O(n L)}$, will contain the feasible region.

In order to show progress, we will show:

1. (today) that after any $O(n)$ iterations, the volume of the ellipsoid will be reduced by a factor of ≈ 2
2. (next time) that if P is feasible, then it has a region of volume $2^{\Omega(n L)}$.

Note that these two claims together will imply that the algorithm runs in polynomial time: After $O\left(n^{2} L\right.$) iterations (n per factor of $2, O(n L)$ factors of 2), either we find a feasible point or the ellipsoid has volume smaller than any feasible region, so P is infeasible.

1.3 Unit sphere split by hyperplane $x_{1}>0$

Figure 1: Unit sphere split by hyperplane $x_{1}>0$
As a start, consider the unit sphere E_{0} centered at the origin with radius 1 . Consider dividing E_{0} with plane $x_{1} \geq 0$. Thus

$$
E_{0}=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}^{2} \leq 1\right\}
$$

We now consider the ellipsoid

$$
E_{1}=\left\{x \in \mathbb{R}^{n}:\left(\frac{n+1}{n}\right)^{2}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\frac{n^{2}-1}{n^{2}} \sum_{i=2}^{n} x_{i}{ }^{2} \leq 1\right\}
$$

We need to show that:

1. E_{1} contains all points in the intersection of E_{0} and $x_{1} \geq 0$
2. Volume of E_{1} is some factor smaller than E_{0}.

Lemma 1

$$
E_{1} \supseteq E_{0} \cap\left\{x: x_{1} \geq 0\right\}
$$

Proof: Pick $x \in E_{0} \cap\left\{x: x_{1} \geq 0\right\}$

$$
\left(\frac{n+1}{n}\right)^{2}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\frac{n^{2}-1}{n^{2}} \sum_{i=2}^{n} x_{i}^{2}
$$

We know that $\sum_{i=2}^{n} x_{i}{ }^{2} \leq 1-x_{1}{ }^{2}$ so,

$$
\begin{aligned}
\left(\frac{n+1}{n}\right)^{2}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\frac{n^{2}-1}{n^{2}} \sum_{i=2}^{n} x_{i}{ }^{2} & \leq\left(\frac{n+1}{n}\right)^{2}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\frac{n^{2}-1}{n^{2}} 1-x_{1}{ }^{2} \\
& =\frac{2 n+2}{n^{2}} x_{1}{ }^{2}-\frac{2(n+1)}{n^{2}} x_{1}+1 \\
& =\frac{2 n+2}{n^{2}}\left(x_{1}{ }^{2}-x_{1}\right)+1
\end{aligned}
$$

Since $0 \leq x_{1} \leq 1$ because x_{1} is inside unit sphere and $x_{1} \geq 0 \Longrightarrow x_{1}^{2}-x_{1} \leq 0$

$$
\left.\therefore\left((2 n+2) / n^{2}\right) x_{1}^{2}-x_{1}\right)+1 \leq .
$$

Lemma 2

$$
\frac{\operatorname{volume}\left(E_{1}\right)}{\operatorname{volume}\left(E_{0}\right)} \leq e^{\frac{-1}{2(n+1)}}<1
$$

Proof: First we define the general form of an ellipsoid with center a :

$$
E(a, A)=\left\{x:(x-a)^{T} A^{-1}(x-a) \leq 1\right\}
$$

where A is a symmetric, positive definite matrix (i.e. $v^{T} A v>0 \forall v \in \mathbb{R}^{n}$). Then for an ellipsoid $E_{1}=E\left(a_{1}, A\right)$ with center $a_{1}=\frac{1}{n+1} e_{1}$,

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{ccccc}
\left(\frac{n+1}{n}\right)^{2} & 0 & \cdots & \ldots & 0 \\
0 & \frac{n^{2}-1}{n^{2}} & 0 & \ldots & \vdots \\
\vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & \ldots & \ldots & 0 & \frac{n^{2}-1}{n^{2}}
\end{array}\right] \text { and } A=\left[\begin{array}{ccccc}
\left(\frac{n}{n+1}\right)^{2} & 0 & \cdots & \ldots & 0 \\
0 & \frac{n^{2}}{n^{2}-1} & 0 & \cdots & \vdots \\
\vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & \cdots & \ldots & 0 & \frac{n^{2}}{n^{2}-1}
\end{array}\right] \\
& \Longrightarrow A=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{T}\right)
\end{aligned}
$$

Fact 1 Volume of $E(a, A)$ is $\sqrt{\operatorname{det}(A)}$ times the volume of a unit sphere

$$
\begin{aligned}
\frac{\operatorname{volume}\left(E_{1}\right)}{\operatorname{volume}\left(E_{0}\right)} & =\sqrt{\operatorname{det}(A)} \\
& =\left[\left(\frac{n}{n+1}\right)^{2}\left(\frac{n^{2}}{n^{2}-1}\right)^{n-1}\right]^{\frac{1}{2}}
\end{aligned}
$$

We use the fact that $1+x \leq e^{x}$ for all x, so that

$$
\begin{aligned}
\Longrightarrow\left[\left(\frac{n}{n+1}\right)^{2}\left(\frac{n^{2}}{n^{2}-1}\right)^{n-1}\right]^{\frac{1}{2}} & \leq\left[e^{\frac{-2}{n+1}} e^{\frac{n-1}{n^{2}-1}}\right]^{\frac{1}{2}} \\
& =\left[e^{\frac{-2}{n+1}} e^{\frac{1}{n+1}}\right]^{\frac{1}{2}} \\
& =\left[e^{\frac{-1}{n+1}}\right]^{\frac{1}{2}}=e^{\frac{-1}{2(n+1)}}
\end{aligned}
$$

Will show that in general that $\operatorname{volume}\left(E_{k+1}\right) \leq e^{\frac{-1}{2(n+1)}} \operatorname{volume}\left(E_{k}\right)$

- \Longrightarrow after k iterations, volume drops by a factor of at least $e^{\frac{-k}{2(n+1)}}$
- \Longrightarrow after $2(n+1)$ iterations, volume drops by a factor of at least $e>2$.

To deal with the general case, we want to show for any ellipsoid E with center a and constraint $C_{j}=c$, we can find a new ellipsoid E^{\prime} with center a^{\prime} such that $E^{\prime} \supseteq E \cap x: c^{T} x \leq c^{T} a$ and volume $\left(E^{\prime}\right) \leq e^{\frac{-1}{2(n+1)}} \operatorname{volume}(E)$. We now deal with a slightly more complicated case.

1.4 Unit sphere split by arbitrary hyperplane

First, suppose that $E_{0}=E(0, I)$, the unit sphere centered at origin, but now we have arbitrary constraint c. Assume $\|c\|=1$. (i.e., $c^{T} c=1$). In order to handle this, the main idea is to reduce to previous case. Consider applying a rotation $y=T(x)$, so that $-e_{1}=T(c)$. Then rotate E_{1} back using T^{-1}.

Figure 2: General Case for Unit Sphere

Since T is a rotation, $y=T(x)=U x$ for some orthonormal matrix U (i.e. $U^{T}=U^{-1}$). We want $U c=-e_{1}$, so $c=-U^{-1} e_{1}=-U^{T} e_{1}$. In the transformed space, the desired ellipsoid is $\left\{x \in \mathbb{R}^{n}:(U x-a)^{T} A^{-1}(U x-a) \leq 1\right\}$. Since $U^{T} U=I$, this is the same as $\{x:(U x-$ $\left.a)^{T} U U^{T} A^{-1} U U^{T}(U x-a) \leq 1\right\}$.

Figure 3: Rotation
Now we observe that

$$
\begin{aligned}
(U x-a)^{T} U & =\left((U x)^{T}-a^{T}\right) U \\
& =\left(x^{T} U^{T}-a^{T}\right) U \\
& =x^{T}-a^{T} U \\
& =\left(x-U^{T} a\right)^{T},
\end{aligned}
$$

and

$$
U^{T}(U x-a)=x-U^{T} a,
$$

where we define

$$
U^{T} a=U^{T}\left(\frac{1}{n+1} e_{1}\right)=-\frac{1}{n+1} e=: \hat{a}
$$

If we set $\hat{A}^{-1}=U^{T} A^{-1} U$, then we get

$$
\begin{aligned}
\hat{A} & =\left(U^{T} A^{-1} U\right)^{-1} \\
& =U^{-1} A\left(U^{-1}\right)^{T} \\
& =\frac{n^{2}}{n^{2}-1} U^{T}\left(I-\frac{2}{n+1} e_{1} e_{1}^{T}\right) U \\
& =\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1}\left(U^{T} e_{1}\right)\left(e_{1}^{T} U\right)\right) \\
& =\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1}(-c)\left(-c^{T}\right)\right) \\
& =\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} c c^{T}\right)
\end{aligned}
$$

Therefore in this case,

$$
E^{\prime}=\left\{x \in \mathbb{R}^{n}:(x-\hat{a})^{T} \hat{A}^{-1}(x-\hat{a}) \leq 1\right\}
$$

Since we only performed a rotation, the volume did not change. So volume $\left(E^{\prime}\right) \leq e^{-\frac{1}{2(n+1)}} \operatorname{volume}\left(E_{0}\right)$.

1.5 General Case: (not covered in lecture on Oct. 31 2014)

Now what if E is not the unit sphere but a general ellipsoid? The idea is to transform E into unit sphere centered at origin via transform $T(x)=y$, apply the result of the previous case, then transform it back via T^{-1}.

Figure 4: Case of General Ellipsoid

Let $E=E_{k}=E\left(a_{k}, A_{k}\right)$. Since A_{k} is positive definite, $A_{k}=B^{T} B$ for some B. Then $A_{k}^{-1}=$ $B^{-1}\left(B^{-1}\right)^{T}$, and

$$
E\left(a_{k}, A_{k}\right)=\left\{x:\left(x-a_{k}\right)^{T} B^{-1}\left(B^{-1}\right)^{T}\left(x-a_{k}\right) \leq 1\right\}
$$

If we set $y=T(x)=\left(B^{-1}\right)^{T}\left(x-a_{k}\right)$, we will get

$$
y^{T} y \leq 1
$$

So T transforms E_{k} into $E(0, I) . T^{-1}(y)=x=B^{T} y+a_{k}$.
The hyperplane in the original space $d^{T} x \leq d^{T} a_{k}$ becomes $d^{T}\left(B^{T} y+a_{k}\right) \leq d^{T} a_{k}$, thus $d^{T} B^{T} y \leq$ 0 after the transform T. We want $c^{T} y \leq 0$ for $\|c\|=1$, therefore set

$$
c^{T}=\frac{d^{T} B^{T}}{\left\|d^{T} B^{T}\right\|},
$$

hence

$$
c=\frac{B d}{\sqrt{d^{T} A d}} .
$$

In the transformed space, we have

$$
E^{\prime}=\left\{y:\left(y+\frac{1}{n+1} c\right)^{T} F^{-1}\left(y+\frac{1}{n+1} c\right) \leq 1\right\}
$$

where

$$
F=\hat{A}=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} c c^{T}\right) .
$$

Now substitute $y=\left(B^{-1}\right)^{T}\left(x-a_{k}\right)$ to get back to the original space. We have

$$
\begin{gathered}
E_{k+1}=\left\{x:\left(\left(B^{-1}\right)^{T}\left(x-a_{k}\right)+\frac{1}{n+1} c\right)^{T} F^{-1}\left(\left(B^{-1}\right)^{T}\left(x-a_{k}\right)+\frac{1}{n+1} c\right) \leq 1\right\} \\
E_{k+1}=\left\{x:\left(\left(x-a_{k}\right)^{T} B^{-1}+\frac{1}{n+1} c^{T}\right) F^{-1}\left(\left(B^{-1}\right)^{T}\left(x-a_{k}\right)+\frac{1}{n+1} c\right) \leq 1\right\}
\end{gathered}
$$

If we set $a_{k+1}=a_{k}-\frac{1}{n+1} B^{T} c$, then

$$
E_{k+1}=\left\{x:\left(x-a_{k+1}\right)^{T} B^{-1} F^{-1}\left(B^{-1}\right)^{T}\left(x-a_{k+1}\right) \leq 1\right\} .
$$

If we set $\hat{F}^{-1}=B^{-1} F^{-1}\left(B^{-1}\right)^{T}$, then

$$
\begin{aligned}
\hat{F}=B^{T} F B & =\frac{n^{2}}{n^{2}-1} B^{T}\left(I-\frac{2}{n-1} c c^{T}\right) B \\
& =\frac{n^{2}}{n^{2}-1}\left(A_{k}-\frac{2}{n+1}\left(B^{T} c\right)\left(B^{T} c\right)^{T}\right) \\
& =\frac{n^{2}}{n^{2}-1}\left(A_{k}-\frac{2}{n+1} b b^{T}\right),
\end{aligned}
$$

where we set $b=B^{T} c$. Then $a_{k+1}=a_{k}-\frac{b}{n+1}$, and $A_{k+1}=\hat{F}=\frac{n^{2}}{n^{2}-1}\left(A_{k}-\frac{2}{n+1} b b^{T}\right)$.
Since the ratios of volumes are preserved under linear transformation,

$$
\frac{\operatorname{volume}\left(E_{k+1}\right)}{\operatorname{volume}\left(E_{k}\right)}=\frac{\operatorname{volume}\left(E^{\prime}\right)}{\operatorname{volume}\left(E_{0}\right)} \leq e^{-\frac{1}{2(n+1)}} .
$$

